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Fluctuation spectrum of the electron states in a two-dimensional system
with a Gaussian potential and a transverse magnetic field
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The results of the investigation of the fluctuation region of the electron spectrum in a two-dimensional
system with a Gaussian white-noise potential and a perpendicular magnetic field are presented. We use
the optimal fluctuation method and calculate both the density of states and the localization length in the
whole fluctuation region below the lowest Landau level. We describe all possible structures of the quan-
tum fluctuation region and establish limits on the applicability of the white-noise-potential model as well
as on the approximation based upon the projection onto the lowest Landau level.

I. INTRODUCTION

The characteristics of the energy spectrum of a two-
dimensional electron gas in a magnetic field and interact-
ing with the static random potential is a problem of cen-
tral interest in the realm of the physics of disordered sys-
tems. Like many other problems in this category, it is
natural, first of all, to investigate it in some certain
domains of the energy spectrum where it has more or less
a simple and transparent structure. In the present work
we concentrate on the so-called ‘““fluctuation region,”
where the existence of the spectrum is due entirely to
fluctuations of the random potential which occur with
very small probability.!”* The density of states p(E) is
extremely small in this domain, forming the so-called
“Lifshits tail.” Roughly speaking, it is best represented
by an exponential law

p(E)xexp[ —P(E)],

where ®(E)>>1 is a relatively simple function of the en-
ergy and the space dimension d. For that reason it is the
exponent function ®(E) that is the main subject of in-
terest in this portion of the spectrum.

To explain what region of the spectrum we have in
mind, let us first consider the case in which there is no
disordered potential. We denote the magnetic field by B,
and the effective mass of the electron by m*, and adopt
units such that #=2m * =1 so that energy and magnetic
field are given in units of inverse length square. The ener-
gy spectrum of the electron consists of the set of
Landau levels E,=(2n+1)L ™% n=0,1,..., where
L =V'#c /(]e|B) is the magnetic length. The effect of dis-
order is to broaden this spectrum from discrete levels to
bands. If the magnetic field is much stronger than the
disorder then the concept of Landau levels still makes
sense (see, e.g., a recent paper’), and the fluctuation re-
gions of the spectrum are located on both sides of each
Landau level. On the other hand, we want to discuss also
the situation where the magnetic field is not so strong. In
that case, the fluctuation region is defined only below the
lowest Landau level. This is the domain of the spectrum
on which we will focus our attention, since it is the only
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part which contains a fluctuation region for any value of
the magnetic field.

The study of the energy spectrum below the lowest
band dates back to the middle 1970s.® In these works,
the authors concentrated on the limit of strong magnetic
field. They modeled the disorder by a Gaussian potential
V(R) with zero mean value and a correlation function
W(R—R')=(V(R)V(R’)) with finite correlation radius
R,. In a later paper,’ the limit of Gaussian white-noise
potential

W(R—R')=W,8(R—R’) ;

(1

Wo= [ W(R)AR~W(0)R?
was used to calculate the density of states within the fluc-
tuation approach. Notice that this potential corresponds
to the situation where the correlation radius is the small-
est length parameter in the problem. The technique is
based on a standard generalization of the variational pro-
cedure for white-noise potential to the case where a mag-
netic field is also present. Thereby, the authors obtained
a modified nonlinear Schrédinger equation for the op-
timal wave function. In the far part of the fluctuation re-
gion, where E, <<|E|, this equation was solved by treat-
ing the term containing the magnetic field as a small per-
turbation. The result for the exponential function of the
density of states took the form

@(E)=-11.6~£~(1+0.64E3/E2) . )

0

In the nearest vicinity of the lowest Landau level a direct
variational method was applied. The trial function was
taken to be proportional to the s-wave function of the
lowest Landau level, and the proportionality coefficient
was treated as a variational parameter. The correspond-
ing expression for the exponential function of the density
of states for this part of a spectrum was obtained in the
form’

(E —E,)?

