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Various appearances of Rabi oscillations for 2m-pulse excitation in a semiconductor
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The number of complete Rabi oscillations of the electron-hole density induced by square optical
pulses with area-2' is studied using the coherent part of the semiconductor Bloch equations. It
is shown that the frequency of the density oscillations depends strongly on the exciton binding
frequency, detuning, and the Rabi frequency of the light pulse. The well known doubling of the
density oscillation frequency is only observed if the Rabi frequency and exciton binding frequency
are approximately of the same order of magnitude. However for strong and weak excitation the
semiconductor exhibits properties of atomic systems.

I. INTRODUCTION

Several coherent optical effects in semiconductors are
observed experimentally by investigating semiconductor
microstructures with short light pulses and described the-
oretically by solving the semiconductor Bloch equations.
Examples are transient oscillations in differential trans-
mission spectra, the optical Stark efFect, the semiconduc-
tor photon echo, as well as coherent pulse breakup.
Another coherent effect observed theoretically is tempo-
ral oscillation of the electron-hole density (Rabi oscilla-
tions) during the presence of an ultrashort light pulse
in the sample. These oscillations have been studied by
several authors for resonant excitation of semiconductors
such as GaAs and CdSe. In these studies the tempo-
ral behavior of the density was shown to exhibit almost
twice as many complete Rabi oscillations of the density
as the number of complete Rabi oscillations known from
the interaction of light with atomic systems. In the latter
case, the number of complete Rabi oscillations depends
on the area 0 of the light pulse which is defined by

0= At dt.

Here the Rabi frequency O(t) of the light pulse is given by
the dipole transition moment d „and the slowly varying
envelope of the electric field E(t):

or not the often observed doubling is a systematic effect.
In the previous studies of complete Rabi oscillation
in semiconductors, light pulses with intensities of sev-
eral GWicm and pulse durations in the femtosecond
domain are used to excite the semiconductor. Hence the
maximum Rabi &equency A of the light pulses is more
or less in the order of the exciton binding &equency of
the investigated materials. For different values of this
ratio of exciton binding frequency and Rabi &equency
drastic changes in the number of complete Rabi oscilla-
tions may occur even for fixed light pulse area of 2' [Eq.
(I)j. The reason for this is given by competing effects of
three characteristic &equencies which govern the interac-
tion of light pulses with the semiconductor and especially
by the so called exchange efFects which are characteristic
for the semiconductor material. These three &equencies
are the maximum Rabi frequency 0 = max(O(t)) of the
light pulse, the exciton binding frequency u = 2&, and
the detuning b between the carrier &equency of the laser
pulse and the exciton resonance. Here ao is the Bohr ra-
dius of the exciton. The aim of this paper is to show the
strong dependence of the number of complete Rabi oscil-
lations on the ratio of Rabi &equency and exciton binding
frequency (and the detuning as well) for light pulse ex-
citation with area 2m. The parameter regime (0,w, h)
which causes the often observed doubling of the num-
ber of complete Rabi oscillations in a semiconductor is
investigated.

dcvE(t)
I (2)

if the total electric field is given by f(t)
2E(t)e* ~t+c.c. For noninteracting two-level systems
only one complete Rabi oscillation is expected if the area
of the pulse is 2'. However, pulses with the area of 2m

induce almost two complete Rabi oscillations in the semi-
conductor electron-hole density. ' ' This difference in
comparison to one complete Rabi oscillation in the two-
level system electron density was explained by the renor-
malization of the optical field due to Coulomb coupling
of electrons and holes. ~ The question arises of whether

II. BASIC EQUATIONS

The interaction of short light pulses with semiconduc-
tors is described by the coherent part of the semicon-
ductor Bloch equations for a two band semiconductor as
derived in Refs. 6—9. These equations determine the tem-
poral dynamics of the polarization functions Pq and the
electron and hole distribution functions fz under the in-
fluence of the optical field Z(t) with the carrier frequency
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case (one complete Rabi oscillation for exact resonance)
is very simple.

e/h
= i(O"P~ —AqP").

