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Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures
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The dispersion relations for optical and acoustic phonons are examined in bulk Si and Ge, Si and Ge
strained layers grown on (001) and (111)surfaces, and ultrathin Si/Ge superlattices at ambient pressure
and under hydrostatic pressure by using a modified Keating model. This model includes four interac-
tions, which involve up to the fifth-nearest-neighbor atom, and force constants that depend on strain.
These strain-modified force constants are related to specific cubic anharmonic terms in the potential en-

ergy and also to the empirical parameters p, q, and r that have been used to describe zone-center phonon
shifts and splittings arising from strain. This model is used to obtain the mode Griineisen parameters y;
throughout the Brillouin zone for bulk e-Si and c-Ge, and explicit analytic expressions for y; at the zone
center and boundaries. Biaxial strain in the (001) plane is shown to aft'ect phonon dispersion very
di6'erently than in previous work that used a much simpler model. For Si and Ge grown on a (111)sub-

strate, the frequency shift due to the biaxial strain for the TO-phonon mode is found to be almost in-

dependent of wave vector. The pressure-induced change in the frequency of confined LO phonons in a
Si&2Ge4 superlattice predicted by the model agrees with the change measured previously by Raman
scattering. This modified Keating model is also used to obtain the second- and third-order elastic con-
stants for Si and Ge.

I. INTRODUCTION

Many Si/Ge/Si, ,Ge heterostructures have been
grown recently with very high crystallinity despite their
large lattice mismatches of up to 4.2%.' There have
been extensive efforts to understand the electronic and
lattice properties of these and other artificially grown ma-
terials, which are known to depend critically on the
effects of biaxial strain and confinement. ' The applica-
tion of both hydrostatic pressure and uniaxial stress are
very useful in understanding these properties and in alter-
ing them. For example, the biaxial strain in these
strained-layer heterostructures can be tuned by applying
pressure, and this change can be monitored by its effect
on electronic and phonon properties. Such strain-related
changes in phonon frequencies in Si/Ge strained-layer su-
perlattices (SLS's) have been investigated by Raman
scattering by our group. In the present work, the effect
of strain on phonons in Si/Ge heterostructures and in
bulk Si and Ge is investigated by using a modified Keat-
ing model that is sufficiently comprehensive to relate
and explain all available data, yet simple enough to deter-
mine details of the lattice dynamics without resorting to
ab initio methods. The strain may arise from the growth
conditions or from the application of external stress.

The dispersion relations of optical and acoustic pho-
nons at ambient pressure and the mode Gruneisen pa-
rameters y, are obtained in bulk Si and Ge throughout
the Brillouin zone. Explicit analytic expressions for y; at
the zone center and boundaries are presented. Phonon
dispersion is also studied in strained Si and Ge films at
ambient pressure and at elevated pressure. The empirical
parameters p, q, and r that have often been used to relate
zone-center phonon shifts and splittings due to strain are

expressed in terms of model parameters. Analytic ex-
pressions for second-order and third-order elastic con-
stants are also derived with this model.

The dispersion relations for phonons in strained Si and
Ge have been calculated by several groups. For example,
Gianozzi et al. and Qteish and Molinari' recently used
an ab initio approach based on density-functional theory
in the local-density approximation to investigate lattice
dynamics in isotropically and biaxially strained struc-
tures. Using a much simpler, but less fundamental ap-
proach, Zi, Zhang, and Xie examined phonon dispersion
in biaxially strained Si and Ge (001) layers and in Si/Ge
SLS s by using a Keating model with strain-modified
force constants. They added strain-induced perturba-
tions to the two Keating parameters for bond bending
and stretching, as had been suggested earlier by Cerdeira
et al. Ghanbari et al. " used a modified version of the
valence-force-field model with six parameters to describe
phonon dispersion in Si/Ge SLS s. They adopted strain-
perturbed force constants that scale as a power of the in-
teratomic distance for the interactions relating to bond
stretching, but used different scaling parameters for
transverse and longitudinal modes. However, they as-
sumed that the angular dependence of the force constants
is not affected by strain. Although the models in Refs. 7,
8, and 11 were fit to some of the available experimental
data, they do not produce the correct dispersion of the
mode Griineisen parameter y, = —d 1 n/cod in V, which
characterizes the effect of isotropic strain on the phonon
frequency cu; for mode i; Vis the volume.

In early lattice-dynamic calculations, Dolling and Cow-
ley' and Jex' determined the dispersion of the mode
Gruneisen parameters y,- in Si and Ge by adjusting
nearest-neighbor' ' and next-nearest-neighbor' anhar-
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monic terms to fit the temperature dependence of the
thermal conductivity. Though their results are qualita-
tively reasonable for TO, LO, and LA phonons, they are
poor for TA phonons. More recently, Xu et al. ' deter-
mined the dispersion of y; in Si by using a tight-binding
calculation to obtain the force-constant matrix. Howev-
er, optical-phonon frequencies were overestimated by—10% in that study. Recent ab initio calculations'
have obtained y; for c-Si and c-Ge that are in excellent
agreement with experimental data.

The Keating model is known to give a good description
of LO, TO, and LA modes in unstrained covalent semi-
conductors, but it does not reproduce the Aatness of the
TA mode dispersion. ' More complex lattice-dynamics
models, such as the six-parameter valence-force-field
(VFF) potential method' ' and the four-parameter adia-
batic bond charge model, ' describe all Si and Ge modes
quite well.

In the present work, a modified Keating/VFF model is
used, which includes four types of interactions —the orig-
inal Keating bond-stretching and bond-bending interac-
tions, and also the nearest-bond and nearest-coplanar-
angle interactions. This model is presented in Sec. II A,
and in Sec. IIB it is shown to give the correct phonon
dispersion for unstrained Si and Ge at ambient pressure.
In Sec. IIC, strain-modified force constants are intro-
duced and treated as model parameters that are deter-
mined by fitting available mode Gruneisen parameter
data at the zone center and boundaries. The mode
Griineisen parameters are determined along the [001] and
[111]directions in bulk Si and Ge. The effect of biaxial
strain in the (001) plane on phonons is discussed in Sec.
IID. This is continued for strain in the (111) plane in

I

Sec. II E. The effect of pressure on phonons is strained Si
and Ge layers and Si/Ge superlattices grown in the [001]
and [111] directions is investigated in Sec. II F. The
empirical parameters p, q, and r that have been used to
relate zone-center phonon shifts and splittings due to
strain are expressed in terms of model parameters in Sec.
III.

The use of strain-modified force constants is justified in
Sec. IV by examining lattice dynamics with cubic terms
added to the Hamiltonian and determining quasiharmon-
ic force constants. The use of this model for obtaining
elastic constants is discussed in Sec. V, where the third-
order elastic constants are derived. A general discussion
of the results is presented in Sec. VI, which is followed by
concluding remarks in Sec. VII.

