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We have rigorously calculated the bare electron-phonon scattering rates in semiconductor quantum
wires in the presence of an external magnetic field. The magnetic field has several interesting effects on
the scattering rates. It drastically reduces acoustic-phonon scattering (by orders of magnitude at easily
achievable field strengths), but increases longitudinal-optical and surface optical-phonon scattering. It
also enhances the difference between the acoustic-phonon scattering rates at energies just below and
above a subband minimum. The latter effect may cause negative differential mobility to appear in quan-
tum wires at electric fields far below the threshold for intervalley transfer.

I. INTRODUCTION

Recently, there has been a growing interest in the
study of electron-phonon scattering in quasi-one-
dimensional structures.! 3 This was motivated by the be-
lief that such structures can exhibit exceptionally high
mobilities at reduced temperatures.* Field-effect transis-
tors with quantum-wire channels have been fabricated
and show very large transconductances as a result of this
enhanced mobility. The increase in the mobility in these
structures accrues primarily from a suppression of impur-
ity scattering which is the dominant scattering mecha-
nism at cryogenic temperatures and low electric fields.
However, at room temperature and above, or at high
electric fields, scattering in semiconductor quantum wires
is mostly due to phonons. Phonon scattering not only
determines the low-field mobility at room temperature,
but it also determines the high-field saturation velocity of
electrons, the homogeneous linewidth broadening of opti-
cal transitions, the relaxation rate for photoexcited car-
riers, and a host of other phenomena in quantum wires.

In this paper, we have rigorously calculated electron-
phonon scattering rates in quantum wires using Fermi’s
golden rule. The application of this rule in quantum
wires has been criticized in the past,® but the criticism is
valid only for electron energies at a subband bottom. At
these energies, the density of states in quasi-one-
dimensional systems diverges, which makes the Fermi
golden rule prescription (or more correctly, the Born ap-
proximation) invalid. Attempts at circumventing this
problem by introducing arbitrary broadening of the den-
sity of states (presumably associated with surface rough-
ness) have been reported in the literature.® We do not
adopt this approach in our work since it is somewhat ad
hoc; instead, we compute the scattering rates from the
usual Fermi golden rule, but with the caveat that it is not
valid for electron energies corresponding to subband
minima.

Fermi’s golden-rule-based calculations of electron-
phonon scattering rates in quantum wires were reported
by a number of researchers in the past. Arora! con-

0163-1829/93/48(24)/18002(8)/$06.00 48

sidered the scattering rates due to nonpolar acoustic pho-
nons, while Basu and Nag? considered the scattering
rates due to polar (piezoelectric) acoustic phonons as did
Lee and Vassell.? Leburton and co-workers”® and Con-
stantinou and Ridley’ have calculated electron-
longitudinal polar-optical-phonon scattering rates in
one-dimensional structures but without considering pho-
non confinement effects (the electrons are confined, but
the phonon modes are assumed to be bulk modes). Re-
cent experimental results have revealed that phonon
confinement may be important in quantum wires. Signa-
tures of surface modes in cylindrical wires!® and confined
optical modes!! in rectangular wires have been observed.
Calculations of optical-phonon scattering rates, in which
phonon confinement effects were explicitly taken into ac-
count, were reported by some other researchers recent-
ly.271> Based on these results, it appears that the
scattering rates calculated by assuming bulk modes actu-
ally do not differ greatly from the sum total of scattering
rates due to surface and confined optical modes. Presum-
ably, this is because the confined optical modes have nulls
at the wire surfaces, whereas the surface modes peak at
the surfaces, so that the superposition of both modes
looks approximately bulklike.!® As a result, phonon
confinement effects are generally not of paramount im-
portance in electron—optical-phonon interaction in quan-
tum wires.

While the above is true generally, there are two major
exceptions. They correspond to the cases when either a
transverse electric field or a transverse magnetic field is
applied to the quantum wire. In the presence of such
fields, optical-phonon-confinement effects assume an add-
ed importance. The fields skew in the electron wave func-
tions towards an edge of the quantum wire thereby alter-
ing the overlap between the electron wave function and
the confined longitudinal polar-optical-phonon modes or
surface optical-phonon modes. This can modify the
optical-phonon scattering rates significantly. Therefore,
any experimental manifestation of a significant depen-
dence of the optical-phonon scattering rates on transverse
electric or magnetic fields may be viewed as a manifesta-
tion of optical-phonon confinement as well.
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In contrast to optical phonons, acoustic phonons, by
their very nature, are almost always unconfined and bulk-
like. Therefore, a transverse electric field does not have
much of an effect on the acoustic-phonon scattering rate.
However, a magnetic field still has a very significant effect
and it is not linked to phonon confinement. The origin of
this latter effect was elucidated by us in a recent publica-
tion!” and will not be discussed in this paper. We only
mention that the influence of a magnetic field on acoustic
phonons is actually much stronger than the influence on
optical phonons and may lead to rather intriguing effects,
one of which is discussed later in this paper.

