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We report state-of-the-art first-principles calculations of the quasiparticle energies of prototype homo-
polar and heteropolar covalent semiconductors described in terms of the electron self-energy operator.
The wave functions are calculated within density-functional theory using the local-density approxima-
tion and employing nonlocal, norm-conserving pseudopotentials. The self-energy operator is evaluated
in the GW approximation. Employing the plasmon-pole approximation for the frequency dependence of
the dielectric matrix e& 6 (q, co), its static part is fully calculated within the random-phase approximation
(RPA) as well as by using a number of different models. All calculations are carried out employing local-
ized Gaussian orbital basis sets. This will turn out to be very useful for detailed studies of the quasiparti-
cle properties of more complex systems such as bulk defects including lattice relaxation and reconstruct-
ed surfaces with large unit cells or interfaces, which are otherwise computationally too demanding. Us-

ing an s,p, d, s basis set of 40 Gaussian orbitals for Si, for example, yields already convergent results in

excellent agreement with the results of a 350-plane-wave calculation in the corresponding plane-wave
representation. Most of our results for Si, diamond, Ge, and GaAs are in very good agreement with ex-

perimental data and with available plane-wave G8'calculations. To our knowledge, our results for SiC
are the first quasiparticle energies reported so far for this important material of high current technologi-
cal interest. Also in this case we find very good agreement with the available experimental data except
for E(L„).We believe that this deviation may be attributed to experimental uncertainties. In particu-
lar, we discuss and scrutinize the applicability of six different models for the static dielectric matrix

eG G(q, 0) in the 68' approximation ranging from the simple Hartree-Fock expression over diagonal
models to nondiagonal models that take the local fields within the inhomogeneous electronic charge den-

sity into account. Some of the nondiagonal models are shown to yield results in very good agreement
with the full RPA results.

I. INTRODUCTION

The local-density approximation' (LDA) of density-
functional theory (DFT) has been established as a very
powerful tool for studying ground-state properties of
bulk semiconductors, their surfaces, or interfaces, and of
bulk defects in semiconductors from first principles.
The DFT provides an exact formulation for the grolind-
state energy. Excitation energies, however, do not direct-
ly follow from that theory, since the one-particle eigen-
values in LDA are not formally interpretable as quasipar-
ticle energies. The failures of such interpretations are
well known. Band gaps in semiconductors are typically
underestimated by 30—50%, and in particular cases like
Ge or ZnO the gap is closed or nearly closed, respec-
tively. To remedy these failures in the calculated band
gaps and, in particular, to calculate excited-state proper-
ties, direct quasiparticle band-structure calculations are
required.

The basic formal development of first-principles
methods for calculating the quasiparticle energies and
excited-state properties of real materials were put for-
ward more than two decades ago by Hedin and
Lundqvist. ' For semiconductors, the major difhculty
stems from an adequate treatment of the dynamical
correlations of the electrons in a solid with an energy gap

and a strongly inhomogeneous charge density. The basic
object of this theory is the nonlocal, non-Hermitian, and
energy-dependent self-energy operator X(r, r', E). In
lowest approximation, X is given as a product of the
Green's function 6 times the screened Coulomb interac-
tion 8. This approximation is usually referred to as the
GW approximation (GWA). ' In their landmark contri-
butions to the field, Hybertsen and Louie, ' as well as
G odby, Schluter, and Sham" developed practicable
schemes for evaluating the many-body corrections within
the GWA, and arrived at theoretical results which
showed excellent agreement with a whole body of experi-
mental data. Three elements in the theory were found to
be critical for the success: a proper account of the nonlo-
cality of the Green's function 6, the inclusion of the full
dielectric matrix in the screened Coulomb interaction 8'
and an adequate treatment of dynamical effects in the
screening. In the meantime a number of GR'calculations
have been reported which confirm the excellent agree-
ment with experiment for many more semiconductors
and insulators (see the references in Sec. II). A number of
surfaces' and adsorbate systems' with not too large unit
cells have been treated this way, yielding very good
agreement with photoemission and inverse photoemission
data as well.