III. ANALYTICAL CONSIDERATIONS FOR
LIMITING CASES

Here the renormalized field Aq is the sum of the
optical Rabi frequency 0 and Coulomb corrections:

0".= 2+ ~).V. 'P'-
g

hq
~~ = ~g~v+ 2m' ff

(4)

These equations contain the Coulomb interaction V~ =
Lu, ' between electrons and holes in the time depen-
dent Hartree-Fock approximation which leads to a cor-
rection of the source term 0/2 in Eq. (4) and to the band
gap renormalization Eq. (3). The total electron-hole den-
sity is given by the sum over all distribution functions f~:

n2(t) = 2) fq

Q! = (d~/0, p = 8/0,

6 = (dg~p —(d~ —(dL, .

The parameter b is a measure of the detuning of the laser
frequency ~L, &om the fundamental exciton resonance,
which is obtained by a diagonalization of the linearized
Eqs. (3) and (4) in the weak excitation limit. The ex-
citon resonance position is one binding energy Lu below
the band gap Acus ~. We keep the area Eq. (1) of the
pulse 2' and investigate the number of complete Rabi
oscillations for different n and P. The choice of a 27r area
has the advantage that the comparison with the atomic

I

The factor of 2 accounts for the spin. It was shown that
the quantity n2(t) undergoes coherent temporal oscilla-
tions (complete Rabi oscillations) for short pulse exci-
tation of the semiconductor. Because we are inter-
ested in the dependence of the number of those complete
Rabi oscillations on the ratio between exciton binding fre-
quency (or detuning of the exciton resonance with respect
to the laser frequency) and Rabi frequency we introduce
the dimensionless quantities n and P:

To investigate the temporal behavior of the electron-
hole density n2(t) for arbitrary excitation conditions one
has to solve Eqs. (3) numerically. However, to get
some analytical insight and to understand the expected
competition between Rabi &equency and exciton binding
frequency we discuss two asymptotic cases.

(i) o. (( 1,P (( 1. In this case the Rabi frequency is
supposed to be large compared with the exciton binding
&equency and the detuning. Therefore it is expected that
the dynamics of the system is determined mainly by the
Rabi &equency 0 and not by the Coulomb interaction
terms which scale like u . Let us assume for a moment
that the contribution of the Coulomb terms is zero (Vz ~
0). Under this condition we may solve Eqs. (3) exactly.
Afterwards it is possible to determine the conditions un-
der which this approximation is valid by calculating the
Coulomb contributions with the obtained solution and es-
timating the contribution to the full solution of Eqs. (3).
Provided the Coulomb terms in Eqs. (3) are zero the
solution for the total electron-hole density is given by

n2(t) = 2) sin
l

02+ h2 — l,

if the Rabi &equency is approximated by a constant value
O(t) = 0 for the duration of the pulse. With this solu-
tion and the corresponding solution for the polarization
as well it is now possible to estimate the contribution
of the Coulomb terms in the full semiconductor Bloch
equations. To give an example of this procedure let us
estimate the contribution of the band gap renormaliza-
tion on the right-hand side of the polarization equation
(3) for the limit n ~ 0:

2) v, , f,.P, (2) v. ..f,
For the calculation of the Coulomb sum we use here
the angle averaged Coulomb potential for a bulk semi-
conductor which was used in several studies of Rabi
8o

CX3

2).V~-'6 (~-—
q/ 0

lq' + ql

q lq' —
ql 1 + (h~ /A)2

'

After a substitution of the integration variable we And for the ratio of band gap renormalization and Rabi &equency

4—0!/GO
7r

11+~ldxx ln
ll —zl 1+ a2(qaox)4'
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An expansion for o. ~ 0 yields 1 1 1 ze /*

4—nqao dxx ln
~1 —x~ 1+a (qaox)

8 dy
gnqao —2&2n.

vr 0 1+ qao 2y4

Hence

2) .&~-'6 P~

& 2v'2o. m 0 for n m 0. (12)

It can be seen from Eq. (12) that the influence of
the Coulomb contribution to Eqs. (3) vanishes if n ap-
proaches zero. Therefore it is possible to neglect the
Coulomb coupling for sufficient small ratio of exciton
binding energy and Rabi &equency in a first order ap-
proximation. Equations (3) exhibit in the limit n ~ 0 the
same structure as an inhomogeneously broadened two-
level system. For very large 0 the number of complete
Rabi oscillations is expected to be almost the same as
in the atomic case, i.e., one complete Rabi oscillation for
2'-pulse excitation.

