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Based on the idea of constant-momentum-transfer averaging (CMTA) of Lagally et al. and facing the
problem of CMTA pointed out by Pendry, in the present work we propose the use of the quasikinematic
low-energy electron-diffraction (QKLEED) calculations in comparison with the experimental CMTA
curves in surface structure determinations. In QKLEED, the influences of the zero-angle scattering on
the CMTA curves are treated so that they have essentially no influence on correctly determining the
structural parameters, and the mean complex atomic scattering factors are introduced as the effective
scattering factors. In addition, an experimental design is proposed for obtaining CMTA curves contain-
ing the least influence of multiple scattering. The whole QKLEED/CMTA method has been carefully
and systematically tested, and its capability of determining surface structures is demonstrated on the
Cu(001)(1 X 1), Si(111)(V3 X V3)R 30°-Al, and Si(111)(V'3 X V'3)R 30°-Ag surfaces.

I. INTRODUCTION

It is known that low-energy electron diffraction
(LEED) is very well established both theoretically and ex-
perimentally! ~* and it has been the most important tech-
nique for surface structure determinations ever since the
late 1960s,> when surface crystallography had just
emerged. Unfortunately, it is also known that the full
dynamical LEED (DLEED) calculations are very time
consuming, especially when complex structures are stud-
ied. Consequently, most of the development of LEED
theory has concentrated upon ways of reducing the com-
putational requirements through the use of approxima-
tions to full multiple scattering as well as symmetries in
real and reciprocal spaces. As a result, a tour-de-force
analysis of the most complex surface structure Si(111)-
(7X7) was performed recently by Tong et al.® However,
the r factor of their best-fit structure is by no means small
enough to eclipse other models with confidence.

On the other hand, kinematic LEED (KLEED) calcu-
lations are much simpler and thus faster. Unfortunately,
they do not describe the process of low-energy electron
diffraction in most real crystals with an accuracy."* In
order to take advantage of computational simplicity of
KLEED calculations, Lagally, Ngoc, and Webb proposed
the method of constant-momentum-transfer averaging
(CMTA) to extract from experimental curves the essen-
tially kinematic component.” Many efforts have been de-
voted to testing, applying, and improving the
method,® ™% especially in the first five years of the
method. Some of them ended with satisfactory re-
sults'>1° while some others failed, especially those involv-
ing overlayer structures.'42¢

Actually, right after the CMTA method was proposed,
Pendry analyzed it and pointed out that® (i) a true kine-
matic average is impossible; (ii) in CMTA curves the re-
sidual influences of multiple scattering are mainly from
zero-angle scattering with the result that CMTA curves
compared to true kinematic ones have generally lowered
(raised) inner potential, reduced intensities, and increased
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peak widths; (iii) CMTA curves have a quasi-kinematic
form with nonstructural parameters different from those
of the true kinematic ones. In addition, Pendry also
pointed out that a simple way of calculating effective
scattering factors must be developed so that CMTA can
be applied with confidence to structural determinations.’
From the viewpoint of surface crystallography, one
really does not care very much if the nonstructural pa-
rameters are influenced by the residual effects of multiple
scattering; all that is of interest is an effective and reliable
method of determining geometric parameters. Neverthe-
less, to have the right nonstructural parameters is not a
matter that can be completely neglected in structural
determinations. In view of these considerations, in the
present paper we have proposed a method which allows
us to sidestep those complicated influences of multiple
scattering on nonstructural parameters while getting
good quasikinematic fits to the CMTA curves, and obtain
a simple way of calculating the effective scattering factors
to be used in the fitting. In addition, an effective way of
obtaining the best CMTA curves is proposed and a very
efficient scheme of parameter optimization is adopted.
The correctness and effectiveness of the methods pro-
posed in this work have been carefully tested and are dis-
cussed. Finally, the methods are used in the structural
determination of the Si(111)(V'3 X V'3)R 30°-Al surface.