II. MODKI.

A. General formalism

The potential energy used by Keating' takes into ac-
count only the bond-stretching and bond-bending in-
teractions. Although it describes optical phonons fairly
well, it gives a very poor description of the TA-phonon
dispersion, where the predicted phonon frequency is
-80% too high at the X and L points. Consequently,
further interactions with neighboring atoms are needed.
While as many as six harmonic interactions have been in-
cluded in modeling Si and Ge, ' ' it is found here that
only four interactions are needed to describe the disper-
sion well. The other two interactions give relatively small
contributions. The potential energy is

b, r(,') and 68(; ) are defined as

a' (2a)

l I l
, 'r . 6u . +r . .b,u . ', (2b)2a' l J J

where a'=ao/4, and ao is the lattice constant. r(,') is the
ith bond vector in the lth primitive cell at ambient condi-
tions and b,u(,'. ) is the relative displacement of the ith
bond vector in the lth primitive cell.

b,r(,') and b, O(,'~ ) are the valence coordinates associated
with bond stretching and bond bending, respectively, la-
beled by the bonds that are involved. They are also sca-
lars so that the potential energy defined in Eq. (1) is rota-
tionally invariant. In later sections it will sometimes be
clearer to label Ar by the two atoms involved in the bond,
such as b, r(~ „'), and b, 9 by the three atoms involved,
such as ~e(~ op ln) (see Fig. 1 and also Ref. 18). Equa-

I

tions (2a) and (2b) give the relations between the valence
coordinates and the first-order displacements of the
atoms, which are derived from Keating s original coordi-
nates by neglecting higher-order terms. The coef5cients
in Eqs. (2a) and (2b) determine the transformation matrix
that connects valence coordinates to Cartesian coordi-
nates.

The first summation in Eq. (1) describes bond stretch-
ing and compression with force constant o.; there are four
bonds labeled with i =1 to 4 in each primitive cell, and l
is the cell index. The second term characterizes the
bond-bending interaction with force constant P, and the
indices i and j are associated with the bond i and bond j
that share a common apex; there are 12 angles that con-
tribute to this interaction in each primitive cell. The
third term describes the nearest angle-angle interaction,
with force constant ~, which is between two nearest co-
planar angles that share one common bond with different
apices, as described in Ref. 18. The fourth term describes
the bond-bond interactions, with force constant ~ be-
tween two nearest bonds sharing a common apex; there
are 12 terms for each cell. Figure 2 illustrates these four
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Inserting Eqs. (2a), (2b), and (3) into Eq. (1), the poten-
tial energy can be expressed as

U= Uo+ Ui+ U2 .

FIG. 1. Diamond crystal structure. The bonds shown belong
to the unit cell labeled 0 containing atoms (0,g) and (0,p).

harmonic interactions. The two harmonic terms from
Ref. 18 that are neglected here are the interactions be-
tween a bond and an angle sharing one common bond
and that between two nearest nonplanar angles.

6,u(,') has contributions due to dynamic displacement
and static strain displacement. In linear approximation

6u . =Aud . +hu, (3)

where b, ud(, '. ) is the relative dynamic displacement of two
atoms attached by the ith bond in the ith cell and b,u, (,')
is the static displacement between two neighboring atoms
under external strain, which is

y

bu, . =Er . —a'g e,S l

exy

g is the internal strain parameter and Fis the deformation
tensor, whose components c; are related to the strain
tensor elements e," by

Uo contains quadratic static strain contributions, and has
the same form as Eq. (1) with Au(,') replaced by b,u, (,').
U& contains cross terms, such as Au, (;)bud( ), and van-
ishes because of the absence of the net exerted force. U2
is the summation of terms quadratic in b,ud(,'), and has
the same form as Eq. (1) with b,u(,') replaced by b,ud(,').

Keating' included only the first two terms in Eq. (1).
Moreover, he defined

I 1 l l l l
b, r . =, '2r . bu +b,u . b, u . (, (7a)2a' l l l

1.
AO . . =, ' r . .Au . +r . .6uJ

T

l I
+Au . .hu (7b)

l J
instead of as in Eqs. (2a) and (2b). The second term on
the right side in Eq. (7a) and the third term in Eq. (7b)
can be ignored because they are second-order quantities.
Both definitions [Eqs. (2) and (7)] are rotationally invari-
ant and equivalent up to first order in displacement.

The static and dynamic strain contributions are cleanly
separated in the current approach. Uo describes the
effect of static strain as characterized by the second-order
elastic constants, while U2 describes phonons. Strain was
included in the previous studies that used two Keating in-
teractions ' by replacing r(,') by r(,')+hu, (,') and b,u(,')
by b.ud(,') in Eqs. (2a) and (2b), which does not lead to the
separation of the static and dynamic terms, as in Eq. (6).
Consequently, a' depends on static strain in this earlier
work. The two approaches give the same analytical re-
sults, but the parameters have different physical mean-
ings.

Anharmonic interactions are included by using
quasiharmonic force constants a, p, a, and ~ that depend
on the strain in the harmonic potential energy U2. Fol-
lowing Refs. 7 and 8, these quasiharmonic force con-
stants have the following form:

Ar
[) ~e ~e a, =oo 1+n

ro

b.(r, r ) b. cos8;i
P;, =Pc 1+mp +lp

2ro cosOo

(Sa)

(Sb)

J.k =~o 1+m
h(r, r ) b, (r rk)','+

4ro 4ro

x A8 58' t hr hr'

A(cos8;J cos8,k )+I„
2 cos Oo

(Sc)

FIG. 2. Schematic representation of the harmonic interac-
tions in Eq. (1).

(Sd)
b, (r, r )b, cos8,".

1+n +l,
2r o cosOo
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where the parameters with index 0 are those for no strain
(ro =&3a', cosOO= —

—,'), r, is the ith bond length, and 0,"
is the angle between the ith and the jth bond. The use of
quasiharmonic force constants will be justified in Sec. IV.

TABLE I. The phonon frequencies obtained from the model
at the I, X, and L points for different modes, where M is the
mass of the Si or Ge atom. The corresponding experimental
values are listed in parentheses for Si at 300 K (Ref. 20) and for
Ge at 80 K (Ref. 21).

B. Ambient pressure

The second-order macroscopic strain energy density
for cubic crystals is'

2
=

—,
' C» (e,„+e +e„)

+ C&2(e e +e e„+e e„)

where V is the volume of the crystal and C», C,2, and
C44 are the second-order elastic constants. Comparing
the potential energy Uo in Eq. (6) with the macroscopic
energy density in Eq. (9) gives

, , (r)

~LO, LA(»

coTo(X)

~TA(X)

coLo(L)

' 1/2
8(a+P+~ —~)

M
1/2

4(a+ 2P+ a+ r )

M
1/2 '

8(~—~)
M

1/2

1/2

Si
(cm ')

518.4
(520.5)

413.3
(411)

460.6
(463)

151.6
(150)

425. 1

(420)

Ge
(cm ')

302.2
(304)

241.5

(240)

270.4
(275)

82.7
(80.0)

250.2

(245)

C„=,(a+3P+3~+3r),1

4a' (10a) To(L

1/2
8a+ 4P+ 4a. —8~

M

490.4
(489)

286. 8

(290)

C,2 =, (a —
/3

—~+3r),1
(lob) 2a+ 13P+4~+ 4~

M

1/2 354. 8

(378)
205.9
(222)

C44=, [(1—g) a+(1+()P+(1+() ~—r] .
1

The bulk modulus is

(10c) ~TA(L)
4p
M

1/2 107.2
(114)

58. 5

(63.3)

C, ) +2C,2B= , (3a+P+~+9r) .
3 12a

(10d)
change accordingly. The hydrostatic strain is

e„=eyy =e„and e~y =e~z =eyz =o .

