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We propose a unified transport theory for the two-dimensional electron gas in the dissipative
quantum Hall regime in the presence of a long-range disorder. We find that the evolution of the
longitudinal conductivity peaks as a function of the disorder can be described by a single parameter
B~ which is determined by the typical gradient of the electron-density fluctuations. In the case
of a relatively strong disorder we utilize the edge-states-network model to describe transport in a
half-filled Landau level. In the fractional quantum Hall regime we apply the network model to the
system of composite fermions, finding the universal values of the resistivity at even-denominator
filling fractions. The breakdown of the network model takes place at weak disorder because the edge
channels develop into wide compressible strips and at strong disorder because of the destruction
of the incompressible strips, isolating the edge channels. We find the limits of the applicability of
the network model in terms of 3. In the limit of very weak disorder the system is effectively a
Fermi liquid of composite fermions. We calculate the conductivity in this regime by considering
the motion of noninteracting fermions in a spatially varying magnetic field arising from the density
fluctuations. The resistivity is found to scale linearly with the magnetic field with the slope given
by B~ '. Although the presence of nonlocal transport makes measurements of the resistivity difficult,
we find qualitative and, in some cases, quantitative agreement with experiment.
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I. INTRODUCTION

The main features of the integer! and fractional® quan-
tum Hall effects are the quantization of the Hall conduc-
tance and the vanishing of the longitudinal resistivity
at integer and fractional filling factors correspondingly.
The two discoveries generated an enormous amount of

activity which resulted in significant progress in under-
standing of the properties of the two-dimensional elec-
tron gas (2DEG) in a strong magnetic field.®> From a
theoretical point of view the conductance quantization
was understood in terms of the Landau quantization for
integer filling factors and in terms of the formation of
the incompressible liquid* for the fractional filling fac-
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FIG. 1.

Pzz and pgy as a function of the magnetic field in a very high-mobility heterostructure. [Source: Willett et al.

(Ref. 53)]. We have added labels to indicate our diagnosis of the principal sequence peaks. Note that the scale is reduced by

the factor 2.5 for magnetic fields higher than 12 T.
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tors. The exact quantization of the transport coefficients
follows from the “gauge argument”.®

Until recently, little attention was given to the dis-
sipative regime, which is characterized by an unquan-
tized Hall conductance and a finite longitudinal resistiv-
ity. A brief look at experimental data, Fig. 1, reveals
an extraordinary diversity of the observed longitudinal
resistivity values, which seem to vary from sample to
sample.® Recently a significant effort was devoted to pro-
viding some theoretical basis for the dissipative regime.
There are several approaches to this problem including
the network model,”'8 the law of corresponding states,®°
and the Fermi-liquid description.'!'12 However, it is not
clear what the relationship between these theories is and
whether they can explain the diversity in experimental
data.

The purpose of this paper is to incorporate these ap-
proaches into a single picture, in which the relationship
between various regimes is determined by a single pa-
rameter reflecting the level of disorder, and to find the
longitudinal resistivity for different values of the param-
eter. We are able to do this for the case of high-mobility
GaAs heterostructures where disorder is known to be of
long-range nature: it comes from a nonuniform distri-
bution of donors set back from the 2DEG plane by the
spacer thickness d,. Due to a very good screening by
the 2DEG at zero magnetic field the long-range disorder
potential is translated into electron density fluctuations.
The characteristic length scale of these fluctuations is of
the order of d,, while the ratio of the average electron
density, n., to the typical amplitude of the density fluc-
tuations, dn., provides a natural large parameter 3, on
which our theory is based.

The value of 8 can be found approximately from the
following consideration.!®!% In an ungated heterostruc-
ture the concentration of ionized donors is equal to the
electron concentration n.. The number of ionized donors
in a square with side d, is equal to n.d?. The typical
fluctuation in the number of donors is given by (n.d?)'/2.
This leads to the value of the relative density fluctuation

=%~ eds. (1)

A more rigorous calculation of 3 yielding the numerical
factor will be given in Sec. IV.

Our basic picture is that in a strong magnetic field, at
a filling factor between the quantum Hall plateaus, the
electron system breaks up into the incompressible regions
corresponding to the integer or fractional states,'31!®
Fig. 2. Those regions are separated by edge channels
which form a percolating network. Depending on the
value of (3 these edge channels can be either wide or nar-
row. It turns out that the transport properties depend
crucially on the width of the edge channels.

Although the longitudinal resistivity is measured at a
fixed value of 3 with magnetic field being varied, it is
enlightening to consider the evolution of resistivity be-
tween the quantum Hall plateaus with the variation of 3.
In the following we give a summary of the main results
of this paper. For the sake of simplicity we consider the
case of spinless electrons.

First, let us focus on the resistivity at a half-integer
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FIG. 2. Break-up of the electron system into the incom-
pressible and compressible liquid regions. White regions rep-
resent incompressible liquid, while shaded regions correspond
to compressible liquid: localized edge channels are dotted,
extended channels are gray.

filling factor. In the case of a strong disorder (small
B) a peak in longitudinal resistivity between the inte-
ger quantum Hall effect (IQHE) plateaus becomes in-
finitely sharp at low temperature. The related critical
phenomena was studied extensively both theoretically
and experimentally.'® Thus we call this peak critical. In
this case the edge states in the bulk of the sample (which
we refer to as bulk edge states) are very narrow allowing
us to describe them as one-dimensional channels com-
prised in a network. The transport properties of such a
network have been considered in Refs. 7 and 8. Their
result, derived using the Landauer formula as shown in
Sec. III, states that the longitudinal conductivity of a
half-filled Landau level is equal to 1/2(e?/27h).

As (3 is increased the typical gradient of the elec-
tron density distribution at zero magnetic field be-
comes smaller and the bulk edge states acquire a finite
width,%17719 developing into the strips of compressible
liquid. This leads to the breakdown of the network model
and consequently to the reduction of the peak’s height
from its critical value. We call this peak “transitional”
because it is about to give rise to the fractional states.

At larger values of 3 there is no well-defined peak at a
half-integer filling factor. Rather one can see a slight de-
pression in the longitudinal resistivity. The edge channel
network disappears in this case because the compress-
ible liquid occupies the whole plane. We believe that
the proper description in this case is given by the Fermi
liquid of composite fermions.!1:12

Exactly at a half-integer filling factor the composite
fermions do not experience any effective magnetic field
on average. However, the variation of the filling factor
leads to the appearance of the Shubnikov—de Haas oscil-
lations which develop into the quantum Hall effect. Thus
the principal sequence of the fractional quantum Hall ef-
fect (FQHE) is interpreted in terms of the IQHE for the
composite fermions.2® This interpretation allows us to ex-
plain the evolution of the longitudinal resistivity peaks
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between the FQHE plateaus in analogy with the IQHE.

At sufficiently low disorder (large 3) a peak in the lon-
gitudinal resistivity between the FQHE plateaus devel-
ops and becomes critical. The fractional edge channels
in the bulk are very narrow. At even larger values of (3
the fractional peak becomes transitional because of the
finite width of the bulk edge channels. This shows up
in the reduction of the peak’s height. As 3 is increased
further, the peak starts giving rise to the daughter states
of the next generation of fractions. Then a Fermi-liquid
state develops at the filling factor where the center of the
peak used to be.

By applying this picture to the successive generations
of fractions one can see that in the limit of very low
disorder all the even denominator fractional filling factors
end up in the Fermi-liquid regime.

To summarize the discussion, the whole lifecycle (8
playing the role of time) of a given resistivity peak con-
sists of four periods. The development of the peak is char-
acterized by the growth of the peak’s height and the de-
crease in the resistivity at the adjacent odd-denominator
fractions. Then the peak becomes critical making it in-
finitely narrow at zero temperature. In the next stage the
peak is transitional, its height reduced. Then it starts to
produce the daughter states while staying in the Fermi-
liquid regime. At this stage it would be more correct to
talk about the even-denominator fraction and its vicinity
rather than about the peak.

Now we can go back to the experimentally relevant
situation where the value of (3 is fixed for a given sample,
Fig. 1. We will show in this paper that the effective
measure of disorder is different from peak to peak or,
in other words, the values of 8 determining transitions
between various regimes for a given peak depends on the
peak’s filling factor. Because of this in Fig. 1 some peaks
are undeveloped, while some are critical and some are
transitional, a few have turned into a Fermi-liquid state.

We consider fractions of the principal sequence of the
FQHE defined by the filling factor v = p/(2p + 1), where
p is an integer. The corresponding resistivity peaks be-
tween fractions p/(2p + 1) and (p — 1)/(2p — 1) fall into
one of the following categories as shown in Fig. 1:

transitional peaks  for |p| < pc1,
critical peaks for p.1 < |p| < pe2, (2)
undeveloped peaks for |p| > pca.

In Sec. IV we find from electrostatic considerations the
widths of compressible and incompressible strips as a
function of 8. This yields the following transition val-
ues separating different regimes:

Q
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We find the values of the resistivity for the critical
peaks in the principal sequence by utilizing the theory
of composite fermions. We apply the edge-state-network
model to the fermion system and find the resitivity at the
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principal sequence peaks between fractions p/(2p+1) and
(p—1)/(2p—1):

27h 1

2h 4p? —2p + 1
e 2p2 —2p+1’

e2 2p2 —2p+1°
(5)

Our values are in agreement with the law of correspond-
ing states.%10

Finally, we address the question of the Fermi-liquid
states resistivity. In the composite fermion picture we
calculate the resistivity of those states by considering the
motion of noninteracting fermions in a fluctuating ficti-
tious magnetic field arising from the density fluctuations.
We find that the snake states play an important role in
the transport in this regime. Unable to solve exactly the
problem for random magnetic field we introduce a model
in which the magnetic field varies abruptly between the
two values. In this case we can solve the problem by ap-
plying the network model to the system of snake states.
We find a linear dependence of the resistivity on the mag-
netic field B:

B
Pes = Bneec’

Pzz = Pzy = —

(6)

We argue that this result should hold in a realistic case
of smooth fluctuations.