II. QUASIKINEMATIC LEED (QKLEED) APPROACH

To fit their CMTA curves, assuming a uniform at-
tenuation of the elastic beam and a scattering factor the
same for all atoms, Lagally and co-workers”®!? calculat-
ed the quasikinematic intensities using

I(S)={|f(6,E)|*}e ML(K)[1—W(S)]*)F(S), (1)

where {|f(6,E)|?} is the averaged atomic scattering fac-
tor, or effective atomic scattering factor, e "2¥ is the
Debye-Waller factor, L(k) is the Lorentz factor,
[1— W (S)]? is a correction for the surface losses, and the
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interference function is

F(S)=3 a;a;expliS-(r;—r;)], (2)
ij

where the momentum transfer S=k-k,, k and k; are the
wave vectors of the scattered and incident beams, r; is the
position of the ith atom, and q; is the relative contribu-
tion of the ith atom. Assuming that the ratio of the am-
plitudes contributed to the diffracted beam by atoms in
successively deeper planes is a constant a=4,,,/4,,

then q; =a", where n; specifies the plane containing the
ith atom.

In the present work, the following improvements have
been made.*

(i) The Debye-Waller factor, Lorentz factor, and sur-
face loss all cause the intensity to slowly decrease with
the beam energy, and now, according to Pendry,’ the
zero-angle scattering makes the CMTA intensities slowly
decrease further. Consequently, we describe the effect of
all these factors with a damping factor E ~ ¢, where a is a
parameter to be optimized.

(ii) Since the zero-angle scattering modifies the inner
potential,’ as a first-order approximation, we treat the
inner potential as a parameter to be optimized.

(iili) We describe the effect of inelastic scattering by
means of the mean free path A of the incident electrons,
which is also treated as a parameter to be optimized.

(iv) The zero-angle scattering also increases the widths
of peaks of CMTA curves’ and its effect may be taken
into account with the variable mean free path. However,
it seems better to treat it separately, since the mean free
path also determines the relative contributions of the sur-
face and bulk regions. Therefore, we introduce a
broadening factor into our work. To be specific, we re-
place the intensity at any given energy point by a
Lorentzian curve which has a limited width and sum up
all these curves to get the quasikinematic intensity

3
S C,w), 3

n=-—3

3
I(E)= 3 C,(wI(E +n8E)/

n=-3
where
C,(w)=w?/{w?+[S,(E)—S,(E+n8E)}*} , )

where w is the broadening factor, a parameter to be opti-
mized, 8E is the interval between two neighboring energy
points, and S, is the momentum transfer perpendicular
to the surface. Equation (3) reflects the fact that the
Bragg peaks have the same width in S, coordinate. For
the surfaces tested in this work, w is around 0.24 Aﬁl; in
other words, a § function of intensity is broadened into a
peak with a full width at half maximum of 8—10 eV in en-
ergy coordinate.

(v) Although Ngoc, Lagally, and Webb have shown
that if the surface consists of the same atoms the effective
scattering factor equals fairly well to the averaged atomic
scattering factor,!? very often the surface under investiga-
tion consists of more than one type of atom. Here we
propose a simple way of calculating the effective scatter-
ing factor, which can be applied to any surfaces. As the
amplitude and phase of the scattered wave are deter-
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mined by the modulus and phase angle of the atomic
scattering factor of the scattering atom, respectively, no
matter what kind of method is to be used, the informa-
tion provided by the phase angle of a scattering atom
should not be discarded especially when the surface con-
sists of more than one type of atom. In view of the aver-
age character of CMTA, we propose the use of the mean
complex atomic scattering factor (MCASF), which is a
mean over the same incidence geometries as in CMTA.
To calculate the MCASF of an atom, which corresponds
to a diffraction beam, we first calculate a set of atomic
scattering factors from the phase shifts of the atom,
which have the same incidence geometries as those of the
CMTA curve of the beam. The formula is

Sf(6,E)=(1/k) (21+1)exp(i§;)sind,P,(cos0), (5)
1

where §, is the phase shift at the energy of E,k is the in-
cidence wave vector, P;(cos0) is the Legendre polynomi-
als, and 6 is the scattering angle. Then we calculate the
MCASEF f;,;(S)), which is involved in scattering by the
ith atom to the diffraction beam (g,4), by averaging the
set of atomic scattering factors in the same way as in
CMTA. It should be pointed out that such MCASF’s are
different for different atomic species, diffraction beams,
and surface symmetries, but are independent of the con-
crete structure of the unit cell, so that we need to calcu-
late them only once in the process of determining a sur-
face structure.

