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Electronic structure and equilibrium properties of Ga A11 N alloys
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First-principles calculations by means of the linear-mufFin-tin-orbital method were carried out
of the electronic band structures, equilibrium lattice constants, energies of formation, and bulk
moduli of Ga Al& N alloys in zinc-blende-derived structures with a specific cation ordering. The
miscibility and band-gap bowing of disordered alloys were studied using a cluster expansion method.
Complete mutual solubility is predicted to occur at typical growth temperatures. The band gap is
found to exhibit a weak bowing and to change from. being indirect (I' —+ X) for x = 0 to direct at
I' at a concentration of x 0.4.

I. INTRODUCTION

With the (room temperature) band gap varying &om
3.4 eV in GaN to 6.2 eV in AlN, the Ga Ali N al-
loy system has great promise as a wide-band-gap semi-
conductor for optoelectronics. ' This is particularly true
because in their natural crystal structure (wurtzite) both
AlN and GaN have direct band gaps. Recently, impor-
tant progress has been made in epitaxial growth of semi-
conductor grade films of these materials [intrinsic carrier
concentrations in the range 10 —10 cm and mobili-
ties up to 600 cm /Vs (Ref. 6)] and controlled p (with-
Mg) (Refs. 3—5) and n-type (with Si) doping. Light emit-
ting diodes emitting in the UV/violet region have been
fabricated from Ga Ali N/GaN heterostructures and
stimulated emission has been demonstrated by Akasaki
and Amano.

While both materials occur naturally in the hexago-
nal wurtzite structure, it has proven possible to stabi-
lize the zinc-blende structure of GaN on GaAs (001)
substrates and on cubic SiC (001) substrates. i In
fact, the existence of one-dimensional disorder in the cu-
bic vs hexagonal stacking in GaN has been reported by
Lei and Moustakas. The only report of the existence of
zinc-blende A1N that we are aware of is that of AlN pre-
cipitates formed by N-ion implantation in fcc Al. Nev-
ertheless, both for AlN and GaN the energy di8'erence
between the zinc-blende and wurtzite structures is very
small [of the order of 10—15 meV/atom for GaN (Refs. 13
and 14) and 18 meV/atom for AlN (Ref. 14)]. It would
thus appear possible to stabilize both in the zinc-blende
structure. The existence of two diferent crystal struc-
tures with difI'erent electronic band structures, phonon
scattering, etc. , adds further versatility to this alloy sys-
tem. Because of the higher symmetry, the zinc-blende
form may have certain advantages such as higher drift
velocity. Band structure calculations by Lambrecht and
Segall, however, predict that the band gap of cubic AlN
would be indirect I' ~ X and 1 eV lower than for the
wurtzite polytype. Cubic GaN, on the other hand, is
predicted to be direct. The question thus arises for the
Ga Al~ N alloy system as to where the transition &om
the indirect to the direct band gap takes place.

In this paper, we present calculations of zinc-blende al-
loys of Ga Alz N. Our first-principles calculations ad-
dress both the miscibility and electronic properties. The
approach is based on the cluster expansion method with
the expansion parameters determined kom calcul .tions
for the ordered structures at 2; = 0, 0.25, 0.50, 0.75, 1. We
determine the concentration dependence of the conduc-
tion band minima at I' and X relative to the valence band
maximum, i.e., the relevant band gaps. Since the conduc-
tion band minimum at I' changes very little between the
wurtzite and zinc-blende structures, our results also pro-
vide an approximation for the direct band-gap behavior
in wurtzite Ga Alq N alloys.

The computational approach is described briefly in
Sec. II. Results for the equilibrium total energy proper-
ties of the ordered compounds are given in Sec. III A. 'The
miscibility is disussed in Sec. IIIB. Results for the band
structures, and, in particular, the band-gap behavior are
presented in Sec. III C. The conclusions are summarized
in Sec. IV.