The outline of the paper is as follows. Section II is
devoted to the discussion of the transition between nar-
row and wide edge channels from the electrostatics point
of view. In Sec. IIl we review the network model and
reproduce the derivation of the conductivity tensor for
a half-filled Landau level. In Sec. IV we consider the
long-range disorder and use the results of Sec. II to de-
rive the limits of the applicability of the network model.
We also derive there the universal values of the resistivity
peaks in the FQHE by applying the network model to the
fermion system. In Sec. V we calculate the resistivity in
the Fermi-liquid states at half-integer filling factors. We
also formulate a general statement regarding the conduc-
tivity of the network model. The generalization to the
even-denominator fractions of the principal sequence is
done in Sec. VI. We compare our results with experi-
ment in Sec. VII. Our major conclusions are given in
Sec. VIIL.

II. THE STRUCTURE OF EDGE CHANNELS
IN THE QHE

As discussed in the Introduction, long-range disorder
in GaAs heterostructures creates electron-density fluctu-
ations in the absence of a magnetic field. Upon appli-
cation of a magnetic field corresponding to a filling fac-
tor halfway between quantum Hall plateaus, the electron
system breaks up into the incompressible regions with
densities given by the quantum Hall states,!>715 Fig. 2.
Edge channels form along the boundaries of those regions
comprising a complicated network. We will address the
transport properties of the system by considering this
network in detail. In this section we analyze the general
structure of edge channels because of its impact on the
transport properties which will be discussed in Sec. IV.



In the conventional one-electron picture it is assumed
that the Landau levels are bent adiabatically by the con-
fining potential. The intersection of the Landau levels
with the Fermi level determines the location of the edge
states. The typical width of an edge state is of the order
of the magnetic length, lg = (hc/eB)'/2. The distance
between adjacent edge states is determined by the steep-
ness of the external potential. But in order for the adia-
batic approximation to be valid the distance between the
edge states should be greater than [y. This implies that
in the one-electron picture the distance between the edge
states is greater than their width.

The effect of electron-electron interaction on the
structure of the edge states has been considered by
Beenakker'® and Chang'®. They have shown that the
formation of the edge states can be viewed as the re-
sult of nonlinear screening of an external potential by
the 2DEG. According to the theory of nonlinear screen-
ing proposed by Efros'%1% the 2DEG breaks up into the
alternating strips of compressible and incompressible lig-
uid. The compressible liquid consists of the states lying
at the Fermi level which makes it a strongly screening
media. On the other hand the incompressible liquid is
characterized by the absence of gapless excitations and
therefore does not screen.

Chklovskii, Shklovskii, and Glazman'” gave an ana-
lytic solution of the electrostatic problem involving edge
states, which agreed with the independent calculation of
Kane?! and an estimate by Efros.2? It was shown that
in a typical external potential compressible strips are
wider than the adjacent incompressible ones contrary
to the conclusion of the one-electron model. The re-
sult of Ref. 17 holds provided the strip dimensions are
greater than the semiconductor Bohr radius, which is
about 100 A in GaAs.

In this paper we will extend these considerations to
include the opposite limit of narrow compressible strips.
Although relevance of this limit to the integer edge states
in GaAs heterostructures seems doubtful, it might be im-
portant for some other 2DEG confinement schemes. Also
we will show that this limit is of major importance in the
FQHE regime. Throughout this paper we discuss the
transport properties determined by the percolating net-
work of edge channels. As edge channels follow the lines
of constant density we consider the density distribution
in the vicinity of a percolating line of constant density. In
order to study the structure of edge channels we approxi-
mate the zero magnetic field density distribution around
this line by a linear expansion. The slope of the density
distribution n’ is determined by 3. This is equivalent to
having in the z = 0 plane a background positive charge
density constant in the y direction and varying linearly
along the z axis

n(z) = no + n'z. (7N
Then, in the absence of a magnetic field, the equilibrium
electron concentration can be found from the solution

with a constant electrochemical potential in the area oc-
J

_ (e~ (o~ An/2),
E.(2,2)|, 0= {_ 22e[n'z — (no + An/2)),
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FIG. 3. (a) The formulation of the electrostatic prob-

lem for the two-gap model. Bold lines represent three metal
planes. (b) Additional charge density distribution obtained
by solving the electrostatics problem.

cupied by electrons. If we neglect the finite screening ra-
dius of the 2DEG and look for a solution with a constant
electrostatic potential then the electron density distribu-
tion is given by Eq. (7).

A strong magnetic field creates discontinuities in the
chemical potential of the 2DEG at integer filling factors.
This leads to the formation of the incompressible liquid
strips across which the drop in the electrostatic potential
occurs, which is needed in order to bring the next Landau
level to the Fermi level. We adopt a two-gap model in
which there are only two identical discontinuities in the
chemical potential at the densities ng — An/2 and ng +
An/2:

—Ap, n<mng—An/2,
n=2<0, ng — An/2 < n < ng+ An/2, (8)
Ap, n >mng + An/2.

In order to find the charge distribution in this case
we will treat the compressible regions as metal planes
and the incompressible regions as insulators with fixed
electron densities, Fig. 3. We allow the boundaries be-
tween the insulating and conducting regions, given by
+x,,+x2, to vary. Thus we should solve the Laplace
equation with mixed boundary conditions at the z =
0 plane. Electrostatic potential should be constant
throughout each compressible strip

Ap,  x< -z,
¢(z,z =0) =< 0, lz| < z1, (9)
_A/'l‘v T > x2,
and the normal component of the electric field is given
by the net charge density in each incompressible strip

—r<zx< —r, (10)
T <z < x3.
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In order to ensure mechanical equilibrium at the boundaries of compressible and incompressible strips we set

Em(zao)|z—>—zz+0 = Ew(w70)|w—)—x1—0 = Em(x70)|m—)zl+0 = E:z:(m’ O)la:—):cz—o = 0.

This problem can be solved as shown in the Appendix
by employing the methods of complex analysis. One gets
the following system of equations determining the dimen-
sions of the strips:

f-’tz dz (n'z—An/2)z® _ eAp
er 7 /(@i—a?) (a2 —a7)  27e’

fmz n'z—An/2

SRV/C O (X

(12)

We solved this system of equations numerically. The po-
sition of the incompressible strip boundaries as a function
of the inverse density gradient is plotted in Fig. 4. In the
two limiting cases the system allows an approximate so-
lution.

If the density gradient is small then the widths of the
incompressible strips are much smaller than the distance
between them, Fig. 5(a). Equations (12) are reduced to

T2 (n'z—An/2)z —
le dx vV (z2—z)(z—x1)

n'#tEz _ An/2 =0.

eAp
2mwe?)

(13)
By solving this system of equations we find

deAp
m2e2n!’

(z2 —21)% = (14)

T, + To An
kT R 15
2 2n/ (15)

These formulas describe two independent dipolar strips
of Ref. 17.

When the density gradient is increased the two incom-
pressible strips start to interfere with each other because
their widths become comparable to the distance between
them. In the extreme limit of a large density gradient

20

z (units of ap)
1

-20 T T

n/n’ (units of ag)

FIG. 4. The locations of the incompressible strip bound-
aries +x1,+x2 as a function of the inverse density gradient.
The full lines show the inner boundaries of the incompressible
strips and the dashed lines represent the outer boundaries.

(11)

|
the compressible strip is squashed by the incompressible

ones, Fig. 5(b). Then Egs. (12) are reduced to

f-’tz dm(n'z-—An/Z)z __ €Ap

E2Y 22 —a? 2me?) (
3 16)
n't = An fw: oo
By solving this equation we find
4 X 2eAp
2 _
(2:172) = m, (17)
1 = 4zsex zan’ (18)
= - .
1 2€Xp An

Equation (17) is just the old expression for the dipo-
lar strip width!” with the potential drop of 2Ax.23 But
Eq. (18) is a new result showing that the width of the
incompressible strip decreases exponentially fast with in-

a)
A n(x)
-X; -X; X; X5 X
b)
\
n(x)
Xy -X; X, X X
FIG. 5. The evolution of the electron density distribution

with the changing density gradient in the two-gap model. The
dotted line shows electron density at zero magnetic field. (a)
The a < b case, when the two dipolar strips are indepen-
dent. (b) the a > b case when the charge distribution can
be thought of as a single dipolar strip (dashed line) plus two
slabs with opposite charge.
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creasing density gradient. A similar formula has been
derived by Cooper and Chalker.24
Let us give a qualitative derivation of Eq. (18). When
the incompressible strips are wide one can ignore the
step in electron density between them [dashed line in
Fig. 5(b)] and find x5 from Eq. (17). The appearance of
the compressible strip at £ = 0 can be considered as a
perturbation which does not affect the value of 5. Thus
we can view the formation of the compressible strip as a
charge redistribution that screens out the electric field in
the interval |z| < z; created by the dipolar strip extend-
ing from —z5 to +x. This redistributed charge density
consists of two slabs
en(z) = eAn/2, z; <z < z3,

(19)

en(z) = —eAn/2, —z; <z < —x. (20)

The electric field created by these slabs at z = 0 is given
by

2 dz2Ane 2Ane, x2
E, = = In—=.
e /:; €T € nml

(21)
By setting this field to be equal to the field in the middle

of the unperturbed double dipolar strip'” E = 2mwen'z, /¢
we find

zom'
T, = T2eXp *W—A?

(22)
in agreement with Eq. (18).

In the IQHE regime An = ny = 1/2wl% and Ap =
hw.. By substituting this in Egs. (17) and (18) we find
for the incompressible and compressible strips widths a =
o — Ty and b = 2$1

2ehw, 4
b = 8aexp <_ﬁﬁl—,) = 8aexp (—%)

forb<a<ap, (23)

where we have used the Bohr radius in semiconductor
ap = h%¢/mege?. This should be contrasted with the
result of Ref. 17 which can be recovered from Egs. (14)
and (15):
2 8

a® = ;r—aBb forap < a < b. (24)
We would like to point out that the applicability of
Egs. (18) and (23) for the 2DEG in GaAs heterostruc-
tures in the IQHE regime is very limited. It only shows
that as soon as the gradient becomes high so that a ~ b
the compressible liquid strip starts shrinking exponen-
tially fast. Naturally, when b is of the order of the mag-
netic length, a quantum mechanical consideration is nec-
essary.