One common feature of GW calculations that have
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been carried out so far is that nearly all of them employ
plane wave basis sets (it should be noted that for some
quasiparticle calculations, e.g. , nickel' and C60,

' local-
ized basis sets have been employed as well). For bulk Si,
e.g. , about 350 plane waves were found to yield conver-
gent results. ' For Si and Ge surfaces calculated in the
supercell geometry with 12 Si layers per supercell more
than 2000 plane waves are needed. Obviously, if even
more complex systems are to be addressed, the drastically
increasing number of plane waves necessary for the basis
set turns out to be one of the bottlenecks for such calcula-
tions. This problem can be overcome if localized basis
sets of, e.g. , Gaussian orbitals are used. Another
bottleneck in the calculations can be the evaluation of the
nonlocal dielectric matrix, which calls for many recipro-
cal lattice vectors in Fourier space if slabs or supercells
are to be properly described. In this respect, appropriate
model dielectric matrices that can be computed with
modest numerical effort could turn out to be mandatory.
The calculation of the dielectric matrix within the full
random-phase approximation (RPA) is much more time
consuming. It may turn out to be too demanding for
very complex systems.

In order to provide a basis for manageable G8'calcula-
tions of more complex systems such as semiconductor
surfaces with large unit cells, semiconductor interfaces,
or bulk defects including lattice relaxation, in this paper
we report 68'calculations for homopolar and heteropo-
lar covalent bulk semiconductors using localized
Gaussian-orbital basis sets. In addition to the full calcu-
lations of the respective static dielectric matrices within
the RPA, we discuss a number of model dielectric func-
tions and analyze their applicability within these calcula-
tions.

To be able to compare our results in a meaningful way
with previous results, we have used nonlocal, norm-
conserving pseudopotentials and the same exchange-
correlation potential as in Ref. 10. We show that our cal-
culations employing relatively small G aussian-orbital
basis sets yield essentially the same results as plane-wave
calculations if both are carried out to basis-set conver-
gence.

The paper is organized as follows. In Sec. II, we briefly
summarize the basic equations of the GWA and point out
how we calculate the static dielectric matrix within the
RPA. In Sec. III, we present and discuss six different
models for the static dielectric matrix which we have also
used in our calculations. Some numerical details of our
LDA and GWA calculations are given in Sec. IV. In Sec.
V, we present and discuss the results of our studies for Si,
Ge, GaAs, diamond, and SiC. To our knowledge, our
quasiparticle band structure for SiC is the first GWA re-
sult for this material. In Sec. VI we address the electron-
ic part of the static dielectric constant, e, as calculated
from our RPA results for the static dielectric matrix.
This quantity enters the model dielectric matrices of Sec.
III, and it is interesting to analyze the differences in the
quasiparticle band structures resulting when the calculat-
ed e is used in the models instead of experimental values
for e„. A short summary concludes the paper in Sec.
VII.

II. THE GS'APPROXIMATION

A powerful technique for the calculation of the
ground-state properties of semiconductors and insulators
from first principles is given by the DFT-LDA. Its cen-
tral aspect is the approximation of exchange-correlation
effects by a potential V„,(r) which depends on the local
density p(r). In the I.DA one has to solve the Kohn-
Sham equation

$2 I

V'+V ( )+ ', d'r'

+V„,(p(r)) 'g„g(r)=E„i, Q„g(r)

This equation is usually formulated only for the valence
electrons. Therefore, the electron-ion interaction is de-
scribed by a pseudopotential V, . This state-of-the-art
method has been applied to many systems and the calcu-
lated ground-state properties, e.g., the theoretical lattice
constant and theoretical bulk modulus agree well with ex-
perimental data. Usually, the energylike Lagrangian
parameters of (I), E„i, , are regarded as single-particle
energies. This yields quite reliable band structures, at
least for the valence-band states. Nevertheless, the LDA
energy values are not exact single-particle energies. As
mentioned already, all LDA band structures for semicon-
ductors suffer from a fundamental gap that is too low.
To obtain band structures that give reliable energy values
for the conduction-band states as well, quasiparticle
corrections have to be taken into account as they are
given, e.g. , by the 68'approximation.

