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X-ray difFraction from a coherently illuminated Si(001) grating surface
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High-resolution synchrotron x-ray diffraction from a Si(001) grating surface reveals resolution-limited
grating interference peaks around each Bragg reflection. The peaks can be explained by kinematic
scattering theory using the concept of a grating form factor. The positions and the intensities of the sa-
tellite peaks yield structural information such as the period, the width, and the height of the gratings, as
well as its shape and its orientation and registry with respect to substrate lattice, and possible crystal
strains.

In recent years x-ray diffraction has emerged as a use-
ful tool for studying crystal surface and interface struc-
tures with microscopic, atomic scale sensitivity. Special
properties of the x-ray technique, such as its kinematic
scattering and nondestructive nature, and the high reso-
lution and high intensity available nowadays with syn-
chrotron radiation, have all been beneficial to various ap-
plications in surface structural analysis. In this paper, we
demonstrate another important aspect of x-ray scattering
from crystal surfaces. We show that with a good trans-
verse coherence length, x-ray scattering not only is sensi-
tive to microscopic crystal structures but also allows one
to study the mesoscopic features of surface grating or oth-
er charge-density modulations that have periodicities on
the order of +1 pm.

Submicrometer- or nanometer-sized structures on
semiconductor surfaces have attracted great interest re-
cently because of their potential applications in electronic
and optoelectronic devices. The band structure of a
semiconductor crystal may be affected significantly by
quantum confinement, raising the possibilities that
unusual and ultrasmall optoelectronic devices may find a
place in semiconductor technology. Another area that
uses submicron grating structures is in the study of atom-
ic kinetics involving surface diffusion and step arrange-
ments. ' This kind of study is related to epitaxial or
heteroepitaxial growth on stepped and terraced semicon-
ductor surfaces. In all these areas, structural informa-
tion on the gratings is crucial for understanding the phys-
ics of the quantum and surface effects.

To date, optical diffraction using lasers and scanning
electron microscopy have been the primary methods of
characterizing surface grating structures. On an atomic
scale the scanning tunneling microscope can reveal de-
tailed step and terrace structures on a grating surface.
Compared to all these methods, x-ray scattering is a natu-
ral extention of optical diffraction for characterizing
shorter-wavelength gratings with higher spatial resolu-
tion. It has the unique ability to distinguish the underly-
ing crystal structures from surface amorphous layers and
allows one to study buried interface structures. As we

sin(NQ L /2)

sin(Q~L» /2) (3)

Equation (3) describes the same diffraction pattern as
in the case of Fraunhofer multiple slits diffraction in op-
tics. The standard interference function gives rise to
sharp grating peaks separated by 2~/L and 2m. /L, with
their intensities modulated by the scattering form factorf (Q) from a single pillar of charge density p (r). The
form factor f~(Q) is peaked at each Bragg point in re-

will demonstrate, the x-ray scattering technique can also
provide atomic registry information such as the orienta-
tion of the grating lines with respect to the crystal lattice
of the grating material.

The kinematic theory of x-ray scattering from a meso-
scopic grating array on a single-crystal surface can be de-
rived in a straightforward way, entirely analogous to
Bragg diffraction from an atomic lattice in a crystal.
Let us consider a two-dimensional (2D) grating surface in
the (x,y) plane with periods (L„,L ), as illustrated in Fig.
l(a). In place of the atomic scattering form factor, we
define a pillar scattering form factor as a function of Q,
the momentum transfer:

f~(Q) = jp~(r)e'~'dr,

where p (r) is the charge density of a single grating pil-
lar. The structure factor of this pillared surface is thus

F(Q) =&,f~(Q)e ' =fp(Q)&,e.(2)

where the summation index j refers to the jth pillar and
runs through the coherent crystal domain. In Eq. (2) we
have omitted the scattering from the substrate, since we
are mainly interested in the superlattice rejections. As-
suming that X XN grating periods are illuminated
coherently by the x rays, we obtain that the diffracted in-
tensity is proportional to

sin(NQ L /2)
IF (Q) I'= lf, (Q) I'
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FIG. 1. (a) Schematic of a silicon (001) 20-grating surface.
(b) Two configurations of x-ray diffraction used in the experi-
ment: the symmetric reflection geometry (right) and the
glancing-angle geometry (left). The incident and the diffracted
wave vectors are represented by ko and k, respectively.

ciprocal space, and is broadened by the well-known crys-
tal size effect or crystal truncation rods, ' according to
the shape and the size of each pillar. Its broadness in the

Q and Q~ directions is determined by the pillar widths,
whereas its dimension in Q, is directly related to the
height of each pillar.