After the above-mentioned improvements, the
quasikinematic intensity of the beam (g, /) is

I, (S1)=| 3 {fign(Si)}exp(—z; /1)

1

2

Xexp(iS-R;)| S, ¢, (6)
where z; and R; are the perpendicular distance from the
surface and position vectors of the ith atom, respectively,
A is the mean free path, and « is the attenuation factor.
Actually, to facilitate optimizing the inner potential V,
it would be better to utilize the I-E form, instead of I-S .
So, usually, we transform Eq. (6) into

I, (E)=| 3 {fign(E)}exp(—z; /A)

1

2
E™%, @

Xexp(iS-R;)

with the incidence angle 6 set to any value, normally 0°.
Note that f; ,,(E) should take the value of f; ,, (S ) with
S, corresponding to E, and E should include the inner
potential V. Of course, the CMTA curves should also
be transformed into the I-E form with 0 set to the same
value. Also note that to get the CMTA curves, one needs
to set ¥V, to a given value. Although after transforming
those curves to the I-E form, that value of V) is subtract-
ed from E, the influence of the given V| still exists, of
course, implicitly. However, our results show that such
CMTA I-E curves can be used for optimizing V,, provid-
ed that the optimized ¥V, is not too different from the
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given V,. Before being compared with the CMTA I-E
curves, the quasikinematic intensities calculated with (7)
have to be broadened with (3). Later on we shall show
the validity of the QKLEED method.

III. EXPERIMENTAL DESIGN OF CMTA

Although influence of the zero-angle scattering could
never be eliminated from CMTA curves,’ contributions
of multiple scattering from other sources can be largely
reduced.”® Clearly, the larger the number of the I-E
spectra involved in a CMTA curve, the wider the area in
the 6¢ (incidence and azimuth angles) space occupied by
the incidence geometries, i.e., (0,4)’s of the I-E spectra,
and the more randomly the (6,¢)’s distribute in the 6¢
space, the more the influence of multiple scattering is el-
iminated from the CMTA curve. Consequently, we pay
special attention to the following points:*°

(i) Throughout our CMTA work we have been using a
conventional LEED optics from Riber. The maximum
range of 0 is 0°~21° and that of ¢ is 0°~360°. Using the
Ewald sphere, it is not difficult to see that in most cases
these ranges are large enough to effectively reduce
influences of multiple scattering.’° However, the symme-
try of the surface may substantially reduce the effective
range of ¢. For instance, if the surface has a 4m symme-
try, then for the (0,0) beam the effective range of ¢ is only
0°-45°, which is probably somewhat too small to
effectively eliminate multiple scattering. Such an
influence can be clearly seen on the CMTA curve of the
(0,0) beam of the Cu(001)(1X 1) surface (see Sec. V A).
To fully take advantage of the LEED optics to make the
(6,¢)’s occupy as large an area as possible in the 6¢ space
and also to give the I-E spectra as wide an energy range
as possible, very often we need to measure the degenerat-
ed beam, instead of the beam itself.

(i) It is extremely important to distribute the (6,¢)’s in
the 6¢ space as randomly or evenly as possible, i.e., there
should be no correlation between the 6’s and ¢’s. This
has been neglected in many of the previous papers on
CMTA.

(iii) Although we have mentioned that the larger the
number of the I-E spectra involved in a CMTA curve the
better, on the other hand, collecting more spectra than
needed is a waste of time. Actually, we have demonstrat-
ed through testing that the residual influence of multiple
scattering in the CMTA of some 5-10 I-E spectra can be
negligible provided the (6,¢)’s are carefully arranged as
suggested above.