In this paper, we have examined the effect of a magnet-
ic field on optical-phonon scattering rates. The analo-
gous effect of a transverse electric field was studied by
Ferreira and Bastard who assumed bulk phonon modes, 18
and by Tang, Zhu, and Huang,'’ as well as Weber,?° who
assumed confined optical and surface modes. We have
also discussed one particular effect of the magnetic field
on acoustic-phonon scattering rates which has rather in-
triguing consequences. A magnetic field dramatically
enhances the difference between the acoustic-phonon
scattering rates just above and just below a subband
minimum. Riddoch and Ridley had pointed out that
such a difference can trigger negative differential mobility
if it is sufficiently large. Therefore, in quantum wires of
nonpolar semiconductors (e.g., Ge), in which acoustic-
phonon scattering is dominant over a wide range of tem-
peratures, one can expect to observe negative differential
mobility at electric fields far below the threshold for in-
tervalley transfer (Ridley-Gunn-Hilsum effect) if the wire
is subjected to a sufficiently strong magnetic field. The
threshold electric field for the onset as well as the magni-
tude of the negative differential mobility can be tuned
somewhat by the external magnetic field. Such an effect
has many potential device applications.

This paper is organized as follows. In Sec. II we will
discuss the theory for calculating phonon scattering rates
in a quantum wire subjected to a magnetic field. The re-
sults of these calculations will be presented along with
the appropriate interpretations in Sec. III. Finally, in
Sec. IV, we will present the conclusions.

II. THEORY

We consider a quantum wire as shown in Fig. 1. Only
one transverse subband is occupied along the z direction
(for even the highest energy an electron can reach), but
many are occupied in the y direction. The confining po-
tentials along the y and z directions are assumed to be
infinite. It was shown by Constantinou and Ridley® that
finiteness of the potentials can reduce the scattering rates
somewhat, but in this paper, we will neglect such effects.
A magnetic field is applied along the z direction. In all
calculations, we will assume that the phonons are
unaffected by the magnetic field and are in thermodynam-
ic equilibrium so that the phonon occupation probability
is given by the Bose-Einstein factor at the lattice temper-
ature. The electrons, however, are strongly affected by
the magnetic field. The field imposes an additional de-
gree of confinement on the electrons (in addition to the
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FIG. 1. A quasi-one-dimensional structure subjected to a
magnetic field in the z direction. The thickness is small enough
that only one subband is occupied in the z direction at all elec-
tron energies. Several subbands are occupied in the y direction.

electrostatic quantum-wire confinement) so that the elec-
tron states become hybrid magnetoelectric states. This,
of course, affects the electron-phonon scattering rates.

The effect of the magnetic field on the scattering rate is
completely accounted for (in every respect) by consider-
ing only three aspects: (a) the magnetic field changes the
wave functions of the electron in various subbands, (b) it
changes the energy and energy dispersion relation of the
subbands (the subbands become hybrid magnetoelectric
states), and (c) it changes the densities of states in various
subbands. All these effects are rigorously taken into ac-
count in our calculations from first principles. We direct-
ly solve the Schrodinger equation in the quantum wire
under a magnetic field to obtain the exact wave function
in each magnetoelectric subband, the exact energies and
energy dispersion relations for the magnetoelectric states,
and the exact density of states in each magnetoelectric
subband. These are then used in the calculation of the
scattering rates. (The Schrddinger equation in a magnet-
ic field is solved numerically using a finite difference
method and the technique has been described in Ref. 21.)

In heavily doped quantum wires, screening of
electron-phonon interactions and many-body effects may
play an important role. Screening has been treated by
Fishman,?? Tanatar,?® and by Campos, Das Sarma, and
Stroscio. %4 Many-body effects have been treated by
Ahn?® and by Senna and Das Sarma.?® Screening, espe-
cially dynamic screening, and also many-body effects are
rather difficult to incorporate in the present approach
and we will neglect them here. This limits the validity of
the results to carrier concentrations where the screening
length is large compared to phonon wavelengths. For
our system, this means that the carrier concentration
should be less than 10%/cm. The effect of screening will
be reported in a later publication.

