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The dependence of physically observable quantities such as electron-phonon scattering rates on
the boundary conditions for the optical phonons confined in polar semiconductor quantum wells,
quantum wires, and quantum dots are examined within the dielectric continuum approach. Calcu-
lations of the confined phonons and of their contributions to the scattering rates are made using
the boundary conditions of Maxwell’s equations at the interfaces and the condition that the ionic
displacements go to zero there. These results are compared with the results obtained using only
the condition that Maxwell’s equations be satisfied (the usual dielectric continuum model). We find
that in the absence of phonon dispersion the rates of scattering by the confined phonons in these
two cases are identical even though the individual phonons differ. We attribute this result to the
fact that physically observable quantities involve sums over complete sets of states. As a part of
the present work we have derived an interesting relation between the contributions of the confined
phonons and the interface phonons to the scattering rates in nanostructures. This relation is use-
ful in, for example, obtaining the rates of scattering by the confined modes for geometries of low
symmetry where straightforward sums are difficult.
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I. INTRODUCTION

Optical phonons and the corresponding electron-
phonon interactions in polar semiconductor nanostruc-
tures, including quantum wells, quantum wires, and
quantum dots, have been the subject of intense study
in recent years. A major focus of these studies has been
on the effects of confinement on physical quantities such
as the electron-phonon interactions and on the resulting
scattering rates. Particular interest has been directed at
the possibility that phonon confinement may affect sig-
nificantly the scattering rates. The scattering of carriers
by optical phonons controls carrier relaxation on the pi-
cosecond time scale and also determines room tempera-
ture mobilities, and thus it will be important in potential
device applications of these structures. With recent de-
velopments in ultrafast spectroscopies these relaxation
processes now are directly accessible experimentally, and
they have attracted considerable attention recently.

Macroscopic approaches for the optical phonons of
semiconductor nanostructures are especially attractive
because they give analytic results for the electron-phonon
interactions and make possible the treatment of scat-
tering in systems with widely varying size and shape.
The dielectric continuum approach! has proven to be
particularly attractive. This approach yields “interface”
phonons and “confined” phonons, both of which satisfy
the “electromagnetic” boundary condition (BC) that the
scalar potential be continuous across the interface. The
interface phonons obtained from this approach agree well
with those from lattice dynamics calculations.?™® In ad-
dition, electron-phonon scattering rates calculated re-
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cently for quantum well systems using microscopic lat-
tice dynamics results for the phonons??2 are in reason-
ably good agreement with those obtained from the di-
electric continuum approach. However, lattice dynamics
calculations?™* demonstrate that, in addition to satisfy-
ing the electromagnetic BC, the ionic displacements u
of the confined phonons vanish at (or within an atomic
layer of) the interface. In recent work?3%¢ it has been
found that electron-phonon scattering rates have only a
modest, but nonzero, dependence on the “mechanical”
BC that u goes to zero at the interface. At first this
small effect on the scattering rates may seem surprising
in that the confined phonons are modified substantially
by this additional constraint.

In the present work we examine the dependence of
physically observable quantities such as electron-phonon
scattering rates on the application of the mechanical BC
within the dielectric continuum approach. We study sys-
tems with widely varying geometries including planar
quantum wells, cylindrical quantum wires, and spher-
ical quantum dots. We calculate the scalar potentials
of the confined phonons and the corresponding phonon
structure factors which enter the scattering rates. Cal-
culations are made both with and without the additional
constraint given by the mechanical BC.” It is found that
although the individual phonons for the two models dif-
fer substantially, the results for the total scattering rates
for each set of confined phonons are identical. We as-
cribe this interesting behavior to the fact that measur-
able quantities arising from the confined phonons involve
sums over complete sets of degenerate phonon states. We
also find that the sums for the scattering rates converge
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more rapidly if the phonons do not satisfy the mechanical
BC.

II. DIELECTRIC CONTINUUM APPROACH

The dielectric continuum approach? is described briefly
now. We consider a system consisting of one polar semi-
conductor with dielectric function €;(w) embedded in
another with dielectric function e;(w). Each dielectric
function is frequency dependent and is assumed to be
isotropic and independent of wave vector k. Each mate-
rial is taken to be characterized by dispersionless LO and
TO modes, and the dielectric functions are taken to be

2 2
wLO,' — W
i) = oo 22, M
)2

with i corresponding to the material either inside or
outside of the nanostructure. No net charge resides in
elther material, so within each the quantity V- -D

V-[ei(w)E] = e,( )V - E vanishes where D is the dlS—
placement field, and E is the electric field. This gives
€;(w)V - E = 0 in each material.