The static strain energy Uo is minimized by setting
dUO/dg=0, which gives

a —p —~ —r
a+p+~ —~

(10e)

C. Hydrostatic pressure

The crystal symmetry remains the same under hydro-
static pressure, and therefore there are no changes in
bond angles (b, cos0=0). The bond lengths are uniformly
compressed, and the quasiharmonic force constants

When only a and p are assumed to be nonzero, Eqs.
(10a)—(10e) reduce to the expressions in Ref. 19.

Phonon dispersion is determined by converting U2 to
Cartesian coordinates, adding it to the kinetic energy,
and performing normal mode analysis, as in Ref. 18.
This leads to analytic expressions for phonon frequencies
at the center and boundaries of the Brillouin zone, which
are tabulated in Table I. The four parameters for zero
strain, ao, Po, vo, and ro, have been oPtimized by using
neutron-scattering data along the [001] and [111]direc-
tions, ' ' and are listed in Table II for Si and Ge. Pho-
non dispersion is plotted in Fig. 3 for Si and Fig. 4 for
Ge. The fits are much better for all phonon branches
vis a vis those usi-ng-only two parameters (ao, /3O), espe-
cially for TA phonons. The average deviation of phonon
frequencies is 1.7% for Si and 2.3% for Ge with this
four-parameter model.

The change in bond length is Ar =roe„„. By using Eqs.
(8a)—(8d), the strain-modified force constants are

a=ao(1+n e„„),
P=PO(1+ m&e, ),
sc=vo(1+m e ),
r=ro(1+ n, e ),

(12a)

(12b)

(12c)

(12d)

TABLE II. Parameters used in the modified Keating model,
fit to the phonon data only.

ao
po
Kp

To

na
lg~

Ol p
m~

lp
I,
l

Si

4.940
0.479
0.699
0.520

—9.58
—14.5

8.40
4.07
7.36

—5.25
—1.39

4.432
0.368
0.613
0.495

—9.71
—15.9

9.18
5.70
4.91

—3.80
—0.28

unit

10 dyn/cm
10" dyn/cm
10 dyn/crn
10 dyn/cm

where n, m&, m, and n, characterize how the force
constants depend on hydrostatic strain.

The change in bond length under hydrostatic pressure
1s
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600
Si [001]

600
Si [111]

values of the Gruneisen parameter for optical phonons.
Specifically, for Si
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E 400

0- 300
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O
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0
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I
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n ap+mpPp+m Kp n rp
YLQ TQ 6( +p

71 ~op n ~Vp
y TQ(X) = — = l.5,

6 ap —rp

yTA(X) = — = —1.4,mp

n ap+2mp/3p+m ap+n, rp
yLQLA 6( +20+ + )

(15a)

(15b)

(15c)

WAVE VECTOR (2'/a) WAVE VECTOR (2xrja) (15d)

FICi. 3. Phonon-dispersion relations along [001] and [111]in
Si. The solid circles and solid squares are the neutron-scattering
data (Ref. 20) for longitudinal and transverse phonons, respec-
tively.

Pp

P
38 (13)

where P is the applied pressure. Analytic expressions for
the mode Griineisen parameters y; at the I, X, and I.
points are obtained by using the expressions in Table I,
Eqs. (12a)—(12d) and

d ln~; g den;

d lnV cu; dP
(14)

where co; is the phonon frequency of mode i. They are
listed in Table III.

n, m&, m„and n were determined by fitting the

400
Ge [001]

400
Ge [111]

300
E

g- 200
LL

100

300--IL

200—

100—

r
~r' I ' I ' I '

I ' I ' I ' I '
I ' I

WAVE VECTOR (2x/a)

X
0 rrI I ~ ~ I I I I I

I
~ ~ I ~

I
~ I ~ t I I I I ~

WAVE VECTOR (2m)a)

FICi. 4. Phonon-dispersion relations along [001] and [111]in
Ge. The solid circles and solid squares are the neutron-
scattering data (Ref. 21) for longitudinal and transverse pho-
nons, respectively.

The numerical values for y,. in Eqs. (15a)—(15c) were
obtained from Raman scattering, while that in Eq. (15d)
was taken from the ab initio calculation in Ref. 15, which
generally agrees well with experimental data. The four
model parameters so determined are listed in Table II.

Reference 7 assumed that n =m& in their calculation
of the dispersion of ~ under biaxial strain; this assump-
tion had been suggested earlier in Ref. 8. Both studies
utilized only the two Keating interactions parametrized
by a and P, and the current parameters n and m&, la-
beled as n and m in Ref. 7, to describe isotropic strain.
This assumption of equal n and m

& implies that
y = —n /6= —m&/6 for LO, TO, TA, and LA phonons
at each symmetry point (Table III) and, in fact,
throughout the Brillouin zone. Consequently, it gives the
incorrect dispersion of y for each branch. This assump-
tion is expected to lead to errors in describing how biaxial
strain affects phonon frequencies away from zone center.

The current model gives y TA(X) = —m&/6. Since
yrA(X) is known to be negative in c-Si and c-Ge,
which is consistent with the anomalous thermal expan-
sion at low temperatures, m& would be expected to be
positive. This suggests that bond compression decreases
the energy for angular interactions, which is in contrast
to earlier expectations. '

The fits for Ge are less strongly based on experiment
than those for Si. In Ge, apparently only yLQ 'rQ(I ) and

y TA(X) have been measured by Raman scattering.
yLQ TQ(I ) =0.96 is used here, which is obtained by using
de(l )/dI' =0.385 cm ' kbar ' in Ref. 23 and the
second expression for y, in Eq. (14). Early I.-point mea-
surements of other y,. in Ge by tunneling are question-
able. yTQ(X)=1.49 is used from ab initio calculations, '

which also show that y„o „A(X) is greater than yLQ TQ(r)
by 0.12. Assuming this difference is accurate,
yLQ, LA(X)=1 0g.

The mode Griineisen parameters for Si and Ge along
[001] and [111] were determined by calculating the
difference between co at ambient pressure and at a low
pressure, using our values for n, m&, m, and n, (Table
II). They are plotted in Figs. 5 and 6, and are in qualita-
tive agreement with the previous calculations along 6
and A in Ref. 15 using the ab initio calculations for c-Si
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TABLE III. The Gruneisen parameters obtained from available experimental data for Si and Ge.
The values in parentheses are from the ab initio calculation in Ref. 15.

Theoretical Si

yLo, To( r)

y LO, LA(X)

yTo(X)

yTA(»

yLo(L )

yTo(L)

yLA(L)

yTA(L)

n ap+msPp+m Kp n 1p

6(ap+Pp+ ~p —rp)
n ap+2m&Pp+m„Kp+n Tp'

6(ap+ 2Pp+ Kp+ rp)

n~ao n~&o

6(ao —~o)

Pl p

6
6n ap+m&Pp

6( 6ap+ Pp)
2n ap+ m &Pp+ m, ~p 2n r—

p

6(2ap+ Pp+ Kp 2rp)
2n ap+ 13m &Pp+ 4m, frp+ 4n, ~p

6(2ap+ 13Pp+ 4Kp+4rp)

0.98+0.06'
(0.99)

(1.03)

1 ~ 5+0.2'
(1.50)

—1.4+0.3'
( —1.52)

(1.62)

1.3+0.2'
(1.24)

(0.45)

—1.3+0.3'
( —1.24)

0.96+0.05

( 1.05)

(1.17)

(1.49)
—1.53+0.1'

( —1.53)

(1.67)

(1.28)

(0.55)

(
—1.40)

'Measured in Ref. 22.
The yLo(I ) for Ge is obtained from y; =(B/co;)(dao; /dP), with dec;/dP =0.385 cm ' kbar ', as mea-

sured in Ref. 23.
'Measured in Ref. 23.

and c-Ge, and in Ref. 14 using the tight-binding model
for c-Si. This is not surprising since much of the data
used here agree with (or in some cases actually are) the
ab initio results.