Calculation of the acoustic-phonon scattering rates in a
quantum wire subjected to a magnetic field has been dis-
cussed in Refs. 17 and 27. In this paper, we only present
the calculation of the optical-phonon scattering rates in a
magnetic field.

To calculate polar and nonpolar longitudinal-optical-
(LO) as well as surface optical- (SO) phonon scattering
rates, we have followed Stroscio!? and Kim er al.'*
whose models assume confined (slab) phonon modes. A
more accurate model would require calculation of the
phonon modes from a microscopic model. '>?%2° This is
reserved for future work.
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A. Longitudinal polar-optical-phonon scattering rate
in a magnetic field
The longitudinal polar-optical-phonon scattering rate
of an electron with energy E, in the vth magnetoelectric

subband is obtained from Fermi’s golden rule asl2 14
1 Vmax €2
mhop(E,) 2 4Te @pop( Ny, T 33 popD (EY )
(1)
J
1 1 (27)?

where €,(0) and €,( ) are the low- and high-frequency
relative permittivities, k, is the phonon wave vector
along the length of the quantum wire, m’ and n' are the
transverse phonon mode indices along the y and z direc-
tions, Ly and L, are the width and thickness of the quan-
tum wire, and P,,., is the overlap integral which can be
written as

o=, f 22 LHL/Z PWin$)G (2 in(2)
. | m'my 7z
X sin ) L (3)

In the above, ¥;,(y) [#i,(2z)] and 95, (y) [¢s,(2)] are the
initial and final y (z) components of the wave functions of
the electron in the presence of a magnetic field and the
sine functions are the confined phonon (slab) modes.

To calculate the scattering rate, we need to know the
eigenenergies E ,, wave functions wEv, and density of hy-
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where wpgp is the longitudinal polar-optical-phonon fre-
quency, N is the phonon occupation probability

“pop
(Bose-Einstein factor) for these phonons and v, is the
index of the highest phonon mode considered. The plus
sign in the above expression refers to emission and the
minus sign to absorption. The quantity D(E. ) is the
density of states at the final energy E, in the magne-
toelectric subband v' and Ipgp is given by

Ly L. dy dz .
5 L, /2,2

brid magnetoelectric states D (E, ) in a magnetic field. As
mentioned before, these are calculated exactly by solving
the Schrdodinger equation in a quantum wire subjected to
a magnetic field.?! Therefore, the magnetic-field effects
are rigorously taken into account in the calculation of the
scattering rates.

B. Longitudinal nonpolar-optical-phonon
scattering rate in a magnetic field

The nonpolar longitudinal-optical-phonon scattering
rate can be found likewise,

1 = icd (N, +1ixl)
o E,) =1 ponpol,L,  “Nvo 272
XIypoD(E), 4)

where D, is the deformation potential for the optical
phonon, wypg is the frequency of the nonpolar longitudi-

nal optical phonon, and Iypg is the overlap integral given
by

C. Surface optical-phonon scattering rate in a magnetic field

The scattering rate due to surface optical (SO) phonons is given by!*

1 _ Vmax e 2
Tg:O(EV )

wso(N,. +1+L)ID(E.),

@50 2
J=, 4meg

where wgg is the surface optical-phonon frequency and

27C'P, |

Iso=

>

Wso

with C’ being the normalization constant!? for phonon modes and P, an overlap integral given by

L,/2
s 1

P’=
*  cosh(aL,/2)cosh(BL, /2)

L /2 dy
L“JdﬂLﬂLﬂ%,%mm iz

’ !’ 2
DiD)OE(2)di(2) | sin | 7Y 272 5
B L, L,
(6)
©)
z) cosh(ay) cosh(Bz) (8)
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for symmetric surface phonon modes, and

. 1 L2 (L/2 gy

— y
Pi= sinh(aL, /2)sinh(BL, /2) f—Lyfzf—Lz/z L,/2 L,/2

for antisymmetric surface phonon modes. The quantities
a,f3 have been defined and the dispersion relation for SO
phonons given in Ref. 14.