(ii) n )) 1,p » 1. In this case the equations can be
treated in linear response theory with respect to small
Rabi &equencies. The detuning is always chosen to be
positive, i.e., the carrier &equency of the light pulse is
centered slightly below the exciton resonance (P & 0).
The reason we did not choose exact resonance (P = 0)
is that an analytic perturbation theory which we ap-
ply for the linear response regime in this section is not
applicable in case (ii). For the exact resonance of the
laser &equency and the first exciton the linear response
is discussed in Sec. V in terms of a simplified set of
equations. Here we make the ansatz that the polariza-
tion functions and the distribution functions may be ex-
panded in terms of 1/n. It is useful to discuss the lin. —

ear response case in the low excitation coherent regime
proposed in Ref. 9. The corresponding equations read

(13)

Here mp and Pg are the inversion and the polarization
of the state A. The set of states A consists of the bound
(quantum number n) and the continuous states (quan-
turn number q). The energy dispersion of the system is
given by

Here the Coulomb enhancement factor for a bulk semi-
conductor is applied. As already mentioned, a linear re-
sponse theory for vanishing detuning is not applicable
due to the large 2~ area of the light pulse. Therefore we
restrict ourselves here to the case of nonvanishing detun-
ing whereas vanishing detuning is discussed in Sec. V. In
lowest order of the expansion in terms of the Rabi &e-
quency (1/n) one finds for the total electron-hole density

n2(t) =2) f. = . ).I ~

»n'i
I

(16)
2 . f 0 )' . , fAgt)

ao~ 4+&) ( 2 )

Taking only the leading term, i.e., the first exciton, into
account we find that the solution shows oscillations with
the finite detuning b = b, ~(n = 1) as defined in Eq. (6)
between the exciton resonance and carrier &equency of
the laser pulse.

/01 ' . , fhcl
n2(t) =

/

—
/

sin
aovr (b) ( 2 )

Furthermore, from Eq. (17) it can be seen that linear
response theory with respect to 0 is not applicable for
the case b = 0.

The discussion of (i) and (ii) shows two limiting cases
of the competition of Rabi &equency and exciton bind-
ing frequency/detuning in the dynamics of the system.
In the case of large o. the oscillations of the electron den-
sity are determined by the finite detuning of the laser
&equency and the exciton resonance whereas for small
o, the Rabi &equency dominates the dynamics. The in-
teresting result is that in both limits the semiconductor
is shown to behave like a two-level atom. However, the
many body effects in Eqs. (3) are important for the inter-
mediate case where the Rabi &equency reaches the order
of magnitude of the exciton binding frequency (n = 1).
In this parameter regime complicated electron-hole den-
sity oscillations are expected due to the competition and
interference efI'ects of Rabi &equency and exciton bind-
ing &equency. The case n 1 leads to the well known
doubling of the number of complete Rabi oscillations.
This special coupling regime was already investigated in
Refs. 18-22. The parameter regime between the asymp-
totic cases described in this section and the case n —1
can presently only be explored numerically.

IV. NUMERICAL RESULTS

Ap (n): tt)g~p —QJI, )n2 (14)
b, g(q) = (ug p+ ~ (qao)

2

The total macroscopic quantities such as the polariza-
tion are calculated by taking into account the Coulomb
enhancement factor:

In order to obtain results for the intermediate case, i.e. ,
n in the order of unity, one has to carry out numerical
calculations. For the numerical calculations we use here a
semiconductor model with a quasi-one-dimensional long-
range Coulomb-type interaction and consider 1V atoms
on a ring with periodic boundary conditions.
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~„/B =Q. 'I 25 P =0.5 Rabi frequency. From Eq. (17) it can be seen that in the
case of vanishing detuning the linear response theory as
proposed in Sec. II breaks down for o. )) 1. Nevertheless
an explanation of the scaling behavior of the nonlinear
&equency ~NL may be given by the already mentioned
simplified model proposed in Sec. V.

V. SIMPLIFIED DYNAMICAL SYSTEM

~ 0

FIG. 3. Complete Rabi oscillation characteristics from
cx = 0.1 to cr = 10 for the detuning P = 0.5 and constant
excitation for the model system Eq. (19). The logarithmic
scaling of the o, axis indicates the large regime where the
well known doubling of the complete Rabi oscillation may be
observable for the physical relevant femtosecond pulse experi-
ments. The density nz(t) is linearly scaled up to 10 at n = 10
because of the e8'ective amplitude decrease.