To see if following the three points just mentioned
above can really let us obtain good CMTA curves, i.e.,
curves containing the least contribution of multiple
scattering, we have done a great deal of experimental
testing. The results are always positive. The idea of the
tests is that if two independent CMTA curves of a
diffraction beam match one another, i.e., their R, (Ref.
31) is smaller than 0.1, then we say both are good. Such
tests have been routine in all of our CMTA works. In
fact, all CMTA curves of more than 100 beams belonging
to some ten different surface structures have tested good,
except for a few from very dim fractional-order or, some-
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times, from (0,0) beams.>° Some of the tested surfaces are
Cu(001)-(1X1), Si(111)}(V3XV3)R30°Al, Si(111)}(V3
XV'3)R30°-Ag, Si(11)(7X7), and Pd(001)(2X2)-Mn. An
example of the good agreement between two independent
CMTA curves collected from the same beam using the
above-mentioned method, is given in Fig. 1, whose R,
is of the average level of our tests.

IV. MODEL TESTS
OF THE QKLEED/CMTA METHOD

Two types of tests, namely, the model and application
test, have been carried out to check the general validity
of the QKLEED/CMTA method proposed in the preced-
ing sections.

In a model test of the QKLEED/CMTA, we first cal-
culate from a given surface structure a set of DLEED I-E
spectra of a beam, which have their (6,¢)’s arranged in
the same manner as that in the experimental CMTA.
Second, we average these spectra to get a theoretical
CMTA curve. Then, from the same surface structure, we
calculate the quasikinematic spectrum of the same beam
with the QKLEED. Finally, we compare the theoretical
CMTA curve with its quasikinematic counterpart. If
they match each other well, then, clearly, it proves the
validity of the whole QKLEED/CMTA method. Four
different model surfaces have been tested.’° The DLEED
programs and phase shifts were essentially from Van
Hove and Tong.? The tested surfaces are as follows.

(i) Cu(001)(1X1), with its layer spacings being the
same as those determined by Davis and Noonan.3? Since
it is a simple metal surface consisting of the same atoms,
in the QKLEED calculations we simply assume
MCASF’s=1. It worked very well, as we have shown
previously.”” The total R,;,, (Ref. 31) of the five beams is
0.12.

(ii) GaP(111)(1X 1), with its first layer being Ga atoms
and bulklike structure. Since it consists of two different
atoms with quite different atomic numbers, in the
QKLEED calculations, for both Ga and P atoms we
must use their own MCASF’s. The total R,,, of the six
beams is 0.12, while nine I-E spectra are involved in each

INTENSITY (arb. unit)

5 7 9 1" 13 15
s. (1/8)

FIG. 1. Comparison of two CMTA curves collected from
two degenerated beams, i.., (0,1) and (1,—1) of the
Si(111)(V3XV3)R30°-Ag surface. The R,,, of the agreement
between the curves is 0.10. The (0,¢)’s (see text) of the (0,1)
curve (solid) are (0°0°), (3°25°), (6°,—20°), (9°,—65°), and
(12°, —105°); those of the (1,—1) curve (dashed) are (0°,0°),
(3°, —70°), (6°,—100°), (9°, —130°), (12°,170°), (15°,—160°), and
(18°,140°).
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CMTA curve. However, if only the moduli, i.e., the ab-
solute values, of the MCASF’s are used, then the total
R,;; is 0.34. This shows that the use of MCASF’s is not
only correct but also very important.

(iii) NiSi,(111)(1X 1), with its structural parameters
being the same as those determined by Yang, Jona, and
Marcus with DLEED.®® This is a real and very con-
densed structure. The total R ;, of the six beams is 0.16,
while 11 I-E spectra are involved in each CMTA curve.
The slightly poorer r factor is probably due to the fact
that the surface is very condensed.

(iv) Cu(001)(1X 1)-O, which is simply a bulklike struc-
ture with its first layer replaced by oxygen atoms. Earlier
work concluded that CMTA does not work for such sur-
faces.!* The total R, of the five beams is 0.13, while 12
I-E spectra are involved in each CMTA curve. The small
r factor indicates that the QKLEED/CMTA method also
works for overlayer structures.

In Fig. 2 the results of the GaP(111)-(1X 1) surface are
shown as an example of our model tests.

V. APPLICATION TESTS OF THE QKLEED/CMTA

As we have seen from the model tests, the
QKLEED/CMTA method works quite well for a wide
range of surface structures. In this section we show the
ability of the method to find out the right structural pa-
rameters of unknown surface structures. The surfaces
tested so far’® are Cu(001)(1X1), Si(111)(V3XV3)
R30°-Al, and Si(111)(V3XV3)R30°-Ag.