Interface modes satisfy the condition V- E = 0 in
each material and the electromagnetic BC’s that E;; and
D, = eE | are continuous across the interface. Here we
are interested in the confined phonon modes, whose spa-
tial dependence satisfies electromagnetic BC’s and whose
frequency satisfies the equation ¢;(w) = 0. These con-
ditions describe phonons confined in material 7 with fre-
quency wi,o,;. The ionic displacements u are proportional
to E = —VU, where ¥ is the scalar potential.® Because
E vanishes in the other material and E is continuous, ¥
is constant on the interface. By a simple gauge transfor-
mation this is equivalent to ¥ vanishing there. The ionic
displacements u®°™f of the confined phonons are orthog-
onal to the displacements uif[oc Ef(r)] of the interface
phonons in the sense that [ d3ruc°™(r) - [uif(r)]* = 0.
This orthogonality relation is derived straightforwardly
by using Green’s first identity, the fact that ¥ van-
ishes at the boundary, and the fact that V - Eif vanishes
away from the boundary.

Hence any scalar function which vanishes at the in-
terface can be used to represent a confined mode. The
Hilbert space of such functions is of infinite dimension,
and because the confined phonons are degenerate, any or-
thonormal set of modes which spans the space forms an
adequate basis. The choice of particular modes to form
such a basis is arbitrary, but two specific choices have

TABLE L.
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been discussed recently. Here we will call these model
A and model B. Historically the confined phonon po-
tentials in the dielectric continuum approach for quan-
tum wells have usually been chosen to be simple sine and
cosine functions, for circular wires chosen to be Bessel
functions, and for spherical dots to be spherical Bessel
functions. This is equivalent to their being chosen to
be eigenfunctions of the Laplacian operator V2. We will
take model A to be given by this choice. Thus model A is
just the usual dielectric continuum model.! These poten-
tials however do not satisfy the mechanical BC because
the normal component of the ionic displacements does
not vanish at the interface. For model B the potentials
are chosen in such a way that they satisfy the mechan-
ical BC as well as the electromagnetic BC. Thus model
B is similar to that considered by Huang and Zhu*®° but
here fully orthogonalized. In the next section we calcu-
late these phonons for three different geometries: well,
wire, and dot.

III. PHONONS

In this section we compare confined phonons which sat-
isfy only the electromagnetic BC (model A) with phonons
satisfying both the electromagnetic and the mechanical
BC’s (model B). We make this comparison for three
different geometries: quantum wells, cylindrical quan-
tum wires, and spherical quantum dots. From symmetry
considerations for these systems the scalar potentials for
the confined LO phonons!® can be written in the form
¥(r) = S,.(&,n)vY.(x), where (§,7,x) form an orthogo-
nal coordinate system, v is a symmetry-related quantum
number, S, (§,7n) is a simple function, and ¥, (x) is the
“reduced” potential. x = a defines the interface of the
nanostructure, whose size thus equals 2a. Examples are
listed in the first five columns of Table I.

First we consider confined modes which satisfy the
electromagnetic BC and which are eigenfunctions of V2

(model A). We represent these reduced potentials as
A (x) = f,,(Q,(,ﬁ)x), where the quantum number n is

unrelated to the mode’s symmetry. (Usually n is taken
to be the number of nodes in ¥—the so-called confine-
ment number.) Examples are shown in Table I. The
wave vector Q,(,ﬁ) satisfies the electromagnetic BC that
fu(Q:(xfz)a) = 0. This BC yields an infinite, discrete set of
Q,(m) for each v. The specific values of Q,(,ﬁ) are important
for high-resolution spectroscopies such as Raman scatter-
ing which can discern the differences in energy between
phonons having different confinement numbers. Some

Parameters giving the coordinates (¢, 77, x), quantum numbers (v), and wave functions

(Sv, fv, gv, hy) for the confined optical phonons described in the text. The functions P/™(X), Jm(X),

jl(X)v I

m(X), and K,(X) are associated Legendre polynomials, Bessel functions, spherical Bessel

functions, modified Bessel functions, and modified Hankel functions, respectively.