D. Biaxial strain in the (001) plane

constant of the substrate is una6'ected by the film. This is
the prototype strained layer considered in this study.
Other types of strain configurations, such as freely stand-
ing heterostructures, can be analyzed with only slight
modifications.

With biaxial strain in the (001) plane, the elements of
the strain tensor in the film are

When a very thin film is pseudomorphically grown on
a substrate, the in-plane lattice constant of the film is the
same as that of the substrate, while the in-plane lattice

a' —af
XX yy a

e„=—2C, 2

C XX~
11

(16)

Si [001] Si [111]
Ge [001] Ge [111]

0— 0—
0—

I
l

I
/

~ l
~

l
I l

~ l ~
l

~
l

~ l
I

WAVE VECTOR (2&a)

I ~ I ~ I ~ I ~ ~ I I I ~ ~
1

~ ~ ~ ~ l ~ ~ ~ ~

WAVE VECTOR (2z/a)

2 ~ l ~ I I
l

~ l
~

l
~

1
~

l
~ l ~

1
I -2 ~ I ~ ~ I ~ I I I l

~ ~ ~ ~ l ~ ~ ~ ~ l ~ I ~ ~

FIG. 5. The mode Griineisen parameters along [001] and
[111]in Si. The solid circles are from Raman-scattering studies
(Ref. 22). The open circle is the ab initio point from Ref. 15
used in the At.

WAVE VECTOR (2n'a) WAVE VECTOR (2z/a)

FIG. 6. The mode Griineisen parameters along [001] and
[111]in Ge. The solid circles are from Raman-scattering stud-
ies (Ref. 23).
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and

exy exz eyz

2 C12
h h eh

XX yy ZZ

11

(17a)

where a and a' are the lattice constants for the film and
the substrate, respectively. The strain can be decom-
posed into a hydrostatic strain compon'nt

a=ap(1+n e"„),

P, =Po(1+mme, 4l—t3e ),
P2 =Po( 1+m ge„„+8 lpe,„),
Ic, =leo(1+m„e„"„—4l e „),
Ic2 =~p(1+ m, e„„+8l,e„„),
r, = ro(1 +n, e„,—4l,e„",),
r2=rp(1+n, e„„+8l,e„,),

(18a)

(18b)

(18c)

(18d)

(18e)

(18g)

and a traceless strain component

2C12e" —e ——'e ——1+-
XX yy 2 ZZ

11
exx (17b)

where I&, l, and I are the parameters associated with
bond-angle changes.

Under biaxial strain, TO- and LO-phonon frequencies
at zone center (I point) are

so e =e "+e".
To first order, isotropic strain aA'ects only the bond

lengths and the traceless strain components alter only the
equilibrium bond angles. With (001) biaxial strain, four
bond angles, b, 8(& „& ), b, 8(„ t3 ~), b, 8(&

' „~ ),
and b, 8(& „&), change by 2&2e from their ambient
equilibrium angles, while the other eight bond angles
change by —v'2eb„. Therefore, using Eqs. (8a) —(8d), the
quasiharmonic force constants are

cp«(r) =

coTo(r) =

1/2
8(a+P2+~~ r, )—

M
1/2

8(a+P, +Ic, —r2)

M

(19a)

(19b)

where M is the mass of the (Si or Ge) atom. The corre-
sponding shifts in frequency due to biaxial strain are ob-
tained by inserting Eqs. (18a)—(18e) into Eqs. (19a) and
(19b), and expanding to first order in strain. Thus,

ao+ m pPO+ m Icp n 'rp C12 2 2ltIPo+ 21,Kp+I 7 p 2CI2a~„(r)= 1 — +— 1+
3(ao+Po+ Ico —ro) C)& 3 ap+Pp+Ko rp C11

e„,~,(r), (20a)

n ap+ m &Pp+ m ap n, rp C—
]p

bco (I )= ~ 1—
3(ao+Po+&o —&o)

2 lpPo+l&Kp+2l~ro 2CI21+
3 ap+Pp+ Icp 7 p

.e„coo(r) . (20b)

(20b)

The splitting of the TO- and LO-phonon frequencies at zone center is

cp«(r) —cpTo(r)=
2(lttpo+ l,~o+ l,ro)

ao+ po+ Ico —ro

2C121+ e..~,(r) .
11

(21)

In Sec. III it will be seen that the term in the first bracket is the negative of (p —
q )/2cop(1 ), the shear phonon defor-

mation parameter, where p and q are parameters defined in Sec. III and Ref. 8. This deformation parameter has been
measured to be 0.31 It'or Si and 0.23 for Ge.

At the X point, the shift in the LO frequency due to biaxial strain is

b,coLo(X) =
1/2

4(a+p, +p2+ Ic2+ r, )I
1/2

4( ap +2Pp +Kp + rp )

M

2C12ao+2mpPO+m tcp+n rp C12 2 ipPo+2l /cp 1 7p1— + 1+
3(ao+ 2Po+ so+ ro ) C I I 3 ao+ 2Po+ Ico+ rp C ) )

.e coo(X) . (22)

Three conditions are needed to obtain I&, I, and l . Two conditions are readily available from experiments: the
LO/TO splitting at I with uniaxial stress along [001],as described by Eq. (21), and the LO/TO splitting at I with uni-
axial stress along [111],as is described by Eq. (30) in Sec. II E. The third condition used here is the assumption that
[001]biaxial strain shifts co«by the same amount at I and X. This assumption is reasonable because the ab initio cal-
culation of Ref. 10 showe'd that biaxial strain in the (001) plane shifts cot o by approximately the same amount from I to
X. Equating Eqs. (20a) and (22) gives
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Ci2 2 IpPp+2$ Kp I 1 p 2ci2
cop(X)

Ci2 2 2lpPp+ 21 Kp+ l 7 p 2C]z .cop(I ) . (23)

l&, l„and I, are determined by using Eqs. (21), (23),
and (30) for Si and Ge, and are listed in Table II. Figure
7(a) [Fig. 8(a)] plots the shifts in phonon frequencies
along [001] for Si (Ge) pseudomorphically grown on Ge
(Si) (001). For Si grown on Ge (001), the Si layer is sub-
jected to a tensile strain, leading to a downward shift in
phonon frequencies, while for Ge grown on Si(001), the
Ge layer is subjected to a compressive strain, leading to
an upward shift in phonon frequencies. In both strained
Si and Ge, b,~I o remains almost constant throughout the
zone, which is consistent with the observation in Ref. 10.
The frequency shifts of the LO and LA modes for Si are
similar to those calculated in Ref. 7, but the shifts of the
TQ and TA modes are quite different. A~T& decreases
from —19 to —29 cm ' from I to X, but increases from—22 to —12 cm in Ref. 7. This difference is due, in
part, to the increase in yT& from I" to X, which is not
reAected in Ref. 7 because their assumption of n =m&
leads to a constant yTo. From I to X, A~TA first in-
creases slightly from 0 and then decreases to —53 cm
at X. In Ref. 7, AcoTA decreases from 0 to —27 cm
nearly linearly from I to X. These general observations
are also seen for strained Ge films.