INTENSITY (arb. unit)

{0 0)
0.167

1

1 1 1
50 100 150 200 250
ENERGY (eV)

FIG. 2. Comparison of the quasikinematic spectra (dashed)
calculated by the QKLEED approach (see text) with the
theoretical CMTA curves (solid, see text) of an ideal GaP(111)-
(1X1) surface. The index and R,;, of each beam are shown in
the boxes and the total R, , is 0.12.
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A. Test with Cu(001)(1X1)

We choose this surface as the first candidate for the
tests as its structure has been determined with DLEED,3?
while old CMTA analysis!>»!® of the surface failed (see
discussion in Sec. VI). Five experimental CMTA curves
were collected® in the way mentioned above. Again in
the QKLEED calculations we assume MCASF’s=1.
Starting from the bulklike structure, the searching (see
discussion in Sec. VI) resulted in the layer spacings listed
in Table I. The results are in excellent agreement with
those of DLEED.*> The optimized inner potential is 10.5
eV and the mean free path is 3.8 A. the QKLEED and
CMTA curves, together with their beam index and r fac-
tors, are shown in Fig. 3. The total R, of the five beams
is 0.13. As one can see, the residual peaks from multiple
scattering are indeed very small except for the (0,0) beam.
However, it seems those small residual peaks are not an
obstacle to reaching the right surface structure.

B. Test with Si(111)(V3 X V3)R 30°-Al

Ever _ since the first report of  the
Si(111)(V'3X V'3)R 30°-Al surface in 1964,°* a great deal
of effort has been made to solve the surface structure.
Only recently, the model proposed by Northrup,* which
suggests that the Al atoms occupy the T, positions (T,
model), has been receiving more and more support.’®3’
Since the structure of this surface has been determined by
DLEED,* and it is also quite complex, we choose it as
our second candidate for testing the QKLEED/CMTA
method. In the experiment CMTA curves of ten beams
were collected.®® Each of the CMTA curves involves five
or more I-E spectra. In QKLEED calculations for the Si
and Al atoms their own MCASF’s were used. However,
if only the MCASF’s of Si are used, no significant
difference can be seen, just as in the case of DLEED.*
Starting from any different structures of the T, model
such as that of Northrup?® and the bulklike structure and
some others, optimization resulted in structures very
close to one another with the maximum difference of all
structural parameters less then 0.03 A. In Fig. 4 we show
the optimized structure of this work as well as that of
DLEED.*® The agreement between the two structures is
excellent. The QKLEED curves and their experimental
CMTA counterparts are shown in Fig. 5. The total R,
of the ten beams is 0.158. The optimized inner potential
is 11.8 eV and the mean free path is 6.0 A. For all bonds
in our optimized structure, the bond length deviation
from the bulk value is smaller than 5%, indicating clearly
the correctness of the structure. We have also tried to
optimize the H; model, in which the Al atoms occupy
the H; positions, but the lowest total R, ,, of the model
that we could reach was 0.21.

C. Test with Si(111)(V3 X V3)R 30°-Ag

Except for the Si(111)(7X7), this surface has probably
been the most studied one and it is still a controversial is-
sue.** 2 To make sure the QKLEED/CMTA method
can be effectively used to determine structure of surfaces
consisting of atoms with very different atomic numbers,
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TABLE L. Relaxation (relative to the bulk value of 1.808 A) of the first four layer spacings of the
Cu(001)(1X 1) surface determined with QKLEED/CMTA and DLEED.

First Second Third Fourth
QKLEED/CMTA —1.3% +1.7% +1.1% +1.1%
DLEED (Ref. 32) —1.1+.4% +1.7%*.6% >1.0%

we employed it to determine the Si(111)(V'3XV'3)R 30°-
Ag surface and wound up with a structure which is in ex-
cellent agreement with most recent results**"*? and
whose total R,;,, of all ten beams is 0.16.° The details
will be published elsewhere.*?