Now we extend our treatment to the FQHE regime.
We consider first the fractions of the principal sequence
with the filling factor of the form p/2p + 1, where p is
either negative or positive integer. In the limit of large
|p| the sequence converges towards 1/2 either from above
or below depending on the sign of p.
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The most dramatic prediction of the Fermi-liquid the-
ory proposed by Halperin, Lee, and Read!! is for the size
of the energy gaps at filling factors p/2p + 1. They claim
that the discontinuities in the chemical potential at these
filling factors should be independent of p. This predic-
tion has been recently verified experimentally?® through
a measurement of the activation exponent for a series
of filling factors. As we shall see, this result has impor-
tant implications on the structure of edge channels in the
FQHE regime.

We will use the experimental value for the chemical
potential discontinuity found from the activation energy
studies at the filling factor 1/3. According to Ref. 26 it
is given by

e2
Ap~ 03— (25)

elg’

The difference in density between the adjacent filling fac-
tors (p —1)/(2p — 1) and p/(2p + 1) is given by

nr

An = ———F——. 26
Gp ¥ 12— 1) (%)
By substituting this in Egs. (17) and (18) we find
2 _
T, ~ 4Toexp (—1—2(41)—‘%%{{) (27)
2

or in terms of compressible and incompressible strip
widths a and b
4p2l
b ~ 8aexp (—u) for b < a < p?ly (28)
a

in the limit of large p. Similarly from Egs. (14) and (15)
we get

a® ~ 3p%lyb for p’ly € a K b. (29)
The regime described by Eq. (28) has a much better
chance of being realized in practice for the fractional case
as opposed to the integer case. This is because the close-
ness of the filling factors between the adjacent fractions
of the principal sequence leads to the appearance of the
p? factor in Eq. (28) while the chemical potential discon-
tinuity is independent of p. In Sec. IV we shall see that
the narrow compressible strip limit described by Eq. (28)
is realized for a certain range of p values.

Next we note that the perfect screening model used
in solving the electrostatics model does not take into ac-
count the negative screening radius of the compressible
liquid.'* In order to check the validity of our picture in
this case we have performed a numerical minimization
of the total energy including correlations by looking for
a solution with a constant electrochemical potential. We
chose the chemical potential to vary linearly as a function
of the filling factor, the total drop between two fractions
being equal to the chemical potential discontinuity. We
find similar behavior as the perfect screening model, ex-
cept that the compressible strip shrinks even faster than
given by the Eq. (28). Thus the conclusion is similar to
the one in the IQHE regime: the transition from a wide
edge channel to a narrow one occurs at such value of the
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density gradient that
a~br4p3ly. (30)

The above electrostatic consideration can be general-
ized to any fractional filling factor, provided the discon-
tinuities in the chemical potential are known.

III. EDGE STATES NETWORK MODEL

It is believed that in high-mobility samples dissipa-
tion between the quantum Hall plateaus occurs only due
to transport in the topmost partially-filled (Nth) Lan-
dau level. Transport in the other N — 1 Landau lev-
els is dissipationless because of the absence of gapless
bulk excitations. This fact has been confirmed in several
experiments on high-mobility GaAs heterostructures.®27
Therefore in order to make predictions on the value of the
dissipative conductivity we study a partially-filled Lan-
dau level.

We assume that it is possible to describe conductance
in the partially-filled topmost Landau level with a lo-
cal resistivity tensor p?V. In order to make a connection
with experimentally measured quantities such as resis-
tances R, and R, it is necessary to take into account
the contribution of the lower Landau levels. This is not
a trivial problem because these Landau levels, being per-
turbed by the confining potential, form edge channels at
the boundaries of a sample. Hence their contribution
may be strongly nonlocal,2873! making it impossible to
describe a sample conductivity by a local resistivity ten-
sor.

Szafer et al.® have considered the interplay of the non-
local and local transport effects in detail. They have
shown that only in the extreme case of strong equilibra-
tion between the edge channels and the bulk can one
introduce a conductivity tensor o, related to the conduc-
tivity of the Nth Landau level by

2
e
O'mmzai\;, Urcyza'i\;"‘(N_l)m (31)

We will continue our discussion in terms of oV and o
assuming that Eq. (31) holds.

Our results for oV should be valid also in the regime
when there is a significant nonlocal contribution to con-
ductance. However in order to interpret experimental
measurements in this case one has to analyze the exper-
imental geometry in the spirit of Ref. 8. An example
of such an analysis can be found in a recent work by
Komiyama and Nii.32

Throughout this paper we study the contribution to
the resitivity from the long-range external potential aris-
ing from a nonuniform donor distribution in heterostruc-
tures. We ignore the short-range potential fluctuations
and keep in mind the zero-temperature limit.

Shapiro®® has studied the dissipative transport be-
tween the quantum Hall plateaus by considering one-
electron trajectories in a random external potential in
the bulk. He has calculated the scattering rate between
different extended states, which leads to the longitudi-
nal resistivity. Shapiro has shown that the conductance
of the half-filled Landau level is of the order of e2/27h

DMITRI B. CHKLOVSKII AND PATRICK A. LEE 48

and is independent of the Landau level number. Unfortu-
nately, the picture presented in Ref. 33 does not include
electron-electron interaction.

In the presence of interactions the 2DEG breaks up
into compressible and incompressible regions!37!® as
shown in Fig. 2. Compressible strips are nothing else
but edge channels, whose conductance in units of e2/27h
is given by the difference in filling factors of the incom-
pressible liquids on both sides of the channels. This re-
sult holds even in the presence of interactions as pointed
out by Beenakker'® in the FQHE regime. Therefore we
include electron-electron interaction in consideration by
applying the concept of the bulk edge states. We give
this seemingly absurd name to the states formed at the
intersection of the Fermi level with the topmost Landau
level which is perturbed by the random potential in the
bulk. These edge states follow the equipotential lines
forming a random network.

The description of the conductance in a partially-filled
Landau level with the help of the edge states network
has been proposed by Kucera and Streda.” In principle
the bulk edge channels should form a complicated per-
colation network. The topology of the network is sim-
plified in the Kucera-Streda model to a square array of
current-carrying loops. These loops are linked by scat-
tering barriers transmitting fraction ¢ of the incident cur-
rent and reflecting the rest » = 1 — ¢ back in the loop.
In the mean-field spirit all the transmission coefficients
t are taken to be identical. By applying the Landauer-
Buttiker formalism*® to this model, Kucera and Streda
have found a conductivity tensor in terms of 7 and ¢,
which in turn depend on the average filling factor.

The Kucera-Streda model does not include the effects
of quantum interference which should become important
away from the point r = ¢t = 1/2 and lead to Ander-
son localization. Chalker and Coddington3* have intro-
duced and studied numerically a network model similar
to the one of Ref. 7. They included interference effects
and found the divergence of the localization length in this
model only at » =t = 1/2. However the physical nature
of this transition still remains unclear.

We adopt the Kucera-Streda network model for the
Landau level exactly at filling factor 1/2, in which case
r =t = 1/2. Because of its conceptual importance we
give a derivation of the conductivity in this model follow-
ing the prescription of Ref. 8.

Let us assume that it is possible to create a uniform
electric field E,, in the 2DEG plane. This is equivalent to
having a constant gradient of the Fermi level Vu = eE,
as shown in Fig. 6(a). Local nonequilibrium currents can
be found by considering a single square, Fig. 6(b). Be-
cause the system is spatially uniform the current density
is given by

1 e 1 e

] = ), = — ——V . 32
Je = 3amh VP T G amn v M (32)
Thus the conductivity tensor has the form
1 e? 1 e?
N _ 2 N _ -~ 33
Tes = 397k’ 7= T 227k (33)

which is a special case of the formulas given in Ref. 7.
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By adding the contribution of the N — 1 filled Lan-
dau levels according to Eq. (31) one gets the following
conductivity tensor:

1 €2 1) e2
= o= (N-2) . 34
7e= = 3onh’ 7Y ( 2) 2 (34)

This implies that the value of 0,, at the peak should
be independent of the Landau level number or, in other
words, pgz(N + 1/2) ~ B2

The same conductivity tensor has been found by Huo,
Hetzel, and Bhatt,3® who have performed a computer
simulation of a system of noninteracting electrons on the
first Landau level. Their results have been obtained for
the case of the short-range disorder suggesting that the
result of Eq. (34) can be more general than would follow
from the above derivation.

It is a formidable task to extract the value of o,
from the experiments with Hall bars because of nonlo-
cal transport through edge states,®28731 nonuniform cur-
rent distribution,3® and the spin-splitting of the Landau
levels, taking place at small N. However there is some
evidence®” that o,, is independent of N. The absolute
value of the conductivity in Ref. 37 was in agreement with
Eq. (34) although the observation was made for the spin-
unresolved peaks. We believe that the use of Corbino
geometry or noncontact measurements may help to ver-
ify the correctness of Eq. (33).

a) < >
2 S 2 S
1 Y M \ A \
\ 1 \ 1 \ A
\ \ 1 Y 1 \
0 Au  2Au 3Au 4Au S5Au
_— >
E
b) .
Aj=0
0
>
A/=0M V Aj=Auelh
<€
0 Aj=Auern Au
FIG. 6. (a) The simplified edge-states network. Arrows

show the directions of propagation along each link. (b) Cur-
rents carried along the sides of a single square according to
the Landauer formula.
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An important assumption in the derivation of Eq. (34)
was in describing scattering in the nodes of the network
by a single scattering probability: only then can one as-
sign a single value of the chemical potential to a node.
The validity of this assumption depends crucially on the
detailed structure of the bulk edge channels. In partic-
ular if the edge channels are wide the scattering of an
electron may depend on its position across the channel.
This situation will be discussed in terms of composite
fermions in Sec.VI. The limit of extremely wide channels
will be treated in the Fermi-liquid framework in Sec. V.