In our example, only one subband is occupied in the z
direction. In that case, the SO phonon scattering is due
to only the symmetric modes since the overlap integral in
the z direction becomes zero for antisymmetric modes.
This happens since the z component of the electron wave
function (in the lowest subband) has even parity. Had
multiple subbands been occupied in the z direction (some
of whose wave function would have odd parity), the SO-
phonon scattering would have had contributions from
both the symmetric and antisymmetric phonon modes.
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Energy(meV)

10" .
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This feature is not affected by a magnetic field as long as
the field is"directed along the z direction.

III. RESULTS AND DISCUSSION

We now present some results for a prototypical quasi-
one-dimensional structure. The test structure is a GaAs
uantum wire (surrounded by Al,Ga,_,As) of width 500
A (along the y direction) and thickness 40 A (along the z
direction). All phonon scattering rates are calculated for
this system.
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FIG. 2. (a) Electron nonpolar-acoustic-phonon scattering rate as a function of energy for electrons in the lowest magnetoelectric
subband. (a) Emission rate and (b) the absorption rate. The lattice temperature is 300 K. The solid, short-dashed, and long-dashed
lines represent magnetic flux densities of 0, 4, and 10 T. (c) The scattering rate as a function of magnetic flux density. The upper
frame is for emission and the lower for absorption. In the upper frame, the electron energy is assumed to be 37 meV, and in the lower
frame it is 25 meV.
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A. Acoustic-phonon scattering rates

In Figs. 2(a) and 2(b), we show the nonpolar acoustic-
phonon (deformation potential) emission and absorption
rates at different magnetic-field strengths. The peaks in
the scattering rates are associated with the divergence in
the density of (final) states in a quasi-one-dimensional
structure. These results are reproduced from Ref. 17.

The dramatic quenching of the acoustic-phonon
scattering rate (by up to six orders of magnitude at a flux
density of 10 T) was noted and its implications for the
quantum Hall effect were discussed in Ref. 17. Here we
discuss another interesting feature. A magnetic field
significantly enhances the difference between the scatter-
ing rates just below and just above a subband minimum.
The increase is several orders of magnitude. It was pre-
dicted that such a difference can cause negative
differential mobility to appear in quantum confined sys-
tems at electric fields far below the threshold for interval-
ley transfer.?? Later simulations failed to reveal such an

14

N. TELANG AND S. BANDYOPADHYAY 48

effect in GaAs wires,> but we believe that a magnetic field
may cause it to appear. The ideal materials for exhibiting
this type of negative differential mobility are nonpolar
semiconductors in which acoustic-phonon scattering
predominates over a wide range of temperature. An ex-
ample is germanium. Of course, only a complete Monte
Carlo simulation of electron transport or some other
solution of the Boltzmann transport equation can estab-
lish the existence of this effect. This is an important issue
since (a) the threshold electric field for such negative
differential mobility is presumably much lower than that
associated with intervalley transfer (Ridley-Gunn-Hilsum
effect). This may allow the realization of low power mi-
crowave oscillators (e.g., local oscillators in demodulation
circuits), and (b) the threshold electric field can be en-
gineered at will by altering the dimensions (width and
thickness) of the wire. More importantly, both the
threshold field and the magnitude of the negative
differential mobility may be tuned somewhat by the mag-
netic field.
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FIG. 3. Electron-longitudinal polar-optical-phonon scattering rates as a function of energy for electrons in the lowest magne-
toelectric subband. The structure is the same as that in Fig. 2 and the lattice temperature is 300 K. (a) Emission rate and (b) absorp-
tion rate. Energy is measured from the bottom of the bulk conduction band edge. The solid, short-dashed, and long-dashed lines
have the same interpretation as in Fig. 2. (c) The upper frame is the emission and the lower frame is the absorption rate as a function
of magnetic flux density. In the upper frame, the electron energy is 60 meV and in the lower frame it is 40 meV.
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B. Optical-phonon scattering rates

In Figs. 3(a) and 3(b), we have plotted the longitudinal
polar-optical-phonon emission and absorption rates as a
function of electron energy in the lowest magnetoelectric
subband for various magnetic-field strengths. The
nonpolar-optical-phonon scattering rates are shown in
Figs. 4(a) and 4(b). The latter are for the L valley of
GaAs since this scattering mechanism is forbidden in the
' valley. Finally, the surface optical-phonon (SO)
scattering rates are shown in Figs. 5(a) and 5(b).

Unlike in the case of acoustic-phonon scattering, all
optical-phonon scattering rates tend to increase with
magnetic flux density. This increase becomes more evi-
dent in the plots of the scattering rates versus magnetic
field which are shown in Figs. 3(c), 4(c), and 5(c).