1.0 I I I I ~ I
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are depicted for various values of o. (P = 0) in Fig. 4. The
expected one complete Rabi oscillation is reproduced in
the case of a = 0.01. The situation changes in the case
of large o.. For o. = 100 the number of complete Rabi
oscillations does not increase as drastically as in the case
of nonvanishing detuning (Fig. 1). This is not surpris-
ing because the dominant &equency in the system is now
the Rabi &equency due to the vanishing detuning. Hence
the oscillation frequency (for the given case n )) 1,P = 0
denoted by uNL) is expected to scale somehow with the

S = [P(t) + P*(t)]e + '
[P(t) —P*(t)]e2

+ [2n, (t) —1] es, (2O)

we propose a simplified dynamical system, which pro-
duces the essential features of the full microscopic de-
scription for the parameter range n, P ) 1. The dynam-
ics of the macroscopic expectation values is approximated
in the case of constant 0 by

S& ———[h + J& (1 + Ss) ] S„
S2 ——[8+ J2(1+ S3)]S] JsS3,
S3 ——OS2.

(21)

The S; are the components of the vector S introduced
in Eq. (20). Equations (21) contain only macroscopic
variables, the control parameters 0, h [cf. Eq. (6)] and
a phenomenological parameter vector J = (JqI J2, J3).
We will refer to the set of Eqs. (21) as the J model.
We expect that the nonlinear nontrivial dynamics of the
macroscopic Bloch vector S(t) may in principle be de-
rived from the complete set of microscopic equations (3)
and (4).

In the limit of strongly localized electrons and holes,
we can estimate the parameters of the J model. We find

In this section we would like to show that the dynam-
ics of the full semiconductor Bloch equations (3) can be
approximated for certain parameter ranges very well by a
simplified system of equations which contain the macro-
scopic quantities P(t) = g Pq and nq(t) only. These
equations contain a nonlinearity comparable with the
band gap renormalization of the semiconductor Bloch
equations which leads to a dynamical detuning, which is
related to the parameters of the model described in Sec.
IV. Introducing the common Bloch vector description of
the semiconductor Bloch equations with

C

0.4— Jg ——J2 = J~,
J3 ——O.

(22)

0.2—

0.0
0.0 0.2 0.4 0.6

tx 0/( 2vr )
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FIG. 4. Temporal Rabi oscillations of the electron-hole
density for n = 0.01 to 100.0 and P=O calculated as solution
of Eqs. (3). In contrast to Fig. 2 the oscillation frequency is
determined mainly by the Rabi frequency of the light pulse
for large values of o, , which can clearly be seen at o. = 100.

In this limit J~ is given by the bare atomic energy sep-
aration where the intrinsic semiconductor ground state
and the exciton ground state are degenerate. It can be
shown that Eqs. (21) possess a critical transition point
at the exciton resonance b = 0. This is in agreement with
the behavior of the full semiconductor Bloch equations.
Similar equations occur in the treatment of dense two
level media, where the nonlinearity stems &om the
instantaneous dipole-dipole interaction.

In contrast for the usual bulk system with quasifree
electrons interacting via Coulomb interaction, the param-
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eter J~ has no real physical meaning and must therefore
be deduced from the full semiconductor Bloch equations.
In the limit of J~ && 1 the dynamics of S is therefore
asymptotically represented by the J model.

We would like to study the parameter regime for which
Eqs. (21) are expected to be a suitable approximation of
Eqs. (3). Figure 5 shows the difFerence between the so-
lution of the full semiconductor Bloch equations and the
solution of the corresponding J model. We have chosen
the case of exact resonance and o. = 10 for the parameters
of Fig. 4 for a 2'-pulse excitation. The agreement is satis-
fying, i.e., the very complicated set of integro-differential
equations for the one particle quantities for each quan-
tum number q is reduced to a simple set of coupled dif-
ferential equations for the macroscopic quantities as total
density and polarization. The approximation obviously
becomes worse if J~ = 0.33 (lower density amplitude in
Fig. 5). In this case the estimate (22) is insuKcient and
one has to at least determine all three coefBcients in Eq.
(21). For large n the dynamics is governed by a strong
collective nonlinear motion and the J model is supposed
to become asymptotically exact.