Phonons in very thin Alms are affected by strain and
also by confinement. A simple model based on standing
waves explains the effect of conAnement on LO phonons
along 6 in (001) ultrathin layers, as in Si/Ge SLS's.2~

The effective wave vector for the standing wave is given
by

$7T

dp(t+v) (24)

E. Biaxial strain in the (111)plane

Since the macroscopic strain e; does not uniquely
deAne the relative positions of the atoms when biaxial
strain is in the (111) plane, an additional parameter, the
internal strain parameter g defined in Eq. (4), is needed.
The strain parameter is determined by using Eq. (10e)
and ap, Pp, ~p, and rp from Table II. This gives /=0. 58
for Si and 0.60 for Ge, which are very close to the experi-
mental values 0.54+0.04 for both c-Si and c-Ge.

With biaxial strain in the (111) plane, the elements of
the strain tensor are

where s, d0, and t are the number of half-wavelengths
corresponding to the order of the mode, the thickness of
one monolayer, and the number of monolayers, respec-
tively. The paramet r v depends on detailed boundary
conditions, and is e and 1 for low order modes in Si and
Ge, respectively. Only odd order modes are Raman ac-
tive due to symmetry.

The frequency of confined LQ phonons in (001) SijGe
SLS's is cob„ik LQ(q, ff )+b,coLo(q, ff), where the second term
gives the effect of strain. EpiLo(q, ff) is almost dispersion-
less from I to X, which is due mostly to the assumption
that htoLo(I ) =b p~Lo(X) ~

10

0—
a) Si (001)

10

0—
b) Si (1 1 1)

20—

a) Ge (001)

20—

b) Ge (111)

-10— -10—

-20—
I

E
C3

-30—
&I

-40—

-20—

-30—

-40—

10

3
10—

-50—

-60—
1 ~ ~ ~ l 5 I ~ l i I ~ ~ ~ i ~ ~ ~ I i ~ I ~ ~

TA

0—

WAVE VECTOR (2m'a) WAVE VECTOR (2n'a) WAVE VECTOR (2zla) WAVE VECTOR (2m'a)

FIG. 7. Phonon frequency shifts Ace along the growth direc-
tion in strained Si grown on (a) Ge (001) and (b) Ge (111), re-
spectively. The solid lines and dashed lines represent longitudi-
nal and transverse phonons, respectively.

FIG. 8. Phonon frequency shifts Ace along the growth direc-
tion in strained Ge grown on (a) Si (001) and (b) Si (111),respec-
tively. The solid lines and dashed lines represent longitudinal
and transverse phonons, respectively.
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2C44

2C44+ C11+2C12

(Ci, +2C,z)

2C44+ C11+2C12

(25a)

(25b)
0 0

b, r
p

= rQ(e "+o.), (26a)

Using Eq. (4), (111)strain changes the bond length pa-
rameter by

where e =e„=e =e„ is the diagonal matrix elementd=
of the strain tensor, e =e =e, =e, is the o6'-diagonal
matrix element, and e~~ is the in-plane lattice mismatch
strain which is -4% for Ge pseudomorphically grown
on Si.

0 1 0 2 0 3
hr

p
=br

p
=br

p
=rQ(e ,'—o —),

"/. . 'j . . '1.
(26b)

where cr =e (1—g). The changes in bond angle are

0 0 —1 0 0
b8

p p
=68

L

0 0=60
p

r

0 0 3=50
p

2e (1+2/)
3&2

—2 0 0 —3 0 0 1

p =~'p~ p =~'~ p~
2

(27a)

—1 0 —2 —1 0 —3 —2 0 —3 1 0 2" p g p
="

p g p
="

p g p ="n p g

1 0 3=60
rl p n

2 0 3=60
p

2e (1+2$)
3&2

(27b)

Therefore, using Eqs. (8a)—(8d), the corresponding quasiharmonic force constants for mismatch strain in the (111)
plane are

a, =aQ(l+n e "+n~o), .

a2=aQ(1+n e ,'n o ), ——

P, =PQ(1+m&e + ,'m&o +l&p)—,

Pz =PQ( 1+m &e ,
' m &o

—I&p )—, —

K, = K(Q1 +m, e "+ ,'m o +I—„p),

K2=KQ(1+m, e —
—,'m o —l„p),

r, =~Q( 1+n, e + ,
' n, o + l,p )—,

&2 =rQ(1+ n, e —,
' n, o ——l,p),

where p= —', e (I+2/).
The zone-center optical-phonon frequencies are

(28a)

(28b)

(28c)

(28d)

(28e)

(28g)

coLo(l ) =
1/2

6a, +2a, +4(P, +P, )+4(K, +K, ) —12', +4r,
(29a)

1/2
8a~+4(p, +p2)+4(K, +K2) —8r2

coTo(I )= (29b)

The frequency splitting between the LO singlet and TO
doublet is

~~(r) =~„(r)—~, (r)
(n aQ —n, )orQ—31,7gp

2( aQ+ pQ+ KQ 'rQ)

In Sec. III it will be seen that the term in brackets can
be expressed as 3r l2coQ(I ), where r is a parameter defined

in Sec. III and Ref. 8. r/co ( Q)rhas been measured to be—0.65+0. 13 for Si and —0.87+0.09 for Ge.
Figure 7(b) [Fig. 8(b)] plots the shifts in phonon fre-

quencies along [111] for Si (Ge) pseudomorphically
grown on Ge (Si) (111). For Si grown on Ge (111),the Si
layer is subjected to a tensile strain, leading to downward
shifts in phonon frequencies. AcoTo is almost constant
along the growth direction, —30 cm ' at the I point and—33 cm ' at the L point. b,AT~ becomes positive (yet
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small) near the I point and decreases to —59 cm ' at the
L point. Acoto(L) and bcpL~(L) are +2.5 and —53
cm, respectively. Similar behavior is observed for hen

along [111]for Ge grown on Si (111).

F. Strained films and heterostructures
under hydrostatic pressure

as;(0)
e„„(P)=e„(0)+

aGe Ge

1

38s;
(33)

where

Hydrostatic pressure tunes the biaxial strain through
Eq. (32), which to first order in applied pressure changes
as

At ambient pressure, the magnitude of the lattice
mismatch is -4% for Ge grown pseudomorphically on
Si(001) and vice versa, and —2% for growth on
Sio 5Geo 5. The hydrostatic component of strain is

as'(0) —aG, (0)
e „(0)= (34)

Ar
1J

ro

P 2 C12

38 3 C11
e„, (i =x,y, z), (31)

where e„ is the pressure-dependent in-plane lattice-
mismatch strain assuming Ge grown on Si(001), which is
defined as

as;(P ) aG—,(P)
e„„(P)=

aG, P (32)

and C» and C1z are the elastic constants of the strained
Ge layer. These expressions, as well as those that follow,
are explicitly written for strained Ge layers on Si. The
traceless uniaxial components of strain are given in Eq.
(17b). The effect of pressure on phonons in ultrathin
strained layers and SLS's can be determined from the
pressure response at q,z for biaxially strained "thick"
films.