IV. EVOLUTION OF THE QHE IN SAMPLES
WITH LONG-RANGE DISORDER

In the network model reviewed in Sec. III the conduc-
tivity of a half-filled Landau level is given by the universal
value, Eq. (33). However, the experimental data exhibit
a much richer behavior. Not only may the absolute val-
ues of the resistivity fluctuate, but also the peaks may
not be infinitely sharp in the limit of zero temperature.
In this section we discuss the limits of applicability of the
network model relying on the results obtained in Sec. II.

We start by considering the IQHE regime although the
quantitative results obtained for this case are likely to be
incorrect because of the importance of the quantum ef-
fects. Then we treat the FQHE regime in the same spirit
using the concept of composite fermions. We believe that
our theory is actually more reliable than in the IQHE
case, even though we find a certain disagreement with
available data.

In high-mobility GaAs heterostructures, widely used
to study transport properties of the 2DEG, the major
contribution to disorder comes from the long-range po-
tential due to the random distribution of ionized donors
behind the spacer layer. For the sake of simplicity we
consider the case of a noncorrelated donor distribution
and assume that the average densities of ionized donors
and electrons are identical. Then, following Refs. 38 we
have for the deviation dn; from the average ionized donor
density n;:

(dn(r)) = 0, (35)

(6ni(r1)dn;(rz)) = nid(r1 —r2), (36)

where () denotes a statistical average. By making Fourier
transformation of Eq. (36) we find

(6ni(q1)dni(q2)) = (27m)*nid(qu + q2).- (37)

As discussed in Ref. 38, because of screening by the
2DEG the deviation dn. from the average electron den-
sity n. = n; can be related to dn; by

one(q) = on;(q)exp(—gqds).- (38)
Then the mean square deviation in the electron density
\/ e /8T

_ 39
s (39)
Rewriting this in terms of the Fermi wave vector kp =

V4nne we have

one =
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= e _Te 40

o = akpds ~ B (40)

Equation (40) defines the value of 3 in the case of the non-

correlated donor distribution. In typical high-mobility

GaAs heterostructures § = 10-40 which makes it a nat-
ural large parameter.

It is quite possible that the distribution of ionized
donors in heterostructures is correlated. In this case we
can still introduce  as a typical relative electron density
deviation. However Eq. (39) will not hold.

The typical density gradient can be found approxi-
mately from Eq. (40)

,  Ome Te

" T4, T Bd

Now we can estimate the widths of compressible strips
in the percolating network. As was done in Sec. II we
approximate the density distribution by the linear ex-
pansion. Let us first consider the case of the IQHE. As
discussed in Sec. II the small-gradient regime compress-
ible strips are much wider than the incompressible ones.
The typical width of the compressible strips in a strong
magnetic field can be found from the condition

(41)

nr
b= P (42)
where n, = (2nl%) ™! is the density in each Landau level.
By expressing nz, in terms of the Landau level filling fac-
tor N — 1/2 and subsituting n’ from Eq. (41) we find

Bds

b:N—1/2'

(43)
This formula is only valid when it yields b less than d,,
otherwise it indicates that all the 2DEG is in the com-
pressible state. By equating b with the Bohr radius [as
follows from Egs. (23) and (24)] we can find N at which in
a given sample the transition to the large-gradient regime
takes place:

Bd,s
ap )

For the filling factor V > N, the sample should be in the
large-gradient regime: the compressible strips are narrow
and the incompressible ones are wide. Then the conduc-
tion in the topmost Landau level can be described by the
network model, yielding conductivity at half-integer fill-
ing factors independent of the number of filled Landau
levels. In this case the resistivity peaks should scale as
B2

At N < N, the description of the conduction in the
topmost Landau level with the network model becomes
inadequate. This is because the compressible liquid strips
are wide and cannot be described as a single channel at
the intersections. An essential assumption of the network
model that there is an equal chance for an electron at
each intersection to scatter left or right breaks down. It
is natural to assume that for a wide edge channel one can
introduce a quantum number characterizing the location
of an electron across the channel. Then the transmission
matrix at an intersection will depend on this quantum

N, ~ (44)

DMITRI B. CHKLOVSKII AND PATRICK A. LEE 48

number. In other words, electrons which are closer to the
right-hand side of the channel are more likely to go right
at an intersection, while the ones closer to the left-hand
side are more likely to go left. We will see in Sec.VI that
this argument can be made more specific by considering
composite fermions.

It has been argued by several authors!®3%24 that the
compressible regions are wide in the IQHE regime, mak-
ing risers between the quantum Hall plateaus rather wide.
Experimentally, it seems that the risers are narrower
than expected. This discrepancy has been attributed in
Ref. 39 to the localization of the compressible liquid, still
an unresolved question. In this paper we take the point
of view that at experimentally available temperatures lo-
calization occurs only for narrow channels on the scales
of several network cells.

Our derivation of Eq. (44) relied on the fact that the to-
tal energy of the electron system can be written in terms
of the density distribution. In this sense it is a classical
theory, with quantum mechanics entering only with the
cyclotron gap. Thus the theory is only valid when all the
dimensions of the strips are larger than the typical ex-
tent of the electron wave functions, which is given by the
cyclotron radius RY ~ v/Nlg on the Nth Landau level.
One can see that for the typical values of parameters, N,
obtained from Eq. (44) is already outside of the valid-
ity region. Moreover, the cyclotron radius in this case is
larger than ds. A detailed quantum mechanical consid-
eration is needed, a problem which remains unsolved.

Now we switch our attention to the FQHE regime, in
which the above limitations turn out to be weaker and
the described transition may actually be observed.

We focus on the series of fractions with the filling factor
given by p/(2p + 1), where p is either negative or posi-
tive integer. By using Eq. (41) we find the width of the
compressible strip between filling factors (p—1)/(2p—1)
and p/(2p + 1) under the assumption p > 1

b= "L = % (45)
2p+1)2p—1)n ~ 2p2?
In order to find the critical value p.; at which there is

a transition to the narrow edge channels we combine
Eqgs. (30), (40), and (45)

Pe1 = \/g | (46)

One can see that at this value of p the width of the com-
pressible strips b as given by Eq. (45) is of the order of d;.
Therefore we think that the numerical factor in Eq. (46)
is unreliable.

Equation (46) yields the critical fraction (pe —
1)/(2pc1 — 1) at which the edge channels become nar-
row and one can apply the network model for |p| > pc;.
However in the FQHE regime we cannot directly apply
Eq. (34) because the Landauer-Buttiker formalism*® used
in its derivation was obtained for noninteracting elec-
trons. We overcome this problem by transforming the
2DEG to the system of composite fermions. The frac-
tional filling factor p/(2p+1) corresponds to integer effec-
tive filling factor p for composite fermions. Consequently
the fractional electron edge states correspond to the inte-
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ger fermion edge states. Thus we can legitimately apply
Eq. (34) to the fermion system.

We consider the 2DEG at a critical filling factor, when
the edge channels between regions with filling factors
(p—1)/(2p—1) and p/(2p+1) form a percolating network.
The critical filling factor is given by the mean of the two
fractions only in a special case when there are no regions
with other filling factors in the system. In the general
case, however, there may be regions with filling factors
less than (p — 1)/(2p — 1) and greater than p/(2p + 1),
see Fig. 2. Thus we believe that the exact position of
the peaks is not universal and may vary from sample to
sample. This conclusion does not contradict the results
of Ref. 40, where the position of the peaks was found to
be described by (2p — 1)/(4p) rather than by the arith-
metic mean of (p—1)/(2p—1) and p/(2p+1). The 2DEG
with uniform density at filling factor (2p — 1)/(4p) cor-
responds to the fermion system at filling factor p — 1/2.
For convenience in the rest of the paper we will refer to
the peaks by fractions of the kind (2p—1)/(4p), although
the exact peak position may be slightly different.

Straightforward application of Eq. (34) gives the fol-
lowing conductivity tensor for the system of fermions:

1 e? 1 e?
L= 5w b= (r3) 3 (47)
In order to obtain the physical transport coefficients we
follow the procedure outlined in Ref. 11. The first step is
to invert the conductivity tensor in order to obtain the
resistivity tensor. Then one should add the contribution
coming from the Chern-Simons gauge field:

onh
oS — —2—:7. (48)

pes =0,
This originates from the phase factor in the fermion-
electron transformation. A nice qualitative motivation
for the summation of the resistivity tensors is described
by Zhang.%! Eventually, we find the following resistivity
values for the filling factor (2p — 1)/(4p):

2nh 1

2nh 4p? — 2p+ 1
e 2p2 —2p+1°

e? 2p2 —2p+1°
(49)

Pz = Pzy = —

For example, by substituting p = 2 we find that at filling
factor 3/8 the resistivity tensor is

2wh 1 27wh 13
Pez = 5 gr Pey = T3 5o (50)
or for p = —3 (filling factor 7/12):
2h 1 27h 31
Pm—eTga Pmy—*—ez—gg- (51)

By inverting the resistivity tensor we find that conduc-
tivity is given by
e? 1 e? 4p® —2p+1

po = o gy Oay = e b —PT D (59
Tee = rh2@pt + 1) T amh 2@ +1) ¢ 0D

These transport coefficients are identical to that pre-
viously obtained by Kivelson, Lee, and Zhang!'® who
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mapped the fractional filling factor system onto the dirty
boson model and took the boson conductivity such that
it yields the universal value (34) for the IQHE. Thus our
results are in agreement with the law of corresponding
states.%10

An advantage of our approach is that having a definite
model in mind which yields Egs. (49) and (52) enables
us to give the limits for the validity of these results. We
believe that Eqs. (49) and (52) are valid under the con-
dition |p| > p.1 and describe the critical peaks, i.e., the
ones whose width goes to zero in the zero temperature
limit.

As was mentioned previously the network model breaks
down when the compressible strips become wide which
should happen at p = p.;. We will explain the nature
of this transition from the composite fermion point of
view in Sec. VI. The values of the resistivity are reduced
in this case and the peaks may exhibit some additional
structure. We call these peaks “transitional” because
they are about (as disorder is reduced further) to give
rise to the daughter fractions. These fractions appear
when the compressible strips are wide enough for the
incompressible strips of the higher order fractions to form
along them.