The principles of the 68' approximation, as used in
our work, have been exposed by many other au-
thors, "' ' and will be given here in the form of a
brief summary only. The central quantity within this for-
malism is the single-particle Green's function '

E E«~+i 0+ sgn—(E«~ —p)

The Green's function satisfies an equation which can be
written in terms of one-particle wave functions as

V +P', (r)+e f, d r' itj„z(r)

+ fX(r, r', E„i,)g„z(r')d r'= Ezg„z(r) . (3)

Again, this equation is usually formulated for valence
electrons only. As in the LDA, the electron-ion interac-
tion is described by a pseudopotential V„,. We use
norm-conserving ab initio pseudopotentials throughout
our work.

The central difficulty connected with Eq. (3) is to find
an adequate approximation for the self-energy operator,
X(r, r, E). Within the GWapproximation, it is calculated
from the Green's function 6 and the dynamically
screened Coulomb interaction 8':
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l
X(r, r', E)= e ' G(r, r', E —co) W(r, r', co)des . sentation, one obtains

4vre 1 1

v ~q+a~ ~q+a ~

The screened interaction 8'can be written by introducing
the inverse dielectric function. Within the Fourier repre-

Within the 68' approximation, the dielectric function is
calculated as follows:

) g +2 47Te 1 1

v q+ar fq+a /

X g g f g*z(r)e 'q 'g„„(r)d r fg' (r)e 'q+ 'g (r)d p
k mCVB

n ECB

X
r 1 ++
E„,k+q Emg &+ l 0

1

E„~+ —E 1,+co+i 0+

The orthogonality of wave functions of different spins has
been taken into account here. Equation (6) is the same
result as obtained by the random-phase approximation
(RPA). Before inserting into Eqs. (4) and (5), these ma-
trices have to be inverted with respect to the reciprocal-
lattice vectors V and 0' to obtain the inverse dielectric
matrices. It should be noted that time-ordered quantities
instead of causal ones are required by the GR' approxi-
mation. We calculate the dielectric matrices in the sym-
metric form, which is less dificult to evaluate.

In general, Eq. (3) has to be solved self-consistently
with respect to the charge density p(r) and the quasipar-
ticle energies E„k. Usually, the self-energy operator is
calculated approximately by taking the wave functions
g„„(r) and the band-structure energies E„„ from the
LDA. Thus both the Green's function 6 and the dielec-
tric function e are calculated from the respective LDA
results. In the solution of Eq. (3), it turned out, e.g. , for
Si, ' that the eigenfunctions f„z(r) are very similar to the
LDA eigenfunctions g„"P (r). We therefore assume this
behavior for the systems studied in this paper, as well (the
index LDA at the wave functions therefore will be omit-
ted from now on). Taking into account that the wave
functions satisfy the Kohn-Sham equation {1), from {1)
and (3) one obtains as a great simplification the relation

E q=E t, +(g qrX(E I, ) —V„,rf q) .

According to this equation, the LDA energy values E k
are corrected by the 68' approximation. The self-energy
operator X describes exchange-correlation effects in the
quasiparticle energies more successfully than the local,
energy-independent exchange-correlation potential V„of
the LDA. The difference between them is treated as a
perturbation.