Bco(e„„(P),P) Bcp(e„(P),P) de„(P)
dP BP

+
Be„„(P) dP

where the first term on the right is due to the isotropic
strain and the second is due to the pressure tuning of the
mismatch strain. For very small P, Eq. (35) can be writ-
ten as

dc'
dp (36)

Using Eq. (35) or Eq. (36), dco/dP at the zone center is
approximately

is the initial biaxial strain in the Ge film at ambient pres-
sure ("P=0" corresponds to 1 bar).

The pressure derivative of the phonon frequencies can
be expressed as

d~LG(P) COO C12
=)'Lo, To(~) + ' 2)'Lo, To(~)dP ' 8G 11

2 2lppp+21 Kp+I 'Tp 2C~2+— 1+
3 lxp+Pp+ Kp rp

1

38G,
1

COO, (37a)

d cpTG(P)

dP
COO C1z

Lo To(I ) + ' 21 Lo o(P) 1
8Ge 11

lpPp+ l~ Kp+2l~rp 2C]~1+
3 ap+Pp+Kp 'Tp

1

38G,
(37b)

which is consistent with the calculations in Ref. 5.
The first terms on the right-hand sides of Eqs. (37a)

and (37b) describe the effect of hydrostatic pressure on
bulk Ge. The second term describes the tuning of biaxial
strain in the Ge layer by the applied pressure. These re-
sults are easily extended to Ge grown on Si (111) and Si
grown on Ge (001) or (111).

Figure 9 compares dao/dP for phonons in a strained
layer of Si on Ge(001) and (111)to that for unstrained Si.
Figure 10 makes a similar comparison for strained Ge on
Si (001) and (111) with unstrained Ge. The changes in
the LQ- and TO- phonon frequencies at zone center due
to pressure are obtained from Eqs. (37a) and (37b). For
both Si and Ge, the strain-induced perturbation to
dao/dP is almost constant from I to X for LO and TO
phonons. Also, the changes in the LO- and LA-phonon

I

frequencies are the same at the X point for both Si and
Ge, as is expected from symmetry. Note that dco/dP for
LO and TO phonons in Si cross at about 0.3 (2'/a),
while for Ge and for unstrained Si they do not cross.

Figure 10 also shows that the model agrees with the ex-
perimental pressure dependence of coLO for phonons
confined in the Ge layers of a Si12Ge4 strained-layer su-
perlattice.

III. RELATING p, q, and r
TO THE MODEL PARAMETERS

Cerdeira et al. examined how strain changes the fre-
quency of near-zone-center optical phonons in crystals
with diamond structure by using the microscopically
averaged spring constant parameters p, q, and r. The
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FIG. 9. des/dP for phonons along the growth direction in Si.
The dashed lines represent Si with no biaxial strain, while the
solid lines correspond to biaxially strained Si grown pseu-
domorphically on (a) Ge (001) and (b) Ge (111),respectively.

dynamical equation describing optical phonons is

FIG. 10. dao/dP for phonons along the growth direction in
Ge. The dashed lines represent Ge with no biaxial strain, while
the solid lines correspond to biaxially strained Ge grown pseu-
domorphically on (a) Si (001) and (b) (111), respectively. The
solid dot is from Raman scattering of phonons that are quasi-
confined in the strained Ge films of a Si&2Ge& SLS on c-Si (Ref.
5).

(0) (1)~+i +ii +i g +ijklekluj
Jkl

(38)

where u is the dynamic displacement coordinate, I is the
reduced mass of the two atoms in the unit cell, e&l is the
static strain, E; '=meso, where coo is the zone-center

optical-phonon frequency in the absence of strain,
K k&

=BX;./Be&&, and i, j, k, and I =x, y, or z. Because of
cubic symmetry, only three parameters are needed to de-
scribe the effect of strain: p=E,;',", /rn, q=K '/m, and
r =SC"'jm

IJ7J
The strain-modified zone-center optical-phonon fre-

quencies 0 are given by

pe +q(e +e„)—A,

rex
re,

rex@

pe +q(e +e„)—k

re,

re,
re,

pe +q(e „+ey) —A,

(39)

0, =co +hQ + 260,
~o+ ~&0

(40a)

(40b)

where A, =0 6)
With isotropic strain, one finds yi o To( I")

= —(p+2q)/6coo. For biaxial strain in either the (001)
or (111)plane, the threefold degenerate zone-center pho-
non is split into a singlet (0, ) with eigenvector perpendic-
ular to the plane and a doublet (Ad) with eigenvectors
parallel to the plane. Equation (39) gives

AQH = (p+2q )e
1

2~0

AQ=Q, —Qd = e
3r 0

2~0

(42a)

(42b)

Similar splittings are seen in Secs. IID and IIE. By
comparing these expressions with Eqs. (15a), (20a), (20b),
(21), and (30), p, q, and r are seen to be related to the
current model parameters as

For biaxial strain in the (001) plane

1
b QH = (p+2q ) 1—

3~o 11
exx

1 2C1q
bA=Q, —Ad= — (p —q) 1+

2COp

while for biaxial strain in the (111)plane

exx ~

(41a)

(41b)

p +2q &cnx +orn pPo+ m Ko n 'ro

6oi2o 6(cio+po+ ~o ro )

p —
q 2(lpPo+ I Ko+ l ro)

~o+po+ o o

(n ao —n, ro)(1 —g) —4(1+2$)l,ro
~o 3(cxo+Po+Ko ro)

(43a)

(43b)

(43c)
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IV. RELATION OF STRAIN-MODIFIED FORCE CONSTANTS TO ANHARMONICITY

The adoption of strain-modified force constants can be justified by examining the e6'ect of cubic terms in the poten-
tial. The anharmonic perturbation to the potential energy U' is

4 l lU'=
—,
' g g a'b, r' . + —,

' g gP'b, 83
1 i=1 lJ

T

l l' l l' l l+—6g pe'b, 8 . . b, 8 . + —,
' gg r'b, r . hr . +—'g g5'b, r b,8

l l' l lII lI
+ —,

' g +5~68 . . b, 8 . 'b.r . +26,r . +b,r
ll'1" jin ij jn i n

l l l l l+ —,
' g + 5'3b.8 . . hr, b, r . + —,

' g g 5'b.r . b,8 (44)
11' ji lJ l J , l lJ

where only the third-order terms diagramed in Fig. 11 are included. (For clarity, (Ar[,' ]) has bee. n written as Ar [,'],
etc ) Other third order terms are assumed to be small. All energies and parameters involving the cubic terms are
primed.