Having narrow compressible strips is a necessary but
not a sufficient condition for the validity of the network
model. Another condition is imposed by the require-
ment that there is no equilibration between the transport
edge channels (forming the percolating network) and lo-
calized edge channels (forming closed loops) as shown
in Fig. 2. The suppression of the equilibration takes
place because of the exponential decay of the wave func-
tions of the edge states inside the incompressible strips.
Therefore the equilibration rate is very sensitive to the
width of the incompressible strips. This phenomenon
has been studied experimentally for the fractional edge
states by Kouwenhoven et al.,*> Wang and Goldman,*3
and Chang and Cunningham.** Electrostatics based the-
oretical interpretation'” seems to be in reasonable agree-
ment with the data of Ref. 42.

In the IQHE the characteristic length of the exponen-
tial decay of the edge state wave function is the magnetic
length l. We think that in the FQHE regime the ef-
fective magnetic length for the composite fermions, l};,
plays a similar role. Therefore the critical width of the
incompressible strips at which the transport edge chan-
nels are practically destroyed is equal to l};. In the state
with the filling factor p/(2p + 1) and electron magnetic
length [y the fermion magnetic length is given by

1, =lg+/2p + 1. (53)

Hence the breakdown of the network model takes place
when the typical incompressible strip width

a=1 =lg\/2p+ 1. (54)

It seems plausible that the same condition should deter-
mine the disappearance of the fractionally quantized Hall
plateaus and zero longitudinal resistivity values. This is
because plateau formation should be due to the existence
of the percolating incompressible strip network.!3715
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It is likely that Eq. (54) determines the narrowest pos-
sible incompressible strip meaning that there could be no
energy gap for the strips of smaller widths.

The transition to the Fermi-liquid state can be deter-
mined from the following considerations. The typical
width of the incompressible liquid strips in the state with
the average filling factor (2p — 1)/4p (|p| > pc1) can be
found by recalling that the compressible strips are much

more narrow than the incompressible ones. Then the
width of the incompressible strips is given by
n d
a= L ~ Bds (55)

2p—1)(2p+1)n' ~ 2p?’

where we assumed that p.; > 1. By using the minimum
width of the incompressible strip as given by Eq. (54)
and recalling Eq. (40) we find the transition value p.s,

4/5
var(5) - (56)

Therefore the network model should be applicable in the
interval p.1 < |p| < pez, where p.; and p., are given
by Egs. (46) and (56). We caution the reader that the
numerical factors in Eqs. (46) and (56) should not be
taken seriously.

We believe that a proper description of the case |p| >
Pc2 should be given in the framework of the Fermi-liquid
theory developed in Ref. 11. We consider this regime in
Sec. V.

So far we discussed only the principal sequence of the
filling fractions p/(2p + 1). Owur results can be easily
extended to the sequence of fractions converging to any
half-integer filling factor. The universal resistivity values
(49) correspond in this case only to the topmost Landau
level. In other words Eq. (52) gives the values of o2V,
and O'i\; which are related to the experimentally observed
transport coefficients as discussed in Sec. III.

V. TRANSPORT IN THE FERMI-LIQUID
REGIME

In a recent paper'! Halperin, Lee, and Read have sug-
gested that a 2D system of strongly interacting electrons
with Landau level filling factor 1/2 can be transformed
to an equivalent system of fermions interacting with a
Chern-Simons gauge field, such that the average effective
magnetic field seen by fermions is zero. They have argued
that even though the gauge field fluctuations lead to di-
vergent corrections to the quasiparticle propagator the
Fermi-liquid description of the fermion system is valid.
The gauge transformation can also be performed!! for
the system of electrons with the filling factor V —1/2 by
attaching two flux quanta only to the electrons on the
topmost Landau level. In order to calculate the conduc-
tivity of such a system one needs to take disorder into
account. As was done in Sec. IV we consider the case
of the long-range disorder caused by a random distribu-
tion of ionized donors in GaAs heterostructures. At zero
magnetic field the small angle scattering on this potential
accounts for the zero temperature resistivity.

One can look at this mechanism from a different point
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of view. Due to a very strong screening by the 2DEG
(screening radius equal to ag) the long-range potential
created by donors is transformed into the electron density
fluctuations. Electrons are scattered by the density non-
uniformities in a way similar to the propagation of light
in a media with the varying index of refraction. The same
mechanism exists for the system of fermions because fluc-
tuations in the local densities of fermions and electrons
are identical.

However it was argued in Refs. 11 and 12 that another
scattering mechanism is important in a strong magnetic
field. Due to the density fluctuations of the electron sys-
tem fermions experience an effective fluctuating in space
magnetic field. Scattering on this magnetic field accounts
for a high resistivity at filling factors N —1/2. The ampli-
tude of the effective magnetic field fluctuations is propor-
tional to the density fluctuations of the electron system
and the lengthscale of the fluctuations is equal to the
spacer layer thickness d,.

Halperin, Lee, and Read!! have calculated the conduc-
tivity of the fermion system using Born approximation
which is valid in the regime when Rf > d, (where R}
is the fermion cyclotron radius in the effective magnetic
field) so that small-angle scattering by the magnetic field
fluctuations is dominant. They found that the longitu-
dinal resistance of the electron system is determined by
the large parameter krd, and scales as the square root of
the magnetic field. However, it seems that, experimen-
tally, resistance at half-integer filling factors in the Fermi-
liquid regime scales linearly*546 with the magnetic field.
Halperin, Lee, and Read!! argued that the discrepancy is
due to the fact that except for N = 1, the opposite limit
R <« d, is more appropriate so that Born approximation
is not valid. In this section we calculate the conductivity
in this limit.

Let us give an estimate of the effective magnetic field
seen by the fermions following Ref. 11. The typical mag-
netic field can be found from the typical density fluctua-
tion given by Eq. (40), recalling that each fermion carries
two flux quanta:
27rhc(sne _ 227r7‘7,c e (57)

e e [
The fermion cyclotron radius in the typical magnetic field
AB can be found by expressing it in terms of the Fermi
velocity 11;. and the cyclotron frequency w,:

AB =2

f f
v hk
RI=-£—-__F (58)
w. €eAB/c
Substituting expression for A B and rewriting k{, in terms
of the fermion concentration ny one gets

Rf =d,,[2"L. (59)
e

The density of fermions coincides with the electron
density only at filling factor 1/2. At filling factor N —1/2
the fermion density

Tle

=aN-1 (60)

s
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because only sitting on the topmost Landau level elec-
trons are transformed into fermions. Substituting this in
Eq. (59) one finds

Rf =d,/\/N —1)2. (61)

Thus we find that the fermion cyclotron radius in the
typical effective magnetic field is smaller than the length
scale of the magnetic field fluctuations for large N.

It is clear that the conductance in this situation is de-
termined mainly by the fermions that live near the lines
of zero effective magnetic field because their cyclotron
radius is large. Fermions that live in the areas of strong
magnetic field drift slowly along the closed orbits and do
not contribute much to the conductance of the system.

We will adopt a simplified model of the effective mag-
netic field fluctuations. Instead of considering a slowly
varying magnetic field we will consider the case when
the magnetic field takes only two values AB. Thus the
whole plane is divided into areas of the typical size d,
where magnetic field has the same magnitude but ran-
domly varying sign.

To calculate the conductance of such a system let us
first solve a simpler problem. Let us consider the case
when the magnetic field is translationally invariant along
the z axis and is given by

B, = ABsgn(y). (62)

The one-particle Hamiltonian in Landau gauge with the
magnetic field described by Eq. (62) is given by

=1 [pﬁ + ( . — eABle)z} ; (63)

2m c

where p, and p, are the components of the momentum.
The eigenfunctions of this Hamiltonian can be written in
the form

_ P

Y = ¢(pz, y)exp (z = w) , (64)
where ¢(p,y) is found by solving the equation

d? 2m

L+ (B - U =0 (65)
with the effective potential, see Fig. 7:

1 eAB, \?
Uet = o (Pz ~ T2a |y|) . (66)

Equation (65) can be solved quasiclassically. The spec-
trum is shown in Fig. 8. One can see that at large posi-
tive p, the eigenvalues are doubly degenerate. They cor-
respond to the eigenstates in a uniform magnetic field
centered at y = +p,. The total number of states is equal
2Ny, where Ny is the number of filled Landau levels for
fermions in the magnetic field AB:
2mhen

Ny = AB (67)
At smaller p, the degeneracy is lifted and the states ac-
quire velocity in the z direction. There is an interval of
pr where the velocity direction is reversed. The corre-
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FIG. 7. Effective potential at different values of p..

sponding depression of the levels is small and therefore
will be ignored. In order to discuss transport properties
we focus on the states at the Fermi level. They are lo-
calized near the line y = 0 and have a velocity in the z
direction. These states are called the snake states due
to the characteristic shape of the classical analogue tra-
jectories. As at p, — —oo all the eigenstates are above
the Fermi level the total number of the snake states is
2Ny. The snake states are reminiscent of the edge states
in that they have a single velocity direction. The snake
states, however, are all centered at y = 0 and are not
spatially separated like the edge states.

The conductance of the fermion system along the line
y = 0 can be found by using the Landauer formula,*®

2

[

Going back to the original problem with the magnetic
field of varying sign we immediately notice that the snake
states form a network very similar to the one considered
for the edge states in Sec. III and shown in Fig. 6. This
allows us to calculate the conductivity of the fermion
system using the line of argument that led to Eq. (33):

&2

& o
2wh’ Y
Of course an important assumption made in the deriva-
tion of Eq. (69) was that the cyclotron radius for the
topmost Landau level is smaller than the scale of the
network.