II. COMPUTATIONAL METHOD

The approach utilized here to study the statistical
mechanical properties of disordered alloys is the clus-
ter expansion method of Sanchez and de Fontaine
and Sanchez et al. As suggested by Connolly and
Williams, first-principles calculations of a set of or-
dered compounds are used to derive the coefFicients of
the cluster expansion. The cluster expansion was ini-
tially applied to binary alloys. The semiconductor alloys
that we consider in this paper are strictly ternary alloys.
However, because the energy costs of antisite defects are
considerably higher than the relevant energies involved
in the problem, i.e. , the formation energies, we assume
that the disorder occurs only on the cation sublattice.
This reduces the problem to that of binary alloys on the
face centered cubic (fcc) lattice, i.e. , to a pseudobinary
alloy. The properties of interest here are the energy of
formation AE1(x) and the band gap E~(x) at various k
points as a function of concentration x in Ga Alq N.

By truncating the cluster expansion at the level of
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nearest neighbor tetrahedron interactions, the problem
can be reformulated as follows. For each of the five basic
types of (cation) nearest neighbor tetrahedrons A B4
with n = 0, 1, 2, 3, 4, there is a certain probability P (x)
of occurrence in the disordered alloy of concentration x.
The property 0 is then expanded as follows:

with the total energy E& q normalized per atom. In order
to ensure comparable k-sum convergence in all terms in

(3), the calculations of Et & for GaN and AlN were carried
out in the same unit cell and with the same density of k
points as the corresponding alloy.

III. R,ESULTS

On the other hand, we can associate each tetrahedron
with a well defined ordered compound: A4 and B4 with
the pure fcc sublattice (here actually zinc blende when
the counter anion is taken into account), A2B2 with
the I 10 ordering of the cation sublattice, and A.3B and
AB~ with the 112 ordering. Figures of these structures
can be found for example in Ref. 19. In each of these,
only the corresponding tetrahedron occurs. We can thus
straightforwardly associate the property of the ordered
compound with the property 0 of the corresponding
tetrahedron. The procedure employed here is a special
case of the more general approach in which the cluster
expansion applied to a given set of ordered compounds
is inverted to derive the interaction parameters. In a
full-Hedged application of the cluster variation method,
one determines the probability of each cluster P (z, T)
by minimizing the Bee energy (at a given temperature
T) with respect to the P (x, T). Instead, for simplicity,
we assume here a random (i.e. , binomial) distribution
function,

A. Equilibrium properties of the ordered compounds

The total energy was calculated as a function of vol-
ume for each of the ordered. compounds discussed above.
The resulting equation of state was fitted to the equa-
tion of Rose et al. in order to obtain the equilibrium
lattice constant ao, cohesive energy E, bulk modulus Bq,
and its pressure derivative B'. The atomic total energies
used in the calculation of the cohesive energy include a
spin-polarization correction. These results are shown in
Table I.

The lattice constant, bulk modulus, and its pressure
derivative are all seen to follow a linear concentration
dependence very closely. For the lattice constant, this
corresponds to Vegard's law. The agreement with the
available experimental data at the endpoints of the con-
centration range is satisfactory aside &om the usual over-
estimate of the cohesive energy by the LDA.

P„(x) =
i

ix"(1 —x)'-",
(n (2)

B. Miscibility

&E,(x) = E...(Ga.Al, .N) —*E...(GaN)
—(1 —x)Etpt (AlN), (3)

corresponding to the high temperature limit. We do not
claim here that the above approach would be well con-
verged at the tetrahedron level. In fact, the work of Wei
et a/. indicates that longer range pair interactions can
make significant contributions. Nevertheless, the above
formulation provides us with a useful first approximation.
We may also note that for those alloys that are not in
thermodynamic equilibrium at the growth temperature,
the distribution of clusters will deviate from that derived
by the cluster variation method. A random distribution
may in fact be more representative of the frozen-in disor-
der of the gas phase or liquid phase IIrom which the solid
solutions are quenched.