VI. DISCUSSIONS
A. Convergence of the MCASF

We have seen that any two independent CMTA curves
of the same beam can be very similar even if each in-
volves only 5-10 I-E spectra, provided that the (6,¢)’s of
these spectra are carefully arranged in the manner dis-
cussed in Sec. III. In other words, such CMTA curves
have convergence. To make the QKLEED curves com-
patible with such CMTA curves, the MCASF’s used in

INTENSITY (arb. unit)

50 150 250 350 450
ENERGY (eV)

FIG. 3. Comparison of the QKLEED curves (dashed) with
the CMTA curves (solid) of the Cu(001)(1X1) surface. The
structural parameters of the surface are listed in Table I. The
beam indices and r factors are shown in the boxes. The total
Ry, of the five beams is 0.13.

the QKLEED calculations should also have convergence.
To verify this, we have tested the influence of the number
and (6,¢)’s of the I-E spectra involved on the resulting
MCASF’s. It turns out that the MCASF’s indeed con-
verge even if the number of the spectra is only ten or less.
An example is shown in Fig. 6.

model of the

FIG. 4. Side
Si(111)(V3 X V3)R30°-Al surface. Solid circles represent the Al
atoms and open circles the Si atoms. Arrows and numbers near-
by are direction and quantity of the deviations (in A) from the

view of the T,

bulk positions, respectively. (a) Results of QKLEED.
B1=2.35 A, B2=2.23 A, B3=2.43 A, B4=2.48 A, B5=2.41
A. (b) Results of DLEED.”” B1=2.41 A, B2=2.23 A,
B3=2.38A,B4=2.43 A, B5=2.49 A.
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FIG. 5. Comparison of the QKLEED spectra (dashed) of the
structure shown in Fig. 4(a) with the CMTA curves (solid) of
the Si(111)(V'3XV3)R30°-Al surface. The beam indices and »
factors are shown in the boxes. The total R,,, of ten beams is
0.158.
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FIG. 6. Comparison of two sets of MCASF’s of the (0,0)
beam of the GaP(111)(1X 1) surface. The solid-curve set in-
volves the (6,¢)’s of (0°,0°), (4°,10°), (5°,40°), (8°,30°), (10°,0°),
(12°,60°), (15°30°), (18°,15°), and (20°,50°), while those of the
dashed-curve set are (3°55°), (6°10°), (9°,30°), (14°,45°),
(17°,20°), (19°,36°), and (21°,15°). (a) Results of Ga atoms. (b)
Results of P atoms.

B. An alternative to the MCASF

Of course, MCASF is not the only treatment of the
effective scattering factors. Actually, one may fit an ex-
perimental CMTA curve with the CMTA of a set of
QKLEED curves that have the same (6,¢)’s as those in-
volved in the experimental CMTA curve and are calcu-
lated with the use of the atomic scattering factor of the
constituent atoms of the surface.?’” We call the CMTA of
a set of QKLEED curves the CMTA-QKLEED. This
treatment has been tested on the same GaP(111)(1X1)
surface of Sec. IV. Compared with QKLEED curves of
Fig. 2, the CMTA-QKLEED?’s of all six beams give a to-
tal R, of 0.10.*° That means both of the approaches of
the effective scattering factors can be used. However, ob-
viously, the CMTA-QKLEED approach is about ten
times more time consuming than the other one.

C. Avoiding local minima of the r factor

Being trapped by local minima is a common serious
problem in parameter optimizations if many parameters
are involved. Moreover, the complexity of DLEED cal-
culations makes it even worse, thus at present no general
strategy exists in LEED.* Now the situation is different.
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The QKLEED calculations are so simple that with a per-
sonal computer of 80386 we can calculate ten QKLEED
curves of a Si(111)(7X7) structural model in a few
seconds. As a result, many optimization procedures**
can be adopted. For example, we have been using the
simulated annealing®** in conjunction with other pro-
cedures very successfully.343

D. The R,;, level of a correct model

With the incorporation of optimization procedures
into surface structure determinations, it becomes clear
that a structural model with a R,,, of 0.2 or larger should
not be claimed as the final solution of a surface structure.
For instance, after optimization the R, of the H; model
(wrong, of course) of Si(111)(V'3XV'3)R30°-Al can be as
low as 0.21,° and for the Si(111)0(V'3XV3)R30°-Ag as
well as Si(111)(7 X 7) surfaces similarly low or even lower
R,, had occurred for wrong models.** However, for
complex surfaces such as those with DLEED calculations
it is very difficult to find a model that can give a R,
lower than 0.2. This fact emphasizes once more the im-
portance of introducing the QKLEED/CMTA method
into surface crystallography.