Nanostructure  (6,1) x v S.(6,m) ) a0 k)
Well, symmetric (z,y) = k expik - (1:1: + _]y) cos X coshkz exp —k|z|
Well, antisymmetric (z,y) =2 k expik - (iz + jy) sin X sinh kz 1 l exp — k|z|
Wire (z,¢) T k,m exp i(kz — me) Jn(X)  Im(kr) K (kr)
Dot 6,¢) r I,m P™(cos@)expim¢  5(X) rt roit
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examples of the reduced potentials ¢£ﬁ)(x) are shown in
Fig. 1 for LO phonons confined to quantum wells, quan-
tum wires, and quantum dots. For (1/, n) # (V,n') it
is straightforward to verify that the ionic displacement
uf,ﬁ)[ V\P,(,ﬁ)(r)] is orthogonal to u(A
(4)

displacement u

The transverse
vanishes at the interface (and thus is

continuous), but the normal displacement u(LA) does not.

Next we consider confined modes which satisfy both
the electromagnetic and the mechanical BC’s (model B).
Such modes have been used to model macroscopically the
results of lattice dynamics calculations by Huang and Zhu
for a superlattice* and by Zhu for an array of quantum
wires.® One shortcoming of the Huang-Zhu modes is that
they are orthogonal only for k < a™!, where 2a is the well
width, and & is the component of the phonon wave vector
along the well. However, values of k = O(a™!) give im-
portant contributions to electron-phonon scattering pro-
cesses for most nanostructure sizes. This characteristic of
the Huang-Zhu modes can be remedied by Gram-Schmidt
orthogonalization.® However, a more systematic method
has been given for a superlattice by Chen.!! This tech-
nique yields confined phonons which satisfy both the elec-
tromagnetic and the mechanical BC’s, and which are mu-
tually orthogonal at all values of k. The results of Ref.
11 can be extended to other nanostructures such as a
cylindrical quantum wire or a spherical dot, and we do
so here.

Satisfaction of both the electromagnetic and the me-
chanical BC’s is attained by choosing a different form

for the reduced potential, represented as (B)(x) where

B (r) = S,(&m) ,(,E)(x). By setting 1/)(3)( )
g,,(a)f,,(Q,(,g)x) - g,,(x)f,,(Q,(,ﬁ)a) the electromagnetic

BC is automatically satisfied. The function g, (x) is regu-
lar at the origin, diverges at infinity, and is chosen so that
S, (&,m)9. (x) has vanishing Laplacian. Specific forms for

g»(x) are given in Table I. The wave number Q,(,E) satis-

fies the transcendental equation
Q9. (a)fL(Qa) = g,,(a) £, (QFa). (2)

From this form for Eq. (2) and 1/),(,13)()() it is evident that
U(B)(r) also satisfies the mechanical BC. Equation (2)

yields an infinite, discrete set of Q,(,g) for each v. For
(v,m) # (V',n') it is again straightforward to verify that
the phonon displacements are orthogonal. Note that the

2
Taop = me? Zc (wa) + L+ 1]
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FIG. 1. Reduced potentials of confined phonons which
obey the electromagnetic BC. The solid (dashed) lines indi-
cates modes which do (not) also satisfy the mechanical BC.
For the well and the wire the dimensionless wave number ka is
chosen to equal unity. For even (odd) confinement number n
the potential is symmetric (antisymmetric) with respect to re-
flection through the middle of the nanostructure, represented
by the vertical solid lines.

confined phonons in both models A and B are orthog-

onal to the interface modes. Some examples of 1/)(3)()()
for quantum wells, quantum wires, and quantum dots are
shown in Fig. 1, where they are compared to l(,n)(x)

There it is seen that the main qualitative difference be-
tween the potentials of the confined phonons for models
A and B involves their appearance near the interface,
where those of model A go to zero linearly but those of
model B go to zero quadratically. Hence the enforcement
of the mechanical BC alters the appearance of individ-
ual phonons. On the other hand, physically observable
quantities, such as electron-phonon scattering rates or
mean-squared displacements, involve sums over all of the
phonons. We investigate this topic in the next section.