The third-order static contribution Uo and dynamic contribution U2 are found by inserting Eq. (3) in Eq. (44). Add-
ing U2 to Uz, the quasiharmonic force constants are seen to be

l l'
a, =ao+ ,'a'b, r, —. + —,

' g g r'Ar, . + —,
' g g 545,8,

1' jWi - - 1' jWi

l l' l'
p,"=/30+ ,'p'b, 8, +—,

' g g—~'b.8, . + ,'5Ib, r,—
1I1lt1'1' n

+ —,'6', Ar,

(45a)

(45b)

l
—,'K'50,

J

l I II

+Dr,+—,'5~ ' hr, . +2hr,
l

l
K k

—Kp+ —K 50 ~ ~ +lJ 3 s lj

lI
(45c)

~; =~ + —,'5'60, +—,
' ~'Ar, +—,'~'b r, (45d)

l r
b, r i

l
~ -Au,
l

a' (46a)

l
60,

l
r2a'

l
~ Au,

l
~ Au,J

(46b)

The summations involving r' and 54 in Eq. (45a) are ig-
nored since n' is one order of magnitude larger than ~'

and 54. (This condition leads to 5~=0.) The summation
involving ~ in Eq. (45b) is also expected to give a negligi-
ble contribution.

The change in the "Keating" bond-stretching coordi-
nate hr, (,') and the bond-bending coordinate b.8, (,'. ) due
to static displacements [Eqs. (2a) and (2b) with b,u(,') re-
placed by b,u, (,'. )] can also be expressed as

b, (r; r, ) — —rob, 8;
v'2

2 3rD 3

After inserting Eqs. (47a) and (47b) into Eqs.
(45a) —(45d), and comparing with Eqs. (8a) —(8d), it is seen
that

I 2a=,— n ap,
3ro

4&3,
P 0

rp

3&3(l Ko,
rp

(48b)

(48c)

I

To first order, they can be related to the actual changes in
bond length Ar, and bond angle 50;. by

l
Ar, . =&33,r, , (47a)

l
68, (47b)
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u'3
(n —2l, )ro,

2ro

6&= (m, —2l, )~0,
v'3

2ro

3
12&3,

7. TP e

v'3
5i = (mg —2lp)PO,

0

(48d)

(48e)

(48g)

This analysis shows why the parameters n, I&, I„
and n that describe the quasiharmonic force constants
must have different values, in contrast to earlier assump-
tions. ' '"

V. DERIVATION OF ELASTiC CONSTANTS
USING STRAIN-MODIFIED FORCE CONSTANTS

The second-order elastic constants are given by Eqs.
(10a)—(10e) with ao, Po, i~o, and ro replacing a, P, ~, and r,
respectively. The third-order elastic constants are ob-27

tained by comparing the macroscopic third-order strain

energy density Uo / V define as

U(,

&
=6(CI~I+3CI&)(e +eyy+e„)+C&z3e e e„

+ —,'(C„&+Cia)Ie„(eyy+e„)+eyy(e„„+e„)+e„(e„„+e)I

1 2 2 2
&44 I »eyz yye~, +e»e~y I

+
z CI66 I e x(cry+ex. )+eyy(e'y+ey', )+e„(ey', +e', ) I+—,'C~,6e,e,e„

with the third-order microscopic static strain energy defined in Eq. (44). This leads to

P' ~' 3r'———+ +
4

36',

2 2+36'—63 —3C„, (50a)

C112
K + 37 + 1 2

61 6I

2 6 3
(50b)

a'
+ 3P' 3~' 3r'

123 4+ 4 4 2

6', 63
6/

2 4
(50c)

C4s6 =

(1—g), + (1+/)
4

+
4

(1—g), (1+/)
4

(1—g), (1—g)3

4 2
7-'+

(1+g')', + (1—g)'
4

+
2

(1+/), (1 —g)2

2

(1—g)'(1+ g)
2

6'
3

3V+2k —1 &. 34'+2/ —1, (1—g)',
61+ 62+

3+2/ g ~ 3+2)—g, (1—g)2
6', —

(50d)

(50e)

where C&I and C&z are given by Eqs. (10a) and (10b).
The two-parameter Keating model' ' and the current

model both describe the second- and third-order elastic
constants very well when the model parameters are fit
only to the elastic constant data. However, the second-
order elastic constants for Si and Ge predicted by the
model do not agree well with experiment when the har-
monic force constants in Table EE, which were optimized
for phonons, are used in Eqs. (10a)—(10e) (see Table IV).
To improve the fit to all available data, ao po Ico and Tp'
were also obtained by optimizing to both the phonon
dispersion and the elastic constants C11, C,2, and C44,
with comparable average deviations, giving ao=4. 51,
pa=0. 489, F0=0.914, and ra=0. 136 (in units of 10
dyn/cm) for Si, and u0=3. 78, Pa=0. 424, ~0=0.762, and
ra=0. 049 (in units of 10' dyn/cm) for Ge, respectively.
With these new values, the average error in the fit to pho-
non dispersion increases from 1.7% to 2.6%%uo for Si and
from 2.3% to 4.7% for Ge. The agreement with the elas-
tic constants is now very good (Table IV). The current
four-parameter model fits elastic constants and phonon

I

data as well as does the four-parameter bond-charge'
when these revised parameters are used, and it is superior
to the two-parameter Keating model.

Note that Kp increases for both Si and Cze when the fits
include the elastic constant data. Since Kp characterizes
long-range interactions, which include up to the fifth-
nearest-neighbor atoms, this increase in Kp indicates that
the elastic force constants depend more strongly on long-
range interactions than do optical phonons.

Similarly, the third-order elastic constants [Eqs.
(50a) —(50f)] do not agree well with experiment when the
parameters in Table II, which were obtained from fits to
y;, are used. Again, the fits can be improved by optimiz-
ing the seven primed parameters to the third-order elastic
constants, the mode Gruneisen parameters at the critical
points, and the splitting of zone-center optical-phonon
frequencies under biaxial strain. This leads to —6.99,
8.01, —8.56, 2.35, —2.68, 0.01, and 0.37 for n, m&, I„
n, l&, l, and l, respectively, for Si. The fit to the
third-order elastic constants is improved, though not ex-
cellent, with the average deviation being -20%%uo. The fit
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TABLE IV. Structural parameters of Si and Ge used in the

calculation and comparison of the second-order elastic con-

stants.

ao

C44

Si

5.431'
1656b
1848'
1679
639
980'
646
795
606'
762'

5.657'
1288
1566'
1322
483
873'
484
671
482'
629

unit

A
kbar

kbar

kbar

to the mode Gruneisen parameters is noticeably poorer.
More cubic interactions, and perhaps also quartic in-
teractions, must be included to obtain a good fit to all the
data. Also, inclusion of the summations in Eqs. (45a) and
(45b) may improve the fit. Still the current model pro-
vides a very good description of the effect of strain on
phonons.

'Reference 36.
S. S. Mitra and N. E. Massa, in Handbook on Semiconductors,

edited by T. S. Moss {North-Holland, Amsterdam, 1986), Vol. 1,

p. 96.
'Fit using model parameters optimized to the phonon frequen-

cies only.
Fit using model parameters optimized to both the phonon fre-

quencies and the elastic constants.

son formula. The current coordinates are linearly relat-
ed to the bond distances and bond angles, while the Keat-
ing coordinates are nonlinearly related to them. Conse-
quently, the harmonic Keating potential actually includes
cubic terms that are usually ignored. Strain can be easily
included into the current coordinates.