For the study of the properties of the ordered com-
pounds, we employ the linear-muKn-tin-orbital method
in the atomic sphere approximation (ASA) (Ref. 20) and
the density functional theory in the local density ap-
proximation (LDA) (Ref. 21) using the Hedin-Lundqvist
parametrization of exchange and correlation. Since the
zinc-blende structure is not close-packed, empty spheres
were introduced in the interstitial region and the com-
bined correction was applied. Monkhorst-Pack sets of
eight and six special k points were used, respectively, for
the L10 and I l~ structures leading to a convergence of
better than 1 meV/atom.

The energies of formation are

AEy(x) = 4AE2x(1 —x). (4)

This indicates that the energetics of this system can ap-
proximately be mapped onto that of the ferromagnetic
Ising model. An estimate of the maximum of the mis-
cibility gap (MG) is then given by

TM~ —0.8163 x 26E2/k,

TABLE I. Equilibirum properties of ordered Ga Alj N

alloys. Experimental values are given in parentheses. For the
lattice constant, it is the "cubic" value yielding a volume per
atom equal to the measured volume for the wurtzite structure.

AlN
GaA13N4
GaAlN2
Ga3AlN4
GaN

ap (A)
4.35 (4.37)
4.39
4.43
4.46
4.48 (4.50)

E, (eV/atom)
6.40 (5.75)
6.04
5.69
5.35
5.02 (4.45)

Bp (GPa)
209 (210)'
208
206
203
199 (190)

B'
3.9
4.0
4.2
4.3
4.4

Reference 35.
From enthalpies of formation given in Ref. 36.
Reference 37.

"Reference 38.

The energies of formation are shown in Fig. 1. The
positive values indicate a phase separation behavior of
the alloy system. To within the estimated accuracy of our
calculation, the energies of formation follow a parabola,
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FIG. 1. Energy of formation of Ga Alz N alloys.
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with k the Boltzmann constant. This is based on the
regular solution model with a renormalization coeKcient
0.8163, as explained in Ref. 26.

For the present systems this implies that TMC = 400
K. This indicates very good solubility at moderately high
temperatures. At typical growth temperatures, T
600'C, we can thus assume complete solubility. This
implies that the high temperature random distribution
function of the clusters that we will assume below for the
band-gap behavior should be a fairly good approxima-
tion.

We note that our value of TMG is probably an underes-
timate because the present calculation neglects the resid-
ual internal strains in the alloy. That is, we have implic-
itly assumed that each cluster takes the equilibrium vol-
ume per atom of the corresponding ordered compound.
Because of the O'Fo lattice mismatch between A1N and
GaN, the local clusters will occupy a volume intermedi-
ate between that of the ideal volume of each cluster and
the volume corresponding to the average lattice constant
of the alloy in which it occurs. As shown in a previous
study of Ni~Ptz alloys, which involved much larger
( 14%) lattice mismatches, this effect may lead to ap-
preciable changes of the energies. Indeed, the elastic en-
ergy involved in compressing GaN and expanding AlN
to the average lattice constants can easily be estimated
&om the bulk modulus. It is found to be of the same or-
der of Inagnitude as the calculated energy of formation.
This, however, is an overestimate since the energy will be
lowered by the relaxations of the nearest neighbor Al-N
and Ga-N bonds. But even with a change by a factor of
2 in the miscibility gap, our conclusion that there is good
solubility at the growth temperatures remains valid. Fi-
nally, we note that typical growth methods used for these
compounds may involve conditions removed &om equi-
librium. This makes an accurate determination of the
miscibility gap temperature a less urgent issue. Further
work will be necessary to obtain a more accurate value
of the miscibility gap temperature.