IV. ELECTRON-PHONON SCATTERING RATES

As an example of a physically measurable quantity we
consider the scattering rate due to the Frohlich interac-
tion between the optical phonon modes and electrons.
The scattering rate of an electron from an initial state
a to a final state 3 accompanied by the emission or ab-
sorption of a phonon is given by

2

/ BT () () Uu(r)| 6(Ep — B % hwy). 3)

Here II,(r) are the electron wave functions, E, are the electron energies, ¥,(r) are the scalar potentials associated
with the phonons, C, are the normalizations for these phonons, and N(w) = [exp ,&—“’T —1]7!. The sum over u includes
both interface phonons and confined phonons, and the top. (bottom) sign is taken for phonon emission (absorption).
Here we consider the contribution of the confined phonons to the sum in Eq. (3). The confined phonons are taken to
be dispersionless, and their normalizations C,, are easy to compute. The confined mode contribution to the scattering

rate can be written in the form

Fconf —
—
a—h wLo

ez[N(wLo) + 14 ]J(EB —E, + tho) 9€o (wLO — wTO
V(€oo + 2)2

}//d rd®r ' Tl (0TI ()T (1) g () o (x, ')
(4)
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where V is the nanostructure volume. The “structure
factor” corresponding to the confined phonons is given
by

conf v, (I‘)‘I/ ( )
P VZ fd37’"|V\II )| (5)

in which the sum over ¢ includes only confined phonons.
A similar form for the scattering rate has been given in
Ref. 3. The normalization of the confined phonon dis-
placements u is given by the factor in curly brackets in
Eq. (4) and the denominator in Eq. (5). Physically in-
teresting quantities such as scattering rates depend not
on the individual phonon potentials but rather on the
combination which appears in Eq. (5).

For the symmetric nanostructures discussed here
p(r,r’) is a sum of contributions from several symmetry
classes, given by v in Table I. For example, for a quantum
well at a given k there are contributions that are even or
odd with respect to reflections through the well’s mir-
ror plane. In this case it becomes convenient to discuss
a symmetry decomposition of the structure factor given
by p(r,r') = 37, Su(&n)SS (&' 1" )pu (X, X'). The reduced
structure factor p°™ is given by

conf X X ) -V Z f;/’su;livz ():,,))P . (6)

This quantity involves a sum over the infinite set of con-
finement numbers n.

The contributions of the confined modes to the reduced
structure factor for the symmetric modes of a quantum
well are shown in Figs. 2(a) and 2(b), and those for the
antisymmetric modes in Figs. 2(c) and 2(d). Results for
confined phonons satisfying only the electromagnetic BC
(model A) are shown in panels (a) and (c), and those
for phonons satisfying both the electromagnetic and the
mechanical BC’s (model B) are shown in panels (b) and
(d). The most important thing to note is that the results
for the fully summed structure factors are independent
of whether the phonons appearing in the sum satisfy the
mechanical BC in addition to the electromagnetic BC.
We have also performed these calculations for a cylin-
drical wire and a spherical dot, and we again find that
the structure factors are independent of mechanical BC.
This interesting result is expected to hold for all nanos-
tructure geometries, not only the simple ones considered
here.

A second feature of interest is the rate at which the
structure factor converges as a function of the maximum
confinement number 1, retained in the sum. For small
to moderate values of the symmetry index v (e.g., k, m,
etc.) the sum is fairly well converged when ny.x > 5, but
for large v the cusp at x = x' seen in Fig. 2 becomes very
sharp, which causes the sum to converge quite slowly.
The sum for p°™f converges more rapidly in model A
than in model B. This is because the individual contribu-
tions in model A, like p°°®f itself, approach zero linearly
as x approaches a, whereas in model B the individual
contributions approach zero quadratically in this region.
Hence even though model B phonons compare more fa-
vorably with lattice dynamics results, model A phonons

P. A. KNIPP AND T. L. REINECKE 48

0.3f

0.2

a%p(z,2)

0.1

0.0
0.2

a%p(z,2)

0.0 . " L L ’ L

FIG. 2. Reduced structure factors from Eq. (6) for the
optical phonons confined to the interior of a quantum well.
The reduced structure factors are evaluated for £k = 1.0/a
and 2z’ = 0.6a. For panels (a) and (b) the phonon potentials
are symmetric with respect to reflection, and for (c) and (d)
they are antisymmetric. For panels (b) and (d) the phonons
satisfy the mechanical BC at the interfaces, and for (a) and (c)
they do not. The dot-dashed, dashed, dotted, and solid lines
indicate a truncation of the sum in Eq. (6) after nmax = 1, 3,
10, and oo terms, respectively.

converge more quickly in calculations of such observable
quantities as electron-phonon scattering rates.