We would like to formulate now a general statement, of
which Egs. (33) and (69) are the special cases. Suppose,
one has a system of noninteracting fermions confined in
a plane and subject to a perpendicular nonuniform mag-
netic field and some external potential. Suppose that the
distribution of the magnetic field and external potential
is such that the plane is broken up into the alternating
regions with two filling factors

Ae
AN

of, =g/2 =Ny =0. (69)

&

FIG. 8. Qualitative spectrum of the free-particle Hamilto-
nian with the steplike magnetic field. The double degeneracy
at p, — oo represents Landau states to the right and to the
left from y = 0.
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2mheny
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_ 27hens

Nl = 2= eBz ’

(70)

where ni,n, are densities and B;,B> the magnetic fields.
We assume that the Fermi level lies in the cyclotron gap
inside the regions, henceforth N; and N, can be positive
or negative integers . Then the system can be represented
by a network of edge or snake channels. By using the
Landauer approach we find the conductivity tensor to be

_ |N1—N2| 62 o _ N1+N2 82
Oez =95 o7n’ 9T 7 32 oxh’

One can see that when Ny = N, N = N — 1 Eq. (71) is
reduced to Eq. (34), and when Ny = —N; = Ny Eq. (71)
is reduced to Eq. (69).

The general result, Eq. (71), allows for an accurate
calculation of the resistivity at filling factor NV — 1/2 (in
the sharp-step model). The typical magnetic field seen
by fermions is given by Eq. (57), and the densities of the
fermion system are represented by

(71)

n n n n
= € -— —e = e— -—e. 72
MEIN_1 B ™MTaN-1"3 (72)
By utilizing Eq. (70) we find
B 1 Jéj 1
N = e — N = — — a0 73
T oeN-1) 20 7 22N —1) 2 (73)

and substituting this in Eq. (71) we derive the fermion
conductivity tensor more accurate than in Eq. (69)

2 2
P B e ;o 1l e (74)

Tve T 3@N —1) 27k 7T T 227k’

By following the procedure outlined in Ref. 11 we find
the conductivity of the Nth electron Landau level to be

N —-1/2 €2 1 €2
N N
— " == . 75
e B 2mh’ 7T 22k (75)
By using Eq. (31) we find the conductivity tensor

N —-1/2 €2 e?

Thus we see that o, scales as the inverse of the magnetic
field. Because 3 > 1 p., at half-integer filling factors
scales linearly with the magnetic field.

In the case when N; = 0 and N2 = —1 in Eq. (73)
we have a network consisting of a single fermion edge
channel. By going through a standard procedure we find
the exact conductivity tensor to be

N 1 e? N 1 e?
o = —— o _ -
22wk’ Y 227k’

in agreement with Eq. (33) which was obtained without
considering fermions.

Our derivation was based on a somewhat artificial
model in which the effective magnetic field seen by
fermions is assumed to vary in a steplike manner as-
suming only two values AB. This could be realized if
the incompressible strips on the sides of the compressible
transport strip were wide enough.

(77)
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A more realistic model may be the linear-step model.
In this case the magnetic field is assumed to vary linearly
between the regions with opposite magnetic field sign. To
study this case let us go back to a single channel problem
with magnetic field now given by

—AB, y<—d,
B =14 ABY, |yl <d, (78)
AB, y>d.

A similar problem has been considered by Miiller.4” By
following the same procedure as for the step model we
arrive to the spectrum of the free-particle Hamiltonian
with the magnetic field described by Eq. (78) shown in
Fig. 9. The new feature is the existence of the edge states
at p, > 0. These are the states which cross the Fermi
energy in Fig. 9 with de/8p, > 0. They come in pairs,
corresponding to the two possibilities to be to the left
and to the right of y = 0. One can see that these states
have velocity in the direction opposite to the one of the
snake states. Because of this it is necessary to consider
backscattering from snake to edge states. Of course, in a
translationally invariant magnetic field all the snake and
edge states are exact eigenstates, orthogonality of which
implies the absence of scattering. We will assume that
there exists a small number of short-range scatterers that
generate hopping matrix elements.

It seems reasonable to assume that because all the
snake states are centered at y = 0 they are all coupled
to each other. Edge states, on the contrary, are spatially
separated and the rate of equilibration may be different
between different states. To get an idea of what the real
situation might be let us consider the case when all the
edge states except the ones corresponding to the lower &
Landau levels are coupled to the snake states. Suppose
there are N, channels of snake states, i.e., those with
0¢/0p, < 0 in Fig. 9 (there N, = 10). Then the number
of edge channels with 9¢/0p, > 0 which couple to the
snake states is N, — 2k (the factor 2 comes in because
of the degeneracy). If the channel is long enough then
all but 2k channels should backscatter, meaning that the
conductance is given by*°

g= 2ke—. (79)

One can see from Eq. (79) that only if we assume that

€
AR RN V4

& V

lo P,

FIG. 9. Spectrum of the free-particle Hamiltonian with
the linear-step magnetic field.
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all the edge channels are coupled to the snake channels
Eq. (68) is recovered. In reality, the lines of zero mag-
netic field are not straight: they meander in the random
potential. This should lead to the scattering between
edge channels even in the absence of the short-range dis-
order. Also, in both models considered so far we had
to assume the existence of the insulating regions, where
all the states are localized. But in the presence of the
scattering, extended states admix to the localized ones.
Thus in the limit of strong scattering the network model
loses its validity. A more appropriate picture may be
that fermion orbits sweep the whole plane, making the
concept of channels obsolete. In the following we give
a quasiclassical argument which shows that even in this
case when all the fermions participate in transport, the
result of Eq. (69) holds.

In this case a typical fermion drifts perpendicular to
the magnetic field gradient with the velocity®°

(80)

A typical fermion changes its direction on a length scale
ds, which we take to be the mean free path. The diffusion
constant in this case is given by

D =~ dvq ~ vLRS. (81)

By making use of the Einstein relation we find the con-
ductivity to be

2
~ kT €
o, = kFR‘cf%7 (82)
in agreement with Eq. (69). Of course we cannot obtain
a numerical coeflicient in this estimate and it is not clear
whether it should be the same as in Eq. (69).

VI. COMPOSITE FERMIONS
OF HIGHER GENERATIONS

In Sec. IV we have described how the peaks of the lon-
gitudinal conductance evolve with varying disorder. It
was shown that when the fractional peaks first develop
they are in the critical state, meaning that their width
should go to zero in the low-temperature limit. Then
their magnitude is given by Egs. (49) and (52). As disor-
der is reduced the peaks become transitional; their height
is reduced from the critical values given in Egs. (49) and
(52). As disorder is reduced further, fractional daugh-
ter states develop on the place of each peak in accor-
dance with the phase diagram proposed in Ref. 11. These
daughter states are in the same relation to the mother
state as the fractions of the main sequence to the integer
states.

These states should also be characterized by the uni-
versal resistivity values, which may be obtained in the
spirit of the Eq. (49) derivation. According to the pro-
posed in Ref. 11 global phase diagram, there is a Fermi-
liquid state exactly at the location of the center of the
mother peak. We will calculate the conductivity of this
state in analogy with what was done for half-integer fill-
ing factors in the preceding section.
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Let us recall that the idea behind the resistivity cal-
culation for the half-integer filling factors was to attach
two flux quanta to the fermions of the topmost Landau
level.!! Then the average effective magnetic field, which
acts on the composite fermions is zero. Naturally, the
attachment of the flux quanta does not affect the elec-
trons on the lower Landau level. Thus they see only the
external magnetic field.

In a Fermi-liquid state with electron filling factor (2p—
1)/(4p) the composite fermions are at filling factor p —
1/2. The longitudinal resistivity of the fermion system
arises from the transport of the composite fermions on
the topmost p Landau level. In order to calculate this
contribution we add two flux quanta of another Chern-
Simons gauge field to each of those fermions, see Fig. 10.
This field does not act on the composite fermions on the
lower Landau levels.

The typical density deviation én. is given by Eq. (40).
However it would be incorrect to identify dn. with the
typical density deviation én, on the p fermion Landau
level. The reason being that these additional fermions
also carry flux quanta which produce additional effective
magnetic field acting on the fermions of the lower p — 1
Landau levels, Fig. 10. In order to find én, we write this
effective magnetic field in terms of the additional density

AB = —sn 2. (83)
€

Then the total density deviation due to the fermions on

the first p — 1 Landau levels is

eAB
he

From this we find the density deviation on the p Landau
level

one —dn, = (p—1) = —2(p—1)én.. (84)

dnyp = (2p — 1)dne. (85)

The typical magnetic field acting on the fermions of the
topmost Landau level and created by the flux attached
to the additional fermions consists of the contributions

A n(x)
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FIG. 10. The composite fermions picture at the electron
filling factor 7/16 (p = 4). Each arrow represents two flux
quanta. Filled-in arrows represent the flux quanta of the field
acting only on the fermions belonging to the topmost Landau
level. [They will have an opposite direction for the electron
filling factor greater than 1/2 (p < 0).] The electron density
variation results in the decrease in the density on each fermion
Landau level except the topmost one.
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from two gauge fields and is given by
h h

AB' = —5n. 2" _ (2p — 1)om 2 = ~apin. . (86)
e e

To calculate the resistivity of the topmost Landau level
we can use Eq. (71) which involves the filling factors in
the regions of the high and low density N;, N2. The two
filling factors can be found from Eqgs. (85) and (86) to be

N Bt @D 5 2p-1
! —4pdén. 4p(2p — 1) 4p ’
(87)
Ny = P -1 (88)

ap(2p—1)  4p

If N; and N, become less than 1 it means that the
fermion filling factor is not limited to the interval [p—1, p].
In this case the compressible liquid occupies only nar-
row strips and we should use the edge-channel-network
model. This condition is close to the one in Eq. (46).