C. Electronic band structure

The band structures of the ordered compounds are
shown in Figs. 2—4. Strictly speaking all of these have

—14—
—16

FIG. 2. Band structure of GaA13N4 in the Llq cation or-
dered zinc-blende structure. The labels of the A; points of the
simple cubic Brillouin zone along the axes follow Ref. 29. The
zinc-blende labels of specific eigenvalues are explained in the
text.

direct band gaps at I'. However, as we now discuss, some
of these gaps are only "pseudodirect. " By that we mean
that the state at the conduction band minimum is re-
lated to a zinc-blende Brillouin zone (BZ) edge state (at
X) folded onto the I point by the doubling or quadru-
pling of the cell. This implies that the corresponding
wave functions show a strong similarity to the X& state

16
GaAlN)
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G) 2—
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FIG. 3. Band structure of GaAlN2 in the Llo cation or-
dered zinc-blende structure. The labels of the k points of the
tetragonal Brillouin zone along the axes follow Ref. 29. The
zinc-blende labels of specific eigenvalues are explained in the
text.
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FIG. 4. Band structure of Ga3AlN4 in the L12 cation or-
dered zinc-blende structure. For labeling see Fig. 2.

FIG. 5. Band structure of zinc-blende GaN in the tetrag-
onal (doubled) unit cell and Brillouin zone. For labeling see
Flg. 3.

of zinc blende and thus that the optical dipole matrix
element can be expected to be smaller than those for an
allowed gap in zinc blende. (To avoid confusion, we will
indicate that the symmetry labeling and k-point nota-
tion corresponds to that for zinc blende by a superscript
zb. Unsuperscripted k points correspond to the tetrago-
nal or simple cubic BZ relevant for the 50%%uo and for the
25% and 75'%%uo alloys, respectively. ) The k-point notation
of the simple cubic and tetragonal Brillouin zones follow
Bradley and Cracknell. The magnitude of the matrix
element will depend on the difI'erence of the Al and Ga
potentials and on the extent of the relaxations from the
ideal zinc-blende lattice positions.

To facilitate the comparison of the band structures of
the alloys to those of the parent compounds AlN and
GaN, it is useful to display the bands of the latter using
the same Brillouin zone and unit cell as for the alloy. For
example, the bands of GaN in the double cell are shown
in Fig. 5. As is clearly evident, there is a great similarity
to the bands of GaA1N2 (Fig. 3) aside from the lifting
of some degeneracies in GaAlN2 due to a lowering of the
symmetry. The lowest two conduction band states at I'
and M (of the tetragonal BZ) have been labeled using the
notation of the zinc-blende (or fcc) BZ. The A f, state is
seen to occur both at M and I' of the tetragonal BZ. The
state folded to I' is the Xz state in the z direction. The
doubly degenerate M conduction band minimum corre-
sponds to the equivalent states of the x and y directions
of the zinc-blende BZ. This is because the tetragonal unit
cell is rotated 45 from the cubic axes (see Fig. 6). One
can then see that the bands along I' —Z (tetragonal)
are essentially the folded version of the I" —X' bands.
Along the tetragonal I" —M line one finds two sets of
bands: the I' —X~b bands and the bands joining one
X' state to another.

We note that in GaN the lowest conduction band is the
I z state, the next higher one being the Xz state. In

AlN, the order is inverted. The reason for this has been
discussed in Ref. 15. Basically the reason why the I'z,
state is deeper (relative to the Xz," state) in GaN than
in AlN is that the purely 8-like I'z state is sensitive to
the potential near the cation nucleus. Thus it is deeper
for the element Ga which has the higher Z (Z being the
atomic number). In a tight-binding description, the Xz,
state is an antibonding combination of anion 8 and cation
p. In our I MTO-ASA expansion, it also has a significant
weight in the interstitial (empty sphere) region. Because
p-state wave functions vanish at the nucleus, they are less
sensitive to the atomic number. Thus, the Xz, states in
GaN and A1N are more similar to each other than are
the I';b states.