CD(E)%Z’IT_ETWT . (3)
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Later on this result was confirmed in a paper® (see also
Refs. 9 and 10) where the density of states of an electron
in a magnetic field and the white-noise random potential
was calculated exactly under the provision that only the
states of free electrons in the lowest Landau level are tak-
en into account. The exact solution of Ref. 8 agrees with
the expression given by Eq. (3) in the limiting case, when
|E—Ey|>>>E,W,. Thus, it would be an excellent ap-
proximation if the broadening of the Landau levels due to
the random potential is small in comparison with the sep-
aration between adjacent Landau levels, and when we are
considering the energy region close enough to the lowest
Landau level.

However, to the best of our knowledge, there is no full
and complete picture of the electron density of states in
the fluctuation region below the lowest Landau level. As
we have just discussed, the existing results are valid only
in two extreme asymptotic regions, and correspond only
to some parts of the fluctuation region. Besides, the
range of parameters for which they are valid is not clear
enough. Moreover, the limits of applicability of the two
models themselves (the white-noise potential and the pro-
jection on the lowest Landau level) are also not known.
This is the motivation for our investigation.

In the present work we use the optimal fluctuation
method, and study numerically the exponent function of
the density of states pertaining to an electron in a mag-
netic field and the white noise random potential, in the
whole fluctuation region below the lowest Landau level
(E <E,). The limit of applicability of the present (fluc-
tuation) approach for different values of the energy is
determined only by the condition ®(E)>>1. Within the
fluctuation approach itself all the results which we obtain
below are exact. There is, however, a second factor that
may limit the validity of our results, namely the use of
the white-noise model, which defines the so-called quan-
tum part of the fluctuation region. The possibility of re-
placing a given random potential by a Gaussian white
noise depends strongly on the magnetic field and the
correlation radius. We obtain below the condition for the
validity of such a replacement and analyze the general
structure of the Gaussian fluctuation region. These re-
sults are illustrated in the form of a “phase diagram” in
the (R., E,) plane.

II. FORMULATION OF THE PROBLEM

Within the fluctuation approach the exponential func-
tion ®(E) of the electron density of states for the poten-
tial (1) in the pertinent region is given by*?’

[w®RIE -TWwRER |’
®(E)= min,

2W, [ WHR)R

Here T=[p—(e/c) A)? is the kinetic-energy operator ex-
pressed in terms of the momentum p and the vector po-
tential A. The minimum on the right-hand side of the
expression for ®(E) has to be taken on a set of monotoni-
cally decreasing radially symmetric functions W(R). It is
useful at this point to introduce a dimensionless energy
variable e=1—E /E, which is positive within the per-
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tinent region of the spectrum (E <E,), and an energy-
dependent dimensionless radial coordinate r =R/
LV'y(e). The function y(e) can be considered here as a
parameter, and will be determined within the variational
calculus. Performing the minimization procedure we

may write the exponent as

o(E)= 20 ) @

(E)= W, (g), )
— 47 ®© 14

I(e) y(s)fo W4r)rdr . (5)

The “optimal” wave function W(r,e) satisfies the non-
linear Schrodinger equation

_1d
rdr

dW¥(r)

p—_—

)
ar 2¥°(r)

+ ri—y W(r)=—ey(e)¥(r), (6

2
I——f) 2o (e)

with the initial conditions
v(0)=1, ¥(0)=0. (7)

The unknown function y(e) [beside the wave function
W(r) itself] has to be found from the additional condition
that W(r) should decrease monotonically to zero as r
tends to infinity.

We would like to emphasize that in the fluctuation re-
gion the energy itself is asymptotically a good quantum
number,’ and the optimal wave function is asymptotically
a true eigenfunction. Therefore we can obtain the locali-
zation length £(E) from the solution of Eq. (6) in the
quantum fluctuation region,

EE)=Lg(e), gle)=Vy(e)f(e),

(8)
2Ae)= [ “WAr)rid / g2 .
fHey= [ W nwrar [ [ "W dr
In the next section we solve Eq. (6) numerically
without any additional assumptions or approximations,
and obtain the exponent ®(E) as well as the localization
length £(E) in the whole quantum fluctuation region.