E. Where some old CMTA work failed

The failure of some old CMTA work was as important
as the idea of CMTA for the QKLEED/CMTA. In
short, in some work only CMTA curves of the (0,0) beam
were used, which very often contains noticeable residual
peaks of multiple scattering, as we have seen in Fig. 3. In
some other work, the I-E spectra were distributed either
in a small area (especially for ¢) or not randomly enough
in the 6¢ space. Some others failed to treat correctly the
influence of the zero-angle scattering. Finally, none of
them solved the effective scattering factors properly in
studying surfaces consisting of two different atoms.
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VII. SUMMARY

Based on the idea of CMTA of Lagally and co-
workers, and awaking to the fact pointed out by Pendry
that there are some residual influences in the CMTA
curves coming mainly from the zero-angle scattering, we
have proposed the QKLEED/CMTA method for surface
structure determinations. The method includes the fol-
lowing.

On the experimental side, to get CMTA curves con-
taining the lowest multiple scattering influence, accord-
ing to the experimental design proposed in this work,
5-10 I-E spectra for each beam is enough, provided that
the incidence geometries, i.e., (6,¢)’s of these spectra, oc-
cupy as large an area as possible and are distributed ran-
domly (evenly) in the O¢ space.

On the QKLEED calculation side, the general lower-
ing (raising) of inner potential, the reducing of intensities,
and the increasing of peak widths caused by the zero-
angle scattering are taken into account in such a way that
they have essentially no influence on the attainment of
correct surface structures. Meanwhile, to make the
method applicable to surfaces consisting of more than
one element, the MCASF is introduced as the effective
scattering factor.

For parameter optimization, we have adopted a very
powerful procedure, i.e., simulated annealing together
with other useful procedures.

The validity of the whole QKLEED/CMTA method
has passed careful tests from every possible direction we
could think of, and its capability of attaining the right
surface structures has been demonstrated on the
Cu(001)(1X1), Si(111)(V'3 X V'3)R30°Al, and
Si(111)(V'3 X V'3)R 30°-Ag surfaces.

ACKNOWLEDGMENTS

We thank Dr. M. A. Van Hove for providing the
LEED package from which the phase-shift data were tak-
en. This work was supported by the National Natural
Science Foundation of China and the Doctoral Program
Foundation of Institute of Higher Education of China

13. B. Pendry, Low-Energy Electron Diffraction (Academic, New
York, 1974).

2M. A. Van Hove and S. Y. Tong, Surface Crystallography by
LEED (Springer-Verlag, Berlin, 1979).

3F. Jona, J. A. Strozier, Jr., and W. S. Yang, Rep. Prog. Phys.
45, 527 (1982).

4M. A. Van Hove, W. H. Wienberg, and C.-M. Chan, Low-
Energy Electron Diffraction (Springer-Verlag, Berlin, 1986).

5P. J. Rous, in The Structure of Surfaces III, edited by S. Y.
Tong et al. (Springer-Verlag, Berlin, 1991).

6S. Y. Tong, H. Huang, C. M. Wei, W. E. Packard, F. K. Men,
G. Glander, and M. B. Webb, J. Vac. Sci. Technol. A 6, 615
(1988).

M. G. Lagally, T. C. Ngoc, and M. B. Webb, Phys. Rev. Lett.
26, 1557 (1971).

8M. G. Lagally, T. C. Ngoc, and M. B. Webb, J. Vac. Sci. Tech-

nol. 9, 645 (1972).

9]. B. Pendry, J. Phys. C 5, 2567 (1972).

10C. B. Duke and D. L. Smith, Phys. Rev. B 5, 4730 (1972).

1D, T. Quinto and W. D. Robertson, Surf. Sci. 34, 501 (1973).