According to Eq. (71) conductivity for the fermions of
the second generation is given by

o 62 ,8 £ 62 1

_e B -1 89
%22 = 9rn 4p(2p — 1)’ 7oy = onh 2 (89)

By going through the sequence of transformations out-
lined twice in Ref. 11 we can obtain an expression for the
physical resistivity from Eq. (89). In the course of trans-
formation we assume that 3 is the largest parameter in
the calculations.

g _2rhdp(2p—1)  p _ 27k [4p(2p — 1)]?
T 62 ,H ) Ty 62 2(,@)2

By adding the contribution from the Chern-Simons field
and inverting the matrix we find

(90)

of — e? 4p(2p — 1) f

2
€ 1
= —(p—%). 91

By making a transformation to the resistivity tensor and
adding the Chern-Simons contribution we get

27h 4p 2nh —4p

o= T 4p 2R . 92
P e2 B2p—1) 77T ez 2p—1 (92)

The same procedure applied to the filling factors larger
than 1/2 leads to the conclusion that the longitudinal
resistivity is inversely proportional to the filling factor v
for the even-denominator states of the principal sequence

1 2wh
pmhuﬁ ez’

At this point we would like to address the question of
localization. Although the nature of delocalized states
in a strong magnetic field remains unclear, by making
the transformation to the composite fermions we can ap-
ply the results for localization at zero magnetic field.
Strictly speaking, in two dimensions all the states should
be localized. However the localization length may be ex-
ponentially large, making the effects of localization un-

(93)
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observable. One can see though from Eq. (89) that at
sufficiently large p the fermion conductivity is close to
e?/2mh, making localization length small. The localiza-
tion should manifest itself in the temperature dependence
of the resistivities at even-denominator filling factors.
The higher the value of p is, the easier the fermion system
can be localized. At low enough temperatures Eq. (93)
should only hold for the half-integer filling factors.

It seems possible that transitional peaks correspond to
the situation when all the 2DEG planes are occupied by
the compressible liquid. Then the high values of the re-
sistivity are due to the localization of the fermion system.

Now we would like to go back and clarify the mean-
ing of the transition from narrow to wide edge channels
which yielded the value of p.;. From the consideration
of the last two sections one can see that the number of
the composite fermion channels depends on the magnetic
field gradient which is determined by the electron density
distribution.

First, let us consider an integer edge channel. When
the channel is extremely narrow the effective magnetic
field acting on fermions varies in a steplike manner. Then
there is just one fermion Landau level crossing the Fermi
level, thus creating a single fermion channel. If the back-
ground charge density gradient is reduced the edge chan-
nel becomes wider as discussed in Sec. II. The magnetic
field gradient becomes smaller and higher Landau levels
descend and cross the Fermi level, leading to the appear-
ance of the pairs of snake and edge channels of composite
fermions. The total conductance of the integer channel
remains the same because of the opposite velocities of
the snake and edge channels. However, we run into diffi-
culties with the network model. It was assumed in Sec.
IIT that at the intersection each electron can go right or
left with probability 1/2. It is clear now that in the wide
edge channels different fermion channels would have dif-
ferent scattering probabilities and the network model is
oversimplified.

The same argument for the fractional edge channels of
the principal sequence can be carried out by considering
the channels of the second generation fermions. This
elucidates the significance of p.; found in Sec. IV.

VII. COMPARISON WITH EXPERIMENT

In this section we compare our results with a series of
available experimental observations made on extremely
high-mobility GaAs heterostructures.

In Sec. IV we predict that the conductivity of the criti-
cal fractional peaks is universal, Eq. (52): it only depends
on the peak’s filling factor. However the comparison with
experiment is complicated by the fact that for any given
sample only some peaks are critical and it is hard to de-
termine unambiguously which ones. A peak may look
critical but, in reality, be on the early stages of transi-
tion, thus having a lower than expected conductivity.

When interpreting the experimental results it is use-
ful to realize that according to Egs. (49) and (52) the
particle-hole symmetry is present for the conductivities
of the critical peaks, but not for their resistivities. On
the other hand, peaks of the principal sequence at filling
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factors with the same numerators have the same resistiv-
ities.

Extremely helpful for the purpose of verifying the uni-
versal values would be an experiment in which the level
of disorder is changed continuously. Then the maximum
conductivity value achieved by a given peak should ap-
proach the universal value. We are aware of only one ex-
periment in which a variation of disorder was attempted.
Sajoto et al.*® have studied the FQHE in the GaAs het-
erostructures, varying the electron density by applying
voltage to a back gate. Because of the dependence of
screening on the concentration of carriers this results in
varying the level of disorder.

We focus on the observations on sample M 73 presented
in Fig. 3 of Ref. 45. Let us follow the behavior of the 3/8
(p = 2) peak between the 1/3 and 2/5 states. This peak
is still undeveloped at the density n. = 1.7 x 10'° cm~2;
it looks close to critical at n, = 2.2 x 10'° cm~2 and
it is transitional at n. = 5.0 x 10'° cm™2. (A detailed
study of the temperature dependence of the peak’s shape
could probably verify the diagnosis.) Thus the resistivity
for this peak is 4 arb. units. The 7/12 (p = —3) peak
between the 3/5 and 4/7 states is undeveloped at n, =
2.2x10'° cm—2 and it is close to critical at n, = 5.0x10%°
cm™2. Its resistivity is 1.1 arb. units. The ratio of the
resistivities of the two peaks is approximately 3.6. On
the other hand, by using Egs. (50) and (51) this ratio
should be 5. This disagreement is probably due to the
fact that at n, = 2.2 x 10'° cm™2 the 3/8 peak is already
transitional.

The limits of the critical regime are given in Egs. (46)
and (56) in terms of 8. However we do not think one can
use Eq. (40) in these criteria because of the possible cor-
relations in the distribution of ionized donors. It seems
likely that such correlations exist because of the lower
than expected values of the resistivity of the Fermi-liquid
states, which we discuss next.

Stormer et al.,*® following an earlier conjecture of
Chang and Tsui®! have shown that at relatively high tem-
perature (0.3 K) the longitudinal resistivity is amazingly
linear with the exception of dips at the integer and odd-
denominator filling factors. They introduced parameter
[ as a ratio of the classical Hall resistivity to the linear
approximation of p,,. Explanation of the linear behav-
ior was given in Secs. V and VI in the framework of
the composite fermions. We defined 8 as a microscopic
parameter and showed that it enters the expression for
Pzz, Eq. (6) the same way as the phenomenological § of
Ref. 46. Therefore we assume our 3 to be identical to
the one introduced by Stérmer et al.

The value of 3 was found in Ref. 46 to be almost in-
dependent of temperature and to be equal to 23 and 36
for two different samples, while the estimate according
to Eq. (40) gives 21 and 9.6 correspondingly. Such a
big discrepancy for the higher mobility sample proba-
bly implies the importance of correlations in the ionized
donor distribution. At lower temperatures?® resistivity
at half-integer is mostly unchanged while at other even-
denominator fractions it grows significantly.

The linear dependence of the resistivity at half-integer
filling factors can also be seen in the data of Refs. 45
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and 53 at very low temperatures. Again at other even-
denominator fractions such as 3/8, 1/4, and 3/4 the re-
sistivity seems to grow as temperature is lowered.

As discussed in Sec. VI the Fermi liquid at filling fac-
tors with large p can be easily localized. This could serve
to explain the deviation of the resistivity from the val-
ues given by Eq. (93) at temperatures so low that the
inelastic scattering length is larger than the localization
length.

The linear dependence of the Fermi-liquid states’ re-
sistivity on the magnetic field as described by Eq. (93)
makes it possible to extract the value of 8 from experi-
ment without relying on the assumption of an uncorre-
lated donor distribution.

Below we give the comparison of our predictions of the
universal resistivity values, Eq. (49) with the results of
several experimental groups. We would like to emphasize
that the presence of the nonlocal transport*® might have
severely affected the measurements.

By analyzing the data of Clark presented in Fig. 2(a)
of Ref. 52 we determine that the peaks at filling factors
7/16, 9/20, and 9/16 are critical, while the peak at 7/12
is probably slightly transitional. We find that the re-
sistivities of those peaks agree with Eq. (49) within the
accuracy of 15%.

In a recent paper Du et al.2® have reported the ob-
servation of the main sequence fractions up to 9/17 and
9/19. From Eq. (93) we find that 3 is approximately 35.
Then according to Egs. (46) and (56) we have p.; ~ 4
and p.» = 8. It seems that in the data of Ref. 25 peaks
at filling factors 9/20, 11/24, and 13/28 (p = 5,6,7),
and 9/16, 11/20, and 13/24 (p = —4, —5, —6) are indeed
critical. One can see that the resistivity of those peaks
does indeed scale in agreement with Eq. (49). However
the absolute values given by Eq. (49) are approximately
6 times smaller than the experimental ones.

By analyzing the data of Willett et al.,%® Fig. 1, we
determine that the peaks at filling factors 5/12, 7/16,
9/20, and 7/12, 9/16 are critical. Their resistivities scale
in agreement with Eq. (49), although the experimental
values seem to be 1.5 times larger. We do not have at
present any reasonable explanation for the discrepancies
in the absolute values.

VIII. CONCLUSIONS

In this paper we presented a unified picture of the dis-
sipative transport between the quantum Hall plateaus for
the case of the long-range disorder potential. The basic
assumption is the breakup of the electron system into
the incompressible regions with integer or fractional fill-
ing factors, separated by the network of edge channels.
We have considered the structure of edge channels and
applied it to the analysis of the transport in the network.

A diverse experimental data on the longitudinal resis-
tivity can be understood by considering the evolution of
a single resistivity peak with the variation of disorder,
which we describe by a single parameter 5. We have
shown that each peak goes through four stages in its life:
underdevelopment, criticality, transition, and the Fermi-
liquid stage. By considering the electrostatics of edge
channels, we have found the values of 3 which determine
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FIG. 11. The fragment of the global phase diagram of the
quantum Hall effect. Arrows show trajectories in the 8 — v
space corresponding to the existing measurements (sweeping
magnetic field at constant disorder). The corresponding peak
type is indicated.

the beginning and the end of the critical regime.

The evolution of the peak can be understood by con-
sidering the global phase diagram of the quantum Hall
effect proposed in Ref. 11. We represent disorder by a
single parameter 8 and show the fragment of the phase
diagram in Fig. 11. The different kinds of peaks corre-
spond to sweeping magnetic field at different values of 3
as shown in Fig. 11.