V. RELATION BETWEEN CONFINED
PHONONS AND INTERFACE PHONONS

In order to understand the equality of the structure fac-
tors calculated using different sets of confined phonons it
is useful to derive a more elegant formula for p°°™f(r,r'),
starting from Eq. (5). The functions ¥;(r) form a
complete set of scalar functions vanishing at the inter-
face. Their displacements are orthogonal which gives
d;ij fder\Ili VI = —fd3r\IliV2\If;-‘ from Green’s
first identity. Multiplying both sides of Eq. (5) by
V'2¥;(r'), integrating over r’, and using Green’s theo-
rem yields

W) = = [ 0w @)V (e, ). ™)
Equation (7) is true for all j, which implies that
pco(r, 1) = VO(r)O(r')[ g + A(r,r')], where

A(r,r’) is a function which has vanishing Laplacian and
which causes p°™(r, r’) to vanish at the boundaries. The
function ©(r) is defined to vanish outside the nanostruc-
ture and to equal unity inside it and on the boundaries.!?
We show in the Appendix that the unique solution for
these conditions is!3
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po(r,r) = V@(r)@(r')

@, (r)®3(r')
47r|r—r’| Z fd3'r'”|V<I>>‘(r")|2 : (8)

The function ®,(r) is the scalar potential generated by
the Ath interface phonon (calculated in the nonretarded
limit) of the nanostructure'* and so has vanishing Lapla-
cian everywhere except at the interfaces.! For nanos-
tructures of general shape these phonons are obtained
straightforwardly by an integral equation method,® and
for a nanostructure with high symmetry such as a slab,
J

V@(X)@(X')hu (a)gv (X<)[gu(a)hv(x>)

conf(X ) _
X ) =

18 041

cylinder, or sphere there exists exactly one interface
phonon for each v. The interface phonon potential is
given simply by

L = Sy(g,")) X { (X) ( ) X S a (9)

gv(@)hu(x), x2a,

where h,, (x) is chosen so that S, (£, 7)h, (x) has vanishing
Laplacian and so that h,(x) vanishes at infinity.!® Spe-
cific forms for h,(x) are given in Table I. The reduced
structure factor is then given by

= gv(x>)hu(a)]

f d3r”|V<I>,,(r”)|2

where x> [x<] = max(x, x')[min(x, x')]. Equations (8)
and (10) form an elegant link between the contribu-
tions of the confined phonons and those of the interface
phonons. The structure factors obtained from Eq. (10)
are given by the solid lines in Fig. 2. Note that in Egs.
(8) and (10) the structure factors can be calculated us-
ing only the interface modes for the nanostructure. The
results obtained in this way are indistinguishable from
those obtained by direct summation of an infinite num-
ber of the confined phonons, which are also given by the
solid lines in Fig. 2. The cusp at x = x’ seen in Fig. 2
derives from the singularity at r = r’ in the first term of
Eq. (8).

Equations (8) and (10) have several advantages over
Egs. (5) and (6). For the highly symmetric nanostruc-
tures such as those considered here the direct summation
on the right-hand side of Eq. (6) contains an infinite
number of terms which converge slowly (especially for
large v), whereas the right-hand side of Eq. (10) has
only two terms. The first term on the right-hand side of
Eq. (10) derives from the singular term in Eq. (8) and
the second term from the interface phonon of that par-
ticular symmetry. Also, for most nanostructure shapes
having lower symmetry than those considered here it
is possible to generate the interface modes reasonably
straightforwardly'® but much more difficult to denumer-
ate a complete set of confined modes. Two examples
of this are the confined phonons of a wire having an
oval cross section'” or the optical phonons confined in
the region outside of a wire having a rectangular cross
section.!® In these cases the only reasonable option is to
use Eq. (8).