Returning to GaAlN2, we find that the lowest conduc-
tion band state is symmetric with respect to the fourfold
rotation inversion symmetry operation whereas the sec-
ond one is odd. Indeed, the lower state has cation s
contributions and no p, while the opposite is true for

X

x/ &

Al (0)

FIG. 6. Structure of the I 10 structure in (001) projection.
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the second one. Only the symmetric state is compatible
with the I'& symmetry. Thus, we can identify the lower
one as an "I"~ -like" state and the second one as an "Xz-
like" state. The Xz -like state is not exactly the same
as the corresponding states at M because the symmetry
between (x,yj and z has been broken.

Similarly, we can identify the states in the Ga3AlN4
and GaA13N4 band structures by comparison to those of
GaN and A1N in the quadrupled (simple cubic) unit cell.
The identification of the low-lying conduction band state
at I' is even more straightforward since the triply de-
generate eigenvalue must clearly correspond to the three
(x, y, and z) folded X'f, states. We thus conclude that
GaA13N4 has only a pseudodirect, while the other two
alloys have a direct band gap. This already indicates
that the "indirect-to-direct" crossing takes place between
x = 0.25 and x = 0.50.

Some amplification of the above statement is in order.
As noted above, the matrix element at the pseudodirect
transition in GaAl3N4 is not zero, and, depending on the
strength of the perturbations, may not be very small.
Furthermore, for the random alloys (i.e. , for x g 0.25),
the k-selection rule breaks down. Thus the transition be-
tween the "indirect" and "direct" gaps will not be sharp.

To determine the crossover more accurately, we use
the cluster expansion method to extend our results to
a continuous range of concentration values. Applying
Eqs. (1) and (2) to the direct I'zs„-+ I'zb and "indirect"
I'&5 —+ Xz gaps, we obtain the results of Fig. 7. We
see that both vary nearly linearly, i.e., there is negligible
band-gap bowing. The Xz state remains almost con-
stant with respect to the valence-band maximum while
the I z, state decreases linearly from 4.26 eV in AlN to
1.97 eV in GaN. (These values correspond to the calcu-
lated equilibrium structures. ) This is consistent with the
anion-8 —cation-p nature of the Xz state and the great
similarity between Al and Ga p states mentioned earlier.
A larger variation occurs in the 8 states for the reasons
discussed above. The crossover &om indirect to direct

gap is found to occur at x = 0.43, corresponding to a
maximum direct gap of 3.22 eV.

We note that all the band gaps reported here are un-
derestimates because of the LDA. The band gap correc-
tion expected for AlN is 1.3 eV (i.e. , the difference be-
tween the experimental and LDA value of the band gap
for the wurtzite structure s) and 0.8 eV for GaN. The
correction is expected to vary approximately proportion-
ally to the band gap itself because it varies proportionally
to the inverse of the dielectric constant. Since the band
gaps vary nearly linearly with concentration in the alloy
system, the correction can also be expected to be linear
in the concentration.

The band-gap bowing (i.e. , deviation f'rom linearity)
found here is surprisingly small when compared to recent
results for other wide-band-gap semiconductor alloy sys-
tems such as diamond/c-BN and SiC/BP. 2s' In those
cases, the band-gap bowing was associated with type-II
band offsets at the corresponding heterojunctions. The
band-ofFset at GaN/A1N heterojunctions has not yet been
determined.

Another possible origin of band-gap bowing is bond-
length relaxations. One may expect the Al-N and Ga-N
bond lengths to relax towards their ideal values leading
to a distortion of the structure. To make an estimate of
this, consider a simple ball and spring model with central
force constants. Assuming that only the N atom is dis-
placed from its ideal position towards the Al and away
&om the Ga, one can easily show that minimization of
the elastic energy would lead simultaneously to an ideal
Ga-N and Al-N bond length. Inclusion of bond-bending
forces and/or Ga-Ga and Al-Al forces will lead to devi-
ations from this simple result. A compromise between
the average bond length scaled by Vegard's law for the
alloy's lattice constant and the equilibrium ideal lengths
for each bond separately will be reached. To obtain an
upper limit for the eR'ects of the relaxation on the band-
gap bowing, we have repeated the band structure calcu-
lations assuming relaxation to perfect Al-N bond lengths
of 1.88 A, and Ga-N bond lengths of 1.94 A. . As may
be seen in Fig. 7, the resulting changes lead to a small
upward bowing of the band gaps. The band-gap bowing
parameters bp and 6~ defined by