If we assume the validity of the J model in the limit
o. ~ oo it is possible to deduce the scaling behavior at
zero resonance of the maximum density amplitude a =
max(n2(t) f and the nonlinear frequency ~Nr, Rom the J
model with J~ ——J2 ——J~ and J3 ——0 analytically. This
was not possible in Sec. III on the basis of the full set of
Eqs. (3) and (4). From an inspection. of Eqs. (21') it is
seen that the relation

with

(24)

(nq"
4 J~)
0 dy~

(25)

The analytical results show how the number of complete
Rabi oscillations scales with the Rabi frequency 0 inde-
pendently of the precise values of J~. The total number
of complete Rabi oscillations diverges slowly at zero de-
tuning whereas for finite b it was shown analytically in
Sec. III that a constant number of complete Rabi os-
cillations is reached depending on the value of P. This
explains the slowly increase of the number of complete
Rabi oscillations in Fig. 4 which is not described by a
linear response treatment. The ratio of the nonlinear fre-
quency ~NL and the amplitude a is independent of the
excitation strength 0 for 0 M 0:

lim = 1.29J~.~NL
A —+0 g,

(26)

Figure 6 shows the scaling behavior of the density ampli-
tude and the nonlinear frequency uNL for the full semi-
conductor Bloch equations for difFerent values of o. (+).
We find again a good agreement of the results obtained

—0.5

holds. The dynamical behavior of the macroscopic den-
sity is mapped onto a classical quartic oscillator. With
n2(t = 0) = 0 it is straightforward to derive the asymp-
totic behavior (0 -+ 0) for the amplitude a determined
by V(a) = 0 and the period of one oscillation integrating
Eq. (23). We find

0.4
C 2%5

0.2

-4.5—

0.0
0.0 0.2 0.4 0.6

tx0/(2~)
0.8 1.0

P=0 scaling, u„/B=0.125, (+=-exact)
FIG. 5. Comparison of the solutions of the full semi-

conductor Bloch equations (solid line) with the 3-model dy-
namics of Eq. (22) (fine dotted line). The value of ci is fixed
at n = 10 and B = 0.8. For Uo ——1.6 the approximative solu-
tions show an excellent agreement with the exact results over
the plotted time domain (J~ = 0.19). For U'o = 0.8 (lower
density amplitude) the approximation becomes less satisfying
for the estimated value of Jz ——0.33, which is probably too
large for a suitable expansion parameter.

-6.5-8
log(Q)

FIG. 6. Scaling of the nonlinear density amplitude a and
the nonlinear frequency cuNz. at exact resonance b = 0. The
exact solution approaches the 3-model-predicted behavior
with a slope of 2/3. The fine dotted line is the nonlinear
frequency calculated from Eq. (22) with the fixed asymptotic
parameter J~ ——0.11. All logarithms are base e.



48 VARIOUS APPEARANCES OF RABI OSCILLATIONS FOR 2m'-. . . 17 817

with Eqs. (3) and (4) and the analytical results predicted
by the simple J model. The solid line is the result for a
(dotted for ~Nz, ) predicted by the J model with the ex-
trapolated asymptotic parameter J~ = 0.11. Despite this
success it would be highly desirable to obtain analytical
microscopic expressions for the J-model parameters for
arbitrary values of o. in order to decrease the numerical
effort in solving the semiconductor Bloch equations.

VI. CONCLUSION

effects are not important in both asymptotic limits.
If the values of Rabi frequency and exciton binding

frequency are of the same order of magnitude, both fre-
quencies compete with each other and cause complicated
oscillation patterns. The doubling of the density oscilla-
tion frequency compared to the atomic case is shown to
dominate the dynamics if semiconductors such as CdSe
and GaAs are excited with femtosecond pulses of an area
of several vr. A simplified model which may substitute
the semiconductor Bloch equations for certain cases was
proposed.

In conclusion, we have shown that the character of the
coherent dynamics of the electron-hole density is mainly
determined by the ratio of the Rabi &equency of the ex-
ternal light field and the exciton binding &equency of
the semiconductor. In the case where the Rabi &equency
of the light pulse is much smaller than the exciton &e-
quency of the semiconductor the density oscillations are
determined by the detuning of laser &equency and exci-
ton resonance only. In the opposite case the number of
oscillations is given by the well known dynamics of the
atomic case (density oscillation frequency is equal to the
Rabi frequency). Hence the semiconductor shows prop-
erties comparable to atomic systems, because exchange
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