The central problem of this scheme is the calculation
of the self-energy operator, which is performed in terms
of the diagonal matrix elements in (7), ( g z r X(E)

~ g z ),
using the wave functions from the LDA. As can be seen
from (4), this requires an integral with respect to the en-

ergy co. The dielectric matrices eG G, (q, co) have to be cal-
culated and inverted for many values of co. This is com-
putationally very time consuming. Nevertheless, it has
been carried out by some authors. " Instead, we use a
plasmon-pole model' ' ' to describe approximately the
dependence of e '(co ) on the frequency co. In this
scheme, only the calculation of the static dielectric ma-
trices eG o.(q, co=0) is required. The quadrature with
respect to m is done analytically. In our approach, we use
the method of the dielectric band structure' ' to intro-
duce a plasmon-pole model. Considering that the static
dielectric matrix e& G.(q, O) is Hermitian, its real eigen-
values A,

q&
and orthonormal eigenvectors PG can be used

to perform the inversion of the matrix. The eigenvalues
of the related full dielectric matrix are assumed to be
dependent on the frequency, Aql(co), while the eigenvec-
tors are independent of the frequency. This approxima-
tion, with a slightly different frequency dependence, has
been discussed in detail by Hamada, Hwang, and Free-
man. For the inverse dielectric matrix, one obtains

~o,'G{q ~)=X NG(q) ~l Aq( CO

Within the plasmon-pole model, A, &(co) is assumed to
be16, 17

Zql ~ql
A, i(co)= 1+

co —(co q
iO+)—

ci) + (coqI i 0 )— (9)

The parameters zql and coql are to be determined by ad-
justing (8) and (9) to the static dielectric matrix, and by
taking Johnson's sum rule ' into account. As a result,
the diagonal matrix elements of the self-energy operator
[cf. (7)j become
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4 1 1 f/* ( )
'+ '1t„„q( )d'
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—i (q+G')rq

& 0—G( q)l:0 —G'( q)]* 1
2 LDA

I E —En'j +q+ ~-qr
for nEVB

& O'—G(
—q)l:O'—G( —q)]*

l

Z —qi ~—qi

2 LDAE —E„k+ —co
for n ECB . (10)

We have performed these full RPA calculations for all
materials considered in this paper.

III. MODEL DIELECTRIC FUNCTIONS

Although some simplifications have been introduced,
the method described above requires the time-consuming
calculation of the static dielectric matrix eG G (q, O) for
some reciprocal vectors q from the first Brillouin zone.
As can be seen from (10), the exact spatial behavior of the
dielectric function is of minor importance. The sum

gqGG means an averaging process, so that some general
properties of the spatial behavior of the dielectric func-
tion should at last be sufficient to obtain reliable results
for the band-structure energies. Concentrating on those
properties, it should be possible to describe the depen-
dence of eG G,(q, O) on q and on the reciprocal-lattice vec-
tors G, G' by models. Usually, some specific properties
of the material enter the models (e.g. , electronic charge
density, dielectric constant).

We have considered six different model dielectric ma-
trices, starting from (a) the trivial model
eG G(q, O)=5G G. of the Hartree-Fock theory, (b) the

I

nondiagonal model of Hybertsen and Louie ' that is
based on a diagonal model by Levine and Louie, and (c)
a diagonal model suggested by Bechstedt, Enderlein, and
Wischnewski. The latter authors have extended their
model to a nondiagonal one as well, but in our approach
this extension is done in another way, as has been sug-
gested by Falter.

The model functions (b) and (c) require the value of the
static dielectric constant as a central input. Since all ions
are regarded as fixed within the Born-Oppenheimer ap-
proximation, this dielectric constant refers only to elec-
tronic effects. Therefore, the dielectric constant e has to
be used for ionic materials. Since there is no difference
between eo and e for nonionic crystals, we label all
dielectric constants e throughout this paper for con-
venience. This refers to the static dielectric function of
the electronic charge density only. We will now address
various models in detail, separately.

(a) The most simple model is given by

eGG(q, O)=5GG .