III. RESULTS AND DISCUSSION

The choice of an appropriate normalization (7) for the
wave function W(r) enables us to reduce the problem to
the solution of an ordinary differential equation (6) with
initial conditions as in Eq. (7). However, the procedure
of the numerical solution of Eq. (6) has some peculiari-
ties. To understand its nature we first consider the
simpler case where the magnetic field is absent. It corre-
sponds to the limit y(g)—0,e— o,ey(e)—>gy=const. In
the present two-dimensional case, there is an infinite set
of solutions {W¥,(r),g; <0} corresponding to exponentially
localized functions W;(r), but only one of them [W(r),g]
corresponds to the positive and monotonically decreasing
solution which we are looking for.!! Thus, in the absence
of the magnetic field, only one ‘“nonlinear eigenvalue” g,
has to be found (according to Ref. 3, £,=0.41). The situ-
ation becomes much more difficult in the presence of a
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magnetic field. It is now necessary to obtain the function
v (€) for as many values of € as possible.

However, at least in the deepest tail of the density of
states, where |E|>>E, or £>>1, the magnetic field is
effectively small and the electron almost does not feel it.
Therefore to first order in E, /E the exponent function of
the density of states depends very weakly on E,, and
hence the first term on the right-hand side of Eq. (2)
should be an excellent approximation. The only way to
achieve it in a self-consistent manner is to require that,
asymptotically as € tends to infinity, the function I(g)
defined in Eq. (5) will be linear in € with an appropriate
coefficient

I(e)—11.6¢ .

In the opposite limiting case (in the closest vicinity of
the lowest Landau level), Ey—E <<E, or €—0, the elec-
tron does not feel the higher Landau levels and ®(E) has
to coincide with its asymptotic expression (3). The only
way by which it can happen is that the asymptotic form
of the integral (4) for I (¢) (as e—0) will be

I(e)—2me? .

Thus we can use both of the limiting cases (namely £€—0
and € — o) as checks for the numerical procedure.

The results of our calculations are presented in Figs.
1-3.

The functions I(e) /¢ for 107! <& < 107 and I (g) /€ for
1072 <e <107 ! are plotted in Figs. 1 and 2. The function
I(e) may be replaced for rough estimates by two simple
functions

10e? e<1
" |10e g&>1 (far subregion) .

(near subregion)
I(e)

9)

In both limiting cases €—0 and €— « the results for
the exponent of the density of states coincide perfectly
with the ones obtained earlier, except that we found
C=~11.7 in Eq. (2) instead of C~11.8 (Ref. 3) and
C=~11.6 (Ref. 8). Nevertheless we note that our numeri-
cal result for exponent ®(E) in the vicinity of the lowest
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FIG. 1. The function I(g)/e=®(E)W,/(E,—E) [see Eq. (5)]
in the intermediate and far parts of the fluctuation region
(107 '<e<10%).

[N RTTIT S T T B R TTI B ST R

M. ZUSMAN, Y. AVISHAI, AND S. A. GREDESKUL 48

6.3 e

6.25

Ie)e
mt
6.15[
6.1
0

P RS R R

) S S SN SN SO SO S HY SO S S

0.02 0.04 0.06 0.08 0.1 0.12
€

FIG. 2. The function I(e)/e?=®(E)W,E,/(E;—E)? [see
Eq. (5)] in the nearest part of the fluctuation region
1072<e<107

Landau level is always somewhat less than one given in
Eq. (3) and predicted in papers.”® This difference is not
surprising, and it is due to the inclusion of higher Landau
levels. In the special case where the disorder is very weak
(W, << E), this difference may be crucial.

The dimensionless localization length g(e) defined in
Eq. (8) is depicted in Fig. 3. In the interval 1<g < 10,’
the localization length (up to a factor of order unity) can
easily be approximated by the relation

L

§(E) r=|E|72.

1__
E,

For small € (say 0.01 <& < 1.7, namely close to the lowest
Landau level from below) we have g(g)~ 1, hence the lo-
calization length coincides with the magnetic length,
namely

EE)~L .