The inclusion of coplanar-angle (a) and nearest bond-
bond (r) interactions, which are not in the original Keat-
ing model, is essential to this analysis. The ~ interaction
flattens the TA-phonon dispersion at ambient pressure.
The ~ interaction is needed to explain the
coLo(I )/coTo(1 ) splitting with biaxial strain in the (111)
plane. Without this parameter, r/coo(l ) [Eq. (43c)] can-
not be modeled well at all.

The parameters in Table II were obtained using only
phonon data and should be used when analyzing phonons
in unstrained and strained crystals. When these parame-
ters are revised to also fit elastic data, the fit to phonons
is poorer. This is particularly significant in the analysis
of the effect of strain through the cubic terms, where the
fit does not satisfactorily model the third-order elastic
constants and the dispersion of the mode Gruneisen pa-
rameters simultaneously. It should be relatively easy to
obtain a physically plausible force-field model that fits all
these data by including more interactions, particularly
those that are even longer range than those considered

VI. DISCUSSION

This presented microscopic model is suKciently de-
tailed to describe the effects of strain on diamond-
structure crystals. Isotropic strain affects only bond
lengths, and biaxial strain in either the (001) or (111)
plane affects both bond lengths and bond angles. The
traceless components of the strain tensor for (001) strain
affect only bond angles.

This model also describes phonons in strained-layer su-
perlattices well, at ambient and elevated pressure. In
Ref. 5 the effect of pressure on phonons confined in ul-
trathin layers in Si/Ge SLS's was expressed as the sum of
three terms: those due to changes to phonons in the
bulk, the changing strain, and the effect of confinement.
Pressure-related changes of confinement were attributed
to the differences in the mode Gruneisen parameter be-
tween phonons at zone center, as in the bulk, and pho-
nons at q,s. from Eq. (24). All of these effects are impli-
citly included in Figs. 9 and 10 by considering phonons at
the effective "folded" wave vector in the very thin,
strained layer.

The coordinates used in this model have the better
features of the Keating and valence-force-field potential
coordinates. They are rotationally invariant, as are Keat-
ing coordinates and the valence coordinates. Like the
Keating coordinates, they are easily transformed to
Cartesian coordinates. For valence coordinates, this
transformation is done with the rather cumbersome Wil-

p'ae'

~'~e' ~e t'h, r Ar'

5~ (br+dr')h, 0 52 {h,r+2hr'+h. r" )AOAO'

5'3 hrhr'A 0 54hr h8

FIG. 11. Schematic representation of the cubic interactions
included in Eq. (44).
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here. The importance of such terms is not surprising.
Sometimes quartic terms have been found to be as impor-
tant as cubic terms in describing the lowest-order efFects
of temperature on optical phonons.

A unique fit to the model requires the use of both pho-
non frequencies and eigenvectors. Since the eigenvectors
(from ab initio calculations) are generally not available,
only phonon frequencies were used here. Still, the pa-
rameters in Table IE should be quite good because they
predict phonon dispersions that are in agreement with ab
initio calculations.

The negative values for n and n, derived in this study
for c-Si and c-Ge imply that the bonds strengthen radially
with the increase of the applied hydrostatic pressure. In
contrast, the positive values of m& and m„show that the
force constants associated with the bond angle weaken
with increased pressure. With further increase of pres-
sure, the interaction between the bonds decreases so
much that the diamond structure is no longer energetical-
ly favorable and a phase transition occurs. The phase
transition for Si is —125 kbar (Ref. 22) and for Ge is
—110 kbar. A similar weakening of the bond-bending
force constant with increasing hydrostatic pressure was
found for HgSe by Ford et al. , who used Martin's mod-
el to describe this ionic crystal.

Lax has made the important suggestion that the
asymptotic behavior of the interatomic forces in
diamond-type crystals is determined by quadrupole-
quadrupole interactions, and such interactions have
long-range character. Therefore, it is important to exam-
ine the convergence properties of this model. An impor-
tant consequence of this long-range character is that the
expressions for the second- and third-order elastic con-
stants converge very slowly. For example, in Eq. (50a)
the coefficient multiplying 5z is 12 times that for a',
though 6z is almost an order of magnitude smaller than
a'. Still, this model is fine for calculating the frequencies
of optical phonons, for which short-range interactions are
dominant, even under strain.

This model is able to express the parameters p, q, and r
in terms of microscopic parameters. Previously, Gane-
san, Maradudin, and Ottman studied zone-center opti-
cal phonons in diamond structure materials. p, q, and r
were determined by using only the bond-stretching forces
[the first term in Eq. (1)], and did not agree with experi-
ment. Cerdira eI; al. examined the efFect of strain on op-
tical phonons at zone center using the Keating model,
where p, q, and r were determined, and the VFF model,
where only p and q were determined. The expression for
r from the Keating model did not agree with experiment.
p and q obtained from the VFF model did not agree with
experiment when published model parameters were used.
The authors did not try to optimize these model parame-
ters. Bell added anharmonic contributions to the strain
energy and determined p, q, and r with the Keating mod-
el.

Some of the conclusions drawn in Refs. 7, 8, and 11
about phonon dispersion in strained Si and Ge layers at
ambient pressure need to be altered because of their as-
sumption about the scaling parameters for strain-
modified force constants. The assumption of n =m& in

Refs. 7 and 8 implies that the mode Gruneisen parameter
is the same regardless of phonon branch and wave vector.
With this assumption, phonon dispersion cannot be
correct when a crystal is under any type of strain that
changes bond lengths. Reference 11 assumed that the
force constants associated with bond angles are not
afFected by the presence of the strain. This study shows
that this assumption is incorrect. Still, Refs. 7 and 11
correctly emphasized the need to use strain-modified
force constants in analyzing strained heterostructures,
such as Si/Ge superlattices. The current model provides
a framework and data base for such calculations.

VII. CONCLUDING REMARKS

The dispersion relations for optical and acoustic pho-
nons have been examined in bulk Si and Ge, Si and Ge
strained layers grown on (001) and (111), and ultrathin
Si/Ge superlattices at ambient pressure and under hydro-
static pressure by using a modified Keating model. Fits
have been made using experimental data and several
ab initio results, and there is good agreement with other
experimental results, including those for superlattices.
This model includes four interactions, which involve up
to the fifth-nearest-neighbor atom, and force constants
that depend on strain, the use of which is justified by
analyzing cubic terms in the potential energy. In addi-
tion to specific calculations of phonon dispersion, analyt-
ic forms for the Gruneisen parameters at zone center and
boundaries are obtained for bulk c-Si and c-Ge. For Si
and Ge grown epitaxially on a (111) substrate, the fre-
quency shift due to the biaxial strain for the TO-phonon
mode is found to be almost independent of wave vector
along [111j. The microscopically averaged empirical pa-
rameters p, q, and r that describe the efFects of strain on
optical phonons have been expressed in terms of our
more microscopic model parameters. This model is also
used to obtain the second- and third-order elastic con-
stants for Si and Ge.

Phonons in diamond-structure crystals are described
very well by this model. Further work can go in several
directions. A more comprehensive treatment, including
higher-order interactions, is needed to allow simultane-
ous fitting of all phonon data and third-order elastic con-
stants in these crystals. With some modifications, this
model can likewise be applied to III-V and II-VI zinc-
blende materials, just as the original Keating model was
extended in Ref. 34 to describe phonons in ionic crystals.
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