12T, C. Ngoc, M. G. Lagally, and M. B. Webb, Surf. Sci. 35, 117
(1973).

13J. M. Burkstrand, G. G. Kleiman, and F. J. Arlinghaus, Surf.
Sci. 46, 43 (1974).

141, McDonnell, D. P. Woodruff, and K. A. R. Mitchell, Surf.
Sci. 45, 1 (1975).

15J. C. Buchholz, G.-C. Wang, and M. G. Lagally, Surf. Sci. 49,
508 (1975).

16G. G. Kleiman and J. M. Burkstrand, Surf. Sci. 50, 493 (1975).

7M. G. Lagally, J. C. Buchholz, and G.-C. Wang, J. Vac. Sci.
Technol. 12,213 (1975).

18W. N. Unertl and H. V. Thapliyal, J. Vac. Sci. Technol. 12,



18 108

263 (1975).

19W . N. Unertl and M. B. Webb, Surf. Sci. 59, 373 (1976).

208, J. White and D. P. Woodruff, Surf. Sci. 63, 254 (1977).

213, J. White and D. P. Woodruff, Surf. Sci. 64, 131 (1977).

22A. Kahn, G. Cisneros, M. Bonn, and P. Mark, Surf. Sci. 71,
387 (1978).

23A. Kahn, E. So, P. Mark, and C. B. Duke, J. Vac. Sci. Tech-
nol. 15, 580 (1978).

24A . Kahn, E. So, P. Mark, C. B. Duke, and R. J. Meyer, J. Vac.
Sci. Technol. 15, 1223 (1978).

25T, D. Poppendieck, T. C. Ngoc, and M. B. Webb, Surf. Sci.
75, 287 (1978).

263, H. Onuferko and D. P. Woodruff, Surf. Sci. 91, 400 (1980).

27Y. Terada, T. Yoshizuka, K. Oura, and T. Hanawa, Surf. Sci.
114, 65 (1982).

28w. S. Yang and R. G. Zhao, Phys. Rev. B 30, 6016 (1984).

29R. G. Zhao and W. S. Yang, Phys. Rev. B 33, 6780 (1986); R.
G. Zhao,J. F. Jia, Y. F. Li, and W. S. Yang, in The Structure
of Surfaces III (Ref. 5), p. 517.

303, F. Jia, Doctoral thesis, Peking University, 1992.

3IM. A. Van Hove, S. Y. Tong, and M. H. Elconin, Surf. Sci. 64,
85 (1977).

32H. L. Davis and J. R. Noonan, J. Vac. Sci. Technol. 20, 842
(1982).

J. F.JIA, R. G. ZHAO, AND W. S. YANG 48

33W. S. Yang, F. Jona, and P. M. Marcus, Phys. Rev. B 28, 7337
(1985).

343. 3. Lander and J. Morrison, Surf. Sci. 2, 553 (1964).

35J. E. Northrup, Phys. Rev. Lett. 53, 683 (1984).

36J. M. Nicholls, B. Reichl, and J. E. Northrup, Phys. Rev. B
35, 4137 (1987).

37R. J. Hamers and J. J. Demuth, Phys. Rev. Lett. 60, 2527
(1988).

3%H. Huang, S. Y. Tong, W. S. Yang, H. D. Shih, and F. Jona,
Phys. Rev. B 42, 7483 (1990).

39E. Vlieg, E. Fontes, and J. K. Patel, Phys. Rev. B 43, 7185
(1991).

40T. Takahashi, S. Nakatani, N. Okamoto, T. Ishikawa, and S.
Kikuta, Surf. Sci. 242, 54 (1991).

41M. Katayama, R. S. Williams, M. Kato, E. Nomura, and M.
Aono, Phys. Rev. Lett. 66, 2762 (1991).

42Y. G. Ding, C. T. Chan, and K. M. Ho, Phys. Rev. Lett. 67,
1454 (1991).

43J. F. Jia, R. G. Zhao, and W. S. Yang, Phys. Rev. B 48, 18109
(1993).

44wW. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge University Press,
Cambridge, 1986); S. Saito and A. Oshiyama, Phys. Rev. Lett.
66, 2637 (1991).