The increase for both polar and nonpolar longitudinal-
optical-phonon scattering can be explained as follows. In
the absence of a magnetic field, the electron wave func-

10" — : :
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o
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tion in the ith mode is orthogonal to the jth phonon
mode if i#j. This makes the integrals Ipgp and Iypg
(and the corresponding scattering rates 1/73op and
1/73po) vanish for i7j. This means that the jth phonon
mode will not contribute to the scattering of an electron
in the ith subband. However, when a magnetic field is
present, it skews the electron wave functions towards one
edge of the wire (owing to the Lorentz force) and this
breaks the orthogonality between the electron wave func-
tion in the ith mode and the jth phonon mode (i5j). As
a result, all phonon modes now contribute to the scatter-
ing of an electron. This opens up many new scattering
channels which were previously forbidden. The result is
an increase in the total scattering rate when a magnetic
field is present.

In the case of the SO phonon, the increase in the
scattering rate can be explained as follows. The magnetic
field skews the electron wave functions towards one of
the edges of the wire. This increases the overlap integral
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FIG. 4. Electron-longitudinal nonpolar-optical-phonon scattering rates as a function of energy for electrons in the lowest magne-
toelectric subband. The structure is the same as that in Fig. 2 and the lattice temperature is 300 K. (a) Emission rate and (b) absorp-
tion rate. Again, energy is measured from the bottom of the bulk conduction-band edge. The solid, short-dashed, and long-dashed
lines have the same interpretation as in Fig. 2. (c) The upper frame is the emission and the lower frame is the absorption rate as a
function of magnetic flux density. In the upper frame, the electron energy is 45 meV and in the lower frame it is 10 meV.
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P, since the SO phonon modes are localized at the edges
and decay away from the edges. Consequently, the
scattering rate increases.

Another interesting feature in Fig. 5(b) is that, in the
absence of any magnetic field, one cannot observe the
peaks in the absorption rate associated with the diver-
gence of the one-dimensional density of (final) states.
This was also noted in Refs. 6 and 14. It was claimed in
Ref. 6 that this happens because the peaks are due to in-
tersubband scattering as opposed to intrasubband scatter-
ing. For SO phonon absorption, intrasubband scattering
rate dominates over intersubband scattering rate and,
therefore, the peaks in the intersubband rate are not dis-
cernible against the strong background of intrasubband
scattering. However, when a magnetic field is turned on,
the peaks appear (the two sets of peaks are associated
with two phonon branches'#). This indicates that a mag-
netic field promotes intersubband SO phonon absorption
over intrasubband SO phonon absorption. We believe that
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this happens because the magnetic field breaks the ortho-
gonality between the electron wave functions in two
different subbands and increases the overlap integral P,
for intersubband transitions. This is true of SO phonon
emission as well. Therefore, a magnetic field brings out
the peaks in the scattering rate.

IV. CONCLUSION

In this paper, we have investigated rigorously the effect
of a magnetic field on phonon scattering in a quantum
wire. We have speculated on the possibility of a magnetic
field causing negative differential mobility in a quantum
wire at threshold electric fields far below that required
for intervalley transfer. The magnitude of this negative
differential mobility and the threshold electric field can be
tuned somewhat by the magnetic field.

We have also presented the optical-phonon scattering
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FIG. 5. Electron-surface optical-phonon scattering rates as a function of energy for electrons in the lowest magnetoelectric sub-
band. The structure is the same as that in Fig. 2 and the lattice temperature is 300 K. (a) Emission rate and (b) absorption rate.
Again, energy is measured from the bottom of the bulk conduction-band edge. The solid, short-dashed, and long-dashed lines have
the same interpretation as in Fig. 2. (c) The upper frame is the emission and the lower frame is the absorption rate as a function of
magnetic flux density. In the upper frame, the electron energy is 60 meV and in the lower frame it is 40 meV.
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rates in a quantum wire subjected to a magnetic field.
Optical-phonon scattering determines the saturation ve-
locity in most materials at electric fields below the thresh-
old for intervalley transfer. It also determines the relaxa-
tion rate for photoexcited carriers and the homogeneous
linewidth broadening of the photoluminescence spectra.
Therefore, it is important to understand the effect of a
magnetic field on optical-phonon scattering rates. This
work is an important step in that direction.
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Recently, Masale and Constantinou have reported the
effect of an axial magnetic field on electron-LO phonon
scattering rates in a cylindrical quantum wire.° Their re-
sults are qualitatively similar to ours.
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