VI. SUMMARY

In the present work we have studied the effect of the
mechanical BC on the confined LO phonons in nanos-
tructures of different shapes. We find that the use of
this BC in addition to the electromagnetic BC alters the
scalar potentials for individual phonons but has no ef-
fect upon physical observables such as electron-phonon
scattering rates in the absence of bulk phonon disper-
sion. We note that in previous work?3% small, nonzero
differences were found between the results for scatter-

; (10)

[
ing rates calculated using the usual dielectric continuum

model (model A) phonons and the phonons of Huang
and Zhu.*® We ascribe these differences to the fact that
the Huang-Zhu modes are not orthogonal. More recently
Haupt and Wendler® used the Gram-Schmidt technique
to orthogonalize the Huang-Zhu phonons, but they still
found that the resulting scattering rates to be smaller
than those for the dielectric continuum model phonons.
We ascribe this discrepancy to the small number of modes
(Pmax = 3 for each symmetry) included in their calcula-
tions. From Fig. 2 in the present work it is seen that the
structure factor is not well converged for such a small
number of modes and that significant underestimation of
the scattering rate is expected for phonons satisfying the
mechanical BC.

In demonstrating the independence of physical observ-
ables upon the mechanical BC we have generated a for-
mula [Eq. (8)] for the structure factor of LO phonons
confined to nanostructures of arbitrary shape. This for-
mula is interesting in that it relates the contribution from
the confined phonons to that from the interface phonons.
This feature proves useful when one deals with low sym-
metry geometries of experimental interest or when Eq.
(5) converges slowly. The only requirement needed to
obtain Eq. (8) is that the confined phonon modes form
a complete set and satisfy the electromagnetic BC. Thus
we argue that any complete orthonormal set of confined
modes which satisfy the electromagnetic BC will give the
same result for an observable such as the electron-phonon
scattering rate, a quantity which necessarily involves a
sum over all phonons. We also note that this structure
factor represents the confined-phonon contribution to a
variety of phenomena which involve electron-phonon in-
teractions in first order perturbation theory. Indeed it
can be argued that essentially all physical observables in-
volving electron-phonon interactions that can be treated
in perturbation theory are described by this function.
Such quantities include phonon induced electronic relax-
ation rates, electron-phonon scattering rates, and mean
squared displacements. The contributions of the confined
phonons to all of these quantities will be independent of
the mechanical BC in the absence of dispersion in the
optical phonons.

Another interesting example involves the Raman scat-
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tering cross section, which has been of considerable in-
terest in quantum well systems.'® In a model which has
no bulk optical phonon dispersion the Raman intensity is
independent of the mechanical BC. However such exper-
iments can resolve the small energy differences between
the confined modes, and a description which includes the
small LO phonon dispersion is needed. Then the total
Raman cross section is only weakly dependent on the
application of the mechanical BC even though the scat-
tering by individual confined phonons may be sensitive
to it.
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APPENDIX A: STRUCTURE FACTOR

The scalar potentials ®,(r) generated by the interface
phonons of the nanostructure form a complete set of func-
tions having vanishing Laplacian. By using this fact, Eq.
(5), and Eq. (7), we obtain the result that the structure
factor can be written in the form

™ (x,r') = VO(r)O(r')

1

Sy m— : (' Al
T 2 M B2 (A1)

AN

P. A. KNIPP AND T. L. REINECKE 48

where M is a Hermitian matrix to be determined. We
determine M by evaluating Eq. (A1) at a point r’' =1,
on the boundary to yield

o > Myx @ (r) 5 (rb)-

A2
4m|r — rp| Y (42)

Operating on both sides of Eq. (A2) with [ d3r[V®3, (r)]-
V yields

/ d*rva}.(r) -V [

-
4mir — rp|

= 3" My @ (rs) [ / Brydt(r) - V<I>,\(r)J . (A3)

AN

In Ref. 15 it is shown that the bracketed quantity on
the right-hand side of Eq. (A3) vanishes if A # )\, a
fact related to the orthogonality of the interface phonons.
Using this fact and Green’s first identity yields

@3 (rb)

ThETos T = M)‘)\I‘I)*:(I‘ ) (A4)
[d3r|Va,(r)2 ; e

Because Eq. (A4) is true for all boundary points ry, it
follows that Mxx: = dxx/ [ d3r|V®,(r)|? and that the
structure factor is given by Eq. (8).
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