X-ray-diffraction studies of surface gratings have been
reported in the literature using conventional laboratory
x-ray sources. "' Compared to a conventional source,
naturally collimated and intense synchrotron radiation
can provide an increase in transverse coherence length,
and enhancement in brightness. This increase in
coherent length has, for example, enabled the observation
of "speckle" diffraction pattern arising from the interfer-
ence among mosaic crystal domains. ' For a periodic
structure the interference peaks should be more easily
visible. We have therefore conducted a high-resolution
diffraction experiment on a 2D Si(001) surface grating
sample with a nominal period of 0.3 pm, using 10-keV
bending magnet radiation at the F-3 station of the Cor-
nell High Energy Synchrotron Source (CHESS). With a
verticaI source size of —1 mm, and a source-to-sample
distance of -22 m, we calculated a transverse coherence
length ' L h 3 pm.

The grating sample was fabricated by electron-beam
lithography on a Si(001) wafer at the National Nanofabri-
cation Facility. A scanning electron micrograph (SEM)
on a similarly made, cleaved grating surface is shown in
Fig. 2. The 2D-grating lines are nominally parallel to the
[110]and the [110]directions and cover a 3 X3 mm~ sur-
face area. During the x-ray experiment, which was done
in air, the sample was mounted at the center of a stan-
dard four-circle diffractometer. The incident x-ray beam
was monochromated by a pair of Si(111) single crystals
with a sagittally focused second crystal. An x-ray Aux of
10" photons/sec in a 2X1 mm beam size was typical

FIG. 2. A scanning electron micrograph (SEM) of a typical
Si(001) grating surface studied in our x-ray-diffraction experi-
ment. The nominal period of the grating is 0.3 pm.

during our experiment. A silicon (111) perfect crystal
analyzer was used on the 2t9 arm, before a NaI detector,
in a nondispersive (+,—,+) arrangement with the mono-
chromator and the sample. Around the Si(220) Bragg
reAection, the resolution function was determined to be
QQ& & 1.2X 10 A ' in the transverse, b, Qs zs=6 X 10 A ' in the longitudinal, and b, Q& =2

0
X 10 A ' in the out-of-plane directions.

Two types of diffraction data were collected [Fig. 1(b)].
For lateral structural information, scans parallel to the
surface were obtained near the (220) Bragg peak in the
glancing-angle geometry. For height and shape informa-
tion on the gratings, we did scans along the rods perpen-
dicular to the sample surface. This was done around the
(004) peak in order to take advantage of the better in-
plane resolution.

In Fig. 3 we show the experimental data near the (220)
reflection in both the x=[110] and the y= [110] direc-
tions. The extremely sharp and strong satellite peaks sur-
rounding the (220) result from interference of scattered
radiation from grating periods coherently illuminated by
the incident beam. The satellite peaks are separated by a
reciprocal period, r, equal to 2m/l. . Using Eq. (3) plus a
Lorentzian background due mainly to thermal diffuse
scattering, we found that a coherent length of %=20 and
a Lorentzian pillar form function f (Q) can fit the data
very well, as shown by the solid curves in Fig. 3. The
peak positions yielded a grating period, L =2990+10 A
in both the x and the y directions. From the width of the
Lorentzian envelope we obtained a full width at half max-
imum (FWHM) of the grating pillars, W =1450+100 A.
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turn transfers, i.e., at larger ~Q~'s. An atomic lattice re-
laxation in the grating layer would show a characteristi-
cally broadened or split Bragg peak. Information on
atomic registry is important in the epitaxial growth of
semiconductor overlayers, while lattice strain is of partic-
ular interest for heter oepitaxial structures such as
Al Ga& „Asand Si-Ge systems. Based on our experi-
mental data, particularly the widths of the grating and
Bragg peaks, we conclude that the lattice strain in our
grating sample was below our detection level,
Aa /a & 3 X 10, indicating high quality processing
through the wet-acid-etching, electron-beam lithographic
technique.

In summary, we have demonstrated that high-
resolution x-ray diffraction on a mesoscopic single-crystal
grating sample provides useful structural information
with atomic scale precision. The sharp grating interfer-
ence peaks due to the coherent illumination of the syn-
chrotron radiation are highly sensitive to the grating pa-
rameters, such as period, width, and shape, as well as to

atomic registry with the substrate and to crystal lattice
strains. The technique can be applied not only to geome-
trically corrugated structures, but also to grating struc-
tures arising from periodic strains, composition modula-
tions, or any other charge-density modulations on semi-
conductor surfaces. These features should be useful in
probing fabricated structures' over a range of charac-
teristic dimensions, epitaxial overlayers, ' and perhaps
self-assembled molecular structures. ' With its broad ap-
plicable range we believe that x-ray diffraction will play a
more important role in future studies of nanostructures
and mesoscopic systems.
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