This result shows that for the Gaussian white-noise po-
tential the localization length is always finite in fluctua-
tion region. Therefore the divergence of localization
length may occur only in the nearest vicinity of the Lan-
dau level.!?
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FIG. 3. The dimensionless localization length g(e)=&(E)/L
[see Eq. (8)] in the whole fluctuation region.
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We are now in a position to discuss the general struc-
ture of the Gaussian fluctuation spectrum. Consider a
random potential as in Eq. (1) with fixed values of W (0)
and R,.. Let us first recall that the region for which the
fluctuation approach is applicable is determined by the
inequality.

P(E)>>1, (10)

where, in the quantum fluctuation region, the function
®(E) is defined by Eq. (4). As was shown, it is possible to
use the white-noise approximation (1) if the correlation
radius is the smallest length scale in the problem, so that
the quantum fluctuation region is bounded from below
due to the inequality*

E(E)>>R, . (11)

If we now combine the conditions formulated in Eqgs. (10)
and (11) and our numerical results displayed in Figs. 1-3,
we can analyze the general structure of the Gaussian fluc-
tuation region, and summarize it in the form of the
“phase diagram” in the (R, E,) plane (see Fig. 4). In this
figure, the various domains of applicability of the two
models are drawn. To elaborate on the results presented
in this figure, we keep the value of W(0) fixed, and this
quantity defines a characteristic energy scale [W(0)]!/2.

First, let us assume that there are long correlations in
this system, so that the inequality R, 2<<[W(0)]'/? is
satisfied (see region I in Fig. 4). Then the white-noise ap-
proximation is not valid, the quantum fluctuation domain
is empty, and the exponent of the density of states has to
be described by the classical asymptotics.®

Second, if there are short correlations, then the in-
equality R, 2<<[W(0)]'”? holds (regions II-IV of Fig.
4). Then a new characteristic energy appears in the prob-
lem:

(i) Weak magnetic field E, << W, (region II of Fig. 4).
Here the characteristic energy interval between the fluc-
tuation region and the lowest Landau level is large com-
pared with the cyclotron energy. It means that all the
Landau levels have to be taken into account. Therefore,
the projection approximation® is not valid. On the other
hand, up to energies of order R, 2 the correlation radius
is much smaller than the localization length and, there-
fore, the white-noise model is applicable. As for the den-
sity of states, only the far asymptotic form for ®(E) [Eq.
(2)] manifests itself. It is valid in energy domain
W, <<|E|<<R2

(ii) Intermediate strength of the magnetic field, namely
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FIG. 4. “Phase diagram” in the (R.,E,) plane. In regions I
and IV the white-noise approximation is not valid. In region II
the projection approach is not valid and only the far asymptotic
expression for ®(E) [Eq. (2)] manifests itself. In region III the
quantum fluctuation region consists of two subregions, where
both asymptotic expressions (3) and (2) manifest themselves.

Wy <<E,<<R? (region III of Fig. 4). Here the disor-
der is comparatively weak, and the characteristic energy
interval between the fluctuation region and the lowest
Landau level is small compared with the cyclotron ener-
gy. Therefore, near the upper bound of the fluctuation
region defined by E,—E~V E,W,<<E,, one can
neglect the contribution of higher Landau levels. In oth-
er words, the projection method® is applicable in this
subregion. That leads to the asymptotic expression for
®(E) given by Eq. (3). In the deeper region, where
|[E| > E,, one cannot neglect the contribution from
higher Landau levels. Nevertheless, the white-noise mod-
el is applicable up to energies of order R, 2. As for the
density of states, the far asymptotic form for ®(E) [Eq.
(2)] manifests itself. It is valid in an energy domain
E,<<|E|<<R 2

(iii) The limit of the strong magnetic field, R, 2<<E,
(region IV in Fig. 4). Here the magnetic length is ex-
tremely small compared with the correlation radius.
Therefore, an approximation of the random potential by
a &-correlated one is not valid, and the fluctuation region
is identical to the classical one.
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