EG (z) = E~ + AEG (z —1/2) —bz(1 —z),

0.25
I

0.5
X

I

0.75

FIG. 7. Band-gap variation with concentration x in
Ga Alz N alloys. The direct gap I"z5 ~ I'z, is indicated
by D and the "indirect" gap I'y5 —+ Xy by I. The full lines
are the results for the ideal structures and the dashed lines
are upper limit estimates for the distorted structure including
bond length relaxation.

with E~ ——[E~(l) + EG(0)j/2 and AE~ = E~(1)—
EG(0), are br = —0.40 eV and b~ = —0.92 eV.

Finally, we note that the I'& conduction-band mini-
mum and I"~5 valence-band maxima are very similar in
nature to the corresponding states in the wurtzite struc-
ture. It is thus reasonable to consider their variation
as an approximate model for the variation of the direct
gap in wurtzite. The nearly linear variation of the di-
rect band gap at I' is qualitatively in agreement with the
experimental data on wurtzite Ga Alq N (Refs. 31—33)
which do not show any definitive indication of band-gap
bowing to within the accuracy of the measurements. In
Ref. 32 a weak upward bowing, i.e. , a small negative b

parameter, was obtained. It was also reported there that
the lattice constant c did not vary linearly with composi-
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tion. That is in contrast to most III—V alloys. This fact
was believed to be a manifestation of the internal stress
caused by the lattice mismatch between the Ga Al» N
and the sapphire substrates. On the other hand, Khan
et al. obtained a weak downward bowing of the gap
with a bowing parameter 6 = 0.98 eV. Those measure-
ments, however, only covered the range 0.76 & x & l.
Also, these authors reported that their x-ray analyses dis-
played a compositional fluctuation in their samples which
increased with decreasing x.

The experimental results regarding band-gap bowing
are thus inclusive except for the fact that the bowing is
small. It could be dependent on the manner in which the
samples are grown. Clearly more work in this area would
be desirable. As we noted earlier, the actual values of the
band gaps are not in agreement with experiment because
of the LDA underestimate. As discussed above, however,
this is not expected to change the band-gap bowing, nor
the direct-indirect crossover.

IV. CONCLUSIDNS

with the concentration 2:. The energies of formation w~re
found to be small and positive (of the order of 15—20
meV/atom) with an approximately parabolic concentra-
tion dependence. Using the cluster expansion method in
the (cation) nearest neighbor tetrahedron approximation
of Connolly and Williams, these results were used to es-
timate the miscibility gap critical point of the disordered
alloys. Although refinements of the calculation are nec-
essary to obtain an accurate calculation of the latter, we
can safely conclude that full miscibility can be assumed at
the typical growth temperatures. The nature of the min-
imum band gaps of the ordered compounds, pseudodirect
I' ~ X or direct at I', was determined by comparison to
the band structures of the parent coxnpounds and inspec-
tion of the wave functions and their symmetries. Using a
cluster expansion assuming a random occurrence of the
cation nearest neighbor tetrahedral clusters, we deduce
an indirect-to-direct crossover at x —0.43. The band-gap
bowing is found to be very small and positive even when
atomic bond-length relaxation e8'ects are included. The
nearly linear behavior of the direct gap at I" is in agree-
ment with experimental data on the wurtzite alloys.

Linear-mufBn-tin-orbital band structure and total en-
ergy calculations were performed for Ga Al» N alloys in
zinc-blende-derived structures with L12 ordering of the
cations at x = 0.25 and x = 0.75 and Llo ordering at
x = 0.5. The lattice constant, bulk modulus and its
pressure derivative, and the direct (I' ~ I') and indirect
(I' -+ X) band gaps were found to vary nearly linearly
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