Resistivities of the peaks in the critical regime are
given by the universal values, which are in agreement
with the law of corresponding states. We have obtained
these values by making the transformation to the com-
posite fermions and applying the result for the univer-
sal conductivity of the half-filled Landau level to be
1/2(e?/2wh). We find that experimentally the relative
heights of the critical peaks are in agreement with our
prediction, while the absolute values vary from one ex-
perimental group to another and are in the worst case
several times different. We speculate that this is due to
the nonlocal transport contribution. A detailed exper-
imental study of the absolute values possibly using the
Corbino geometry or noncontact measurements is clearly
desirable.

When the electron density fluctuations are small, com-
pressible liquid occupies the whole plane. In this regime
a proper description is given by the Fermi-liquid theory
of the composite fermions. Resistivity in this case arises
from the fictitious magnetic field fluctuations related to
the fluctuations in electron density. We have solved this
problem in the case of a steplike variation of the mag-
netic field by invoking the concept of the snake states.
We have found a great similarity between the edge state
and the snake state networks and give a general formula
for the conductivity tensor of the network.

We have found that the resistivity of the half-integer

Fermi-liquid states and of the principal sequence even-
J

Imf(z,0) =0 for |z| > z2,
Imf(z,0) =0 for |z| < z1,
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denominator fractions is linear in the magnetic field and
inversely proportional to 3. This conclusion is in agree-
ment with the recent experimental results, although the
analysis of the slope shows that a model of noncorre-
lated donor distribution is oversimplified. We attribute
the experimentally observed low-temperature growth of
the resistivity at even-denominator principal fractions to
the localization of the fermion system.

Note added in proof. Recently, V. Goldman et al. have
performed conductivity measurements in Corbino geom-
etry. Peak conductivity on some samples is within 30%
of universal values. However, other samples give values
far from theoretical prediction. At present we do not
understand the origin of such discrepancy.
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APPENDIX A

We have to solve the Laplace equation in the zz plane
with the mixed boundary conditions given on the z axis
in terms of the electric field:

E.(z,0) =0 for |z| > z2,
E,(x,0) =0 for |z| < z1, (A1)
E.(z,0) = 2me (n’:c — n—in) forz; <z < x,,

E,(z,0) = 2me (n':z: + %Ii) for —zy <z < —x;.

Instead we will look for an analytic function F(¢) (( =

z + iz), such that
ImF = E,,
ReF = E,.

(A2)
(A3)

From Eq. (A1) we know the real and imaginary parts
of F' on different intervals. However, we have to know
the imaginary part of the function on the whole axis in

order to determine it in the complex plane. Thus we use
another analytic function

F
V(= 23)((2—a3)

By rewriting Eq. (A1) in terms of this function we have

f=

(A4)

(A5)

’ nyr, 1
Imf(z,0) = —2me (n T — 7) = D)
1

V@t = o) - 2})

for z; < = < za,

for —z, <z < —x4.

Imf(z,0) = 2me (n':z: + %)
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The value of f in the complex plane is given by
Imf (a:)dm
= v A6
1o=3 [ 7R (46)
By substituting Eq. (A5) in Eq. (A6) and going back to the electric field we find
2 dt(n't — 2L
E,(z,0) = 4ex - ('t — %) . (A7)
= VA= g
From the condition that the charge density should be zero at £ — oo it follows that
de(n'z — 2
/ 2 22 ) 2y (A8)
V(25 — 2?)(a? — z3)
The second equation follows from the condition that the potential drop between the metal plates is Ap/e:
2 (n'z — - A
me / 5 ) 22 = 2F (A9)
\/ (% — 2?)(z2 — z2) e

'K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.
45, 494 (1980).

2D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

3See, e.g., The Quantum Hall Effect, edited by R.E. Prange
and S.M. Girvin (Springer-Verlag, New York, 1987).

“R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

®R.B. Laughlin, Phys. Rev. B 23, 5632 (1981); B.I. Halperin,
ibid. 25, 2185 (1982).

5We do not consider effects related to the formation of the
Wigner crystal in this paper.

7J. Kucera and P. Streda, J. Phys. C 21, 4357 (1988).

8A. Szafer, A.D. Stone, P.L. McEuen, and B.W. Alphenaar,
in Granular Nanoelectronics, edited by D.K. Ferry, J.R.
Barker, and C. Jacoboni (Plenum, New York, 1991).

9J.K. Jain, S.A. Kivelson, and N. Trivedi, Phys. Rev. Lett.
64, 1297 (1990); 64, 1993(E) (1990).

103, Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev. B 46,
2223 (1992); D.-H. Lee, S.A. Kivelson, S.-C. Zhang, Phys.
Rev. Lett. 68, 2386 (1992).

1B I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47,
7312 (1993).

12y. Kalmeyer and S.-C. Zhang, Phys. Rev. B 46, 9889
(1992).

133, Luryi, in High Magnetic Fields in Semiconductor Physics,
edited by G. Landwehr (Springer, New York, 1987).

'*A.L. Efros, Solid State Commun. 65, 1281 (1988).

'5A.L. Efros, Solid State Commun. 67, 1019 (1988).

6See, e.g., HP. Wei, S.Y. Lin, D.C. Tsui, and A.M.M.
Pruisken, Phys. Rev. B 45, 3926 (1992), and references
therein.

7D.B. Chklovskii, B.I. Shklovskii, and L.I. Glazman, Phys.
Rev. B 46, 4026 (1992); 46, 15606(E) (1992).

18C.W.J. Beenakker, Phys. Rev. Lett. 64, 216 (1990).

%A M. Chang, Solid State Commun. 74, 871 (1990).

20J K. Jain, Phys. Rev. Lett. 63, 199 (1989).

21B.E. Kane, Ph.D. thesis, Princeton University, 1988.

22A.L. Efros, Phys. Rev. B 45, 11354 (1992).

#3]n fact, this equation differs by a factor of 2 from Eq. (20) of
Ref. 17 because of the different boundary conditions chosen
in this paper [see Eq. (10)]. Factor 2me/¢ is taken in Eq. (10)

in anticipation that the dipolar strip width is smaller than
the distance to the surface of the semiconductor.

24N.R. Cooper and J.T. Chalker, Phys. Rev. B 48, 4530
(1993).

25R.R. Du, H.L. Stérmer, D.C. Tsui, L.N. Pfeiffer, and K.W.
West, Phys. Rev. Lett. 70, 2944 (1993).

26T, Chakraborty and P. Pietilainen, The Fractional Quan-
tum Hall Effect (Springer-Verlag, New York, 1988).

2"B.J. van Wees, L.P. Kouwenhoven, E.M.M. Willems,
C.J.P.M. Harmans, J.E. Mooij, H. van Houten, C.W.J.
Beenakker, J.G. Williamson, and C.T. Foxon, Phys. Rev.
B 43, 12431 (1991).

28B.W. Alphenaar, P.L. McEuen, R.G. Wheeler, and R.N.
Sacks, Phys. Rev. Lett. 64, 677 (1990); B. W. Alphenaar,
Ph.D. thesis, Yale University, 1991; B.W. Alphenaar, P.L.
McEuen, R.G. Wheeler, and R.N. Sacks (unpublished).

2°B.J. van Wees, E.M.M. Willems, L.P. Kouwenhoven,
C.J.P.M. Harmans, J.G. Williamson, C.T. Foxon, and J.J.
Harris, Phys. Rev. B 39, 8066 (1989).

303, Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, Phys.
Rev. B 40, 12566 (1989).

31G. Miiller, D. Weiss, S. Koch, K. von Klitzing, H. Nickel,
W. Schlapp, and R. Lésch, Phys. Rev. B 42, 7633 (1990).

323, Komiyama and H. Nii, Physica B 184, 7 (1993).

33B. Shapiro, Phys. Rev. B 33, 8447 (1986).

34J.T. Chalker, and P.D. Coddington, J. Phys. C 21, 2665
(1988).

35Y. Huo, R.E. Hetzel, and R.N. Bhatt, Phys. Rev. Lett. 70,
481 (1993).

36].M. Ruzin, Phys. Rev. B 47, 15727 (1993).

377 K. Luo, H. Ohno, K. Matsuzaki, T. Umeda, J. Nakahara,
and H. Hasegawa, Phys. Rev. B 40, 3461 (1989).

38F.G. Pikus, and A.L. Efros, Phys. Rev. B 47, 16 395 (1993).

39D.B. Chklovskii, K.A. Matveev, and B.I. Shklovskii, Phys.
Rev. B 47, 12605 (1993).

40V.J. Goldman, J.K. Jain, and M. Shayegan, Phys. Rev.
Lett. 65, 907 (1990).

415.-C. Zhang, Int. J. Mod. Phys. B 6, 25 (1992).

42L,.P. Kouwenhoven, B.J. van Wees, N.C. van der Vaart,
C.J.P.M. Harmans, C.E. Timmering, and C.T. Foxon,
Phys. Rev. Lett. 64, 685 (1990).



18 078 DMITRI B. CHKLOVSKII AND PATRICK A. LEE 48

43J. K. Wang and V. J. Goldman, Phys. Rev. Lett. 67, 749 *°C. Barnes, B.L. Johnson, and G. Kirczenow, Phys. Rev.

(1991); Phys. Rev. B 45, 13479 (1992). Lett. 70, 1159 (1993).
44A. M. Chang and J.E. Cunningham, Phys. Rev. Lett. 69, 80J.D. Jackson, Classical Electrodynamics (Wiley, New York,
2114 (1992). 1975), p. 585.
45 Sajoto, Y. W. Suen’ L. W. Engel, M. B. Santos’ and M. S1A.M. Chang and D.C. Tsui, Solid State Commun. 56, 153
Shayegan, Phys. Rev. B 41, 8449 (1990). (1985).
46H.L. Stérmer, K.W. Baldwin, L.N. Pfeiffer, and K.W. West,  °°R.G. Clark, Phys. Scr. T39, 45 (1991).
Solid State Commun. 84, 95 (1992). 53R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C.
47J.E. Miiller, Phys. Rev. Lett. 68, 385 (1992). Gossard, and J.H. English, Phys. Rev. Lett. 59, 1776
48R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M. Buttiker, (1987).

Phys. Rev. Lett. 57, 1761 (1986).