Any spatial structure is neglected. Equation (10) be-
comes

4 2 2
ql&(&)lp I, ) = & & f &* &(r)e 'q+ 'p„z+ (r)d r (12)

qGn H VB ,'q+ +
f g* (rk)1t„* (rq') (ru, r')1(„t(rq)g k(r')d r d r' .

q' nEVB

u(r, r')=e /Ir —r'I means the pure Coulomb interaction. This result is equivalent to the expectation value of the
Hartree-Fock exchange operator with respect to LDA wave functions.

(bl) Levine and Louie have developed a diagonal model. Containing the explicit value of e„, it takes into account
the existence of a gap in the electronic structure of a semiconductor that does not occur in the homogeneous electron
gas:

eGG (q, O) =&G G eLL( lq+G l, p),
2

eLL(q, p) = 1+
VrqF Q2

2 + 2 — 2

arctan - +arctan
2Q3

1

8Q

1

8Q' 2Q'

Q has to be set to Q =q/qz and A, =(rop&/cuF)+e —1,
where cop& is the plasma frequency, mF is the Fermi fre-
quency, and qF is the Fermi wave vector. These latter
quantities all depend on the average electronic density p.

(b2) The model of Levine and Louie has been extended

eLL I I.—' I,p «) ]+ —,"LL I I
r —r' I,p( r' ) ]

(16)

g2+ ( 2Q + Q2)2
ln

A, +(2Q —Q )

I

into a nondiagonal one ' that takes the inhomogeneity
of the charge density much better into account. With
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for the dielectric matrix one obtains:

e&'o(q, o)= —,
' f eLL[lq+GI p(r)]e ' "'d r

+ —,
' f e„L[Iq+G'I,p(r')]e 'G o''d'r' .

(17)

After calculating eLL'[Iq+GI, p(r)] on a special grid of r
vectors, the Fourier transforms of Eq. (17) can be per-
formed by fast-Fourier transform algorithms.

(cl) Another diagonal model has been suggested by
Bechstedt, Enderlein, and Wischnewski:

Falter (21)—(23) as its nondiagonal part, is labeled (c2)
from now on.

(c3) Alternatively, the model suggested by Falter can
be used for both the nondiagonal and diagonal terms.
We have chosen parameters 3 and b as described above.
This model, which uses Eqs. (21)—(23) for all G, G', is la-
beled (c3).

The nondiagonal models (b2), (c2), and (c3) require the
inhomogeneous charge density that follows from the
LDA calculations. All models require the value of the
dielectric constant e which is usually taken from experi-
ment. This quantity can, as well, be calculated (see, e.g. ,
Ref. 28) as

e(q, o)=1+
co'(q)

(18) e„= limeoo'(q, o)
q~O

(24)

with

1
m (q)=cop, +pl

q

qrF

2 2

+ q, (19)
2m

This scheme requires the calculation of the dielectric ma-
trix in RPA [cf. (6)] for one q point only. In this way, the
dielectric constant need not be given as an empirical pa-
rameter.

where q&F is the Thomas-Fermi wave vector.
(c2) According to Bechstedt, Enderlein, and

Wischnewski, this diagonal model (18) and (19) can be ex-
tended into a nondiagonal model by

,(,o)=s,+ " 'q+G'
~'[Iq+ —,'(G+ G')

I ] I q+ G
I

(q+G') p(G —G')
Iq+G I p(o)

(20)

1
A —

COp)
2

E'~ 1

For further adjustment, we choose parameter b as

(22)

COp)

(23)

which agrees with the q term of the denominator of the
diagonal model (19). This model, which uses the diagonal
model of Bechstedt, Enderlein, and Wischnewski (18) and
(19) as its diagonal part, and the model suggested by

Unfortunately, this model yields dielectric matrices
which have some eigenvalues that are smaller than 1 for
some q vectors. Such matrices do not satisfy the require-
ments for thermodynamical stability of the solid. ' They
cannot be used for the plasmon-pole model of (8) and (9).
Therefore, the diagonal model has to be extended in
another way, e.g., by choosing the nondiagonal terms
(GAG'), as has been suggested by Falter:

2
COp)

eo o,(q, o) =5G G, +
A(l+bIq+GI )(1+bIq+G'I )

(q+G) (q+G') p(G —G')
I q+ G I q+ G'I p(o)

(21)

To make the new denominator A (1+bIq+GI )(1
+bIq+G'I ) fit to the denominator co (q) of the diagonal
model (19), the parameter A has to be set to

IV. NUMERICAL DETAILS

A. Details of the LDA calculations

As can be seen from (7), the results of the LDA calcu-
lation enter into our GR'scheme at several points. First,
they enter into the approximation of the self-energy
operator [see Eqs. (4)—(6)]. Second, the wave functions
are used to calculate diagonal matrix elements of the
self-energy operator. Third, the LDA band structure is
used as the basis for the correction scheme given by the
GR'approximation. If model dielectric functions instead
of the RPA matrices of (6) are used, the electronic densi-
ty from the LDA enters into the scheme. Furthermore,
the static electronic dielectric constant e may be com-
puted within the LDA, as described above. Inaccuracies
within the LDA results will necessarily lead to inaccura-
cies of the GR approximation. Therefore, the LDA cal-
culations must be carried out very carefully.

We use the nonlocal, norm-conserving ab initio pseudo-
potentials of Bachelet, Hamann, and Schliiter. For dia-
mond and SiC, the carbon ions are described by a similar
pseudopotential constructed by employing the pro-
cedure reported by Hamann, Schliiter, and Chiang. ' Di-
amond and SiC are easier to calculate using this pseudo-
potential. For the exchange-correlation potential, we use
the results of Ceperley and Alder, as parametrized by
Perdew and Zunger.

Contrary to previous calculations by other authors, we
use a basis set of localized functions (Gaussian orbitals)
instead of plane waves. This leads to shorter computa-
tion time, especially if the material under consideration
contains elements such as carbon that cause a strong lo-
calization of the wave functions. We have investigated
different basis sets consisting of s, p, d, and s orbitals
with up to 60 functions per unit cell. Our calculations
show that already 40 Gaussians are sufhcient to obtain
band-structure energies that agree very well with the re-
sults of highly converged plane-wave calculations. Some
details are given in Sec. V A.

To calculate the charge density from the wave func-
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tions, ten special points in the irreducible part of the
Brillouin zone have been used.

B. Details of the GR'calculations

All our GR'calculations are carried out on the basis of
the LDA calculations as described above. For the lattice
constant ao and the dielectric constant F. (where neces-
sary) the experimental values have been used.

One central problem within the realization of the 68'
approximation is the calculation of the spatial integrals
that appear in (6) and (10). To achieve this, we write the
Bloch functions, originally represented in terms of Gauss-
ian orbitals, as a Fourier series

(r) eik.ry ( mkeiG r1
rnk y G

G
(25)

y (Cmk )eCn, k+q
G+G' (26)

In our scheme, this sum takes account of a vector G' if
both IG'I and IG+G' are smaller than a cutoff parame-
ter. In general, up to 170 Cs' vectors are required for Si,
Ge, and GaAs, and up to 260 Gr' vectors for diamond and
SiC due to the stronger localization of the carbon wave
functions. To apply this method to the special cases of
G=O, q=O, and mWn, even more G' vectors are neces-
sary in (26) to achieve sufficient accuracy. We use up to
1200 Cx' vectors for diamond.

All these integrals can in principle also be evaluated by
utilizing the linear combination of Gaussian orbitals
(LCGO) form of the basis functions. Instead of sums
over reciprocal-lattice vectors, sums over neighboring
atoms have to be performed. However, to reach the same
degree of accuracy, this method takes more computation
time.

The sum over G (and G') in (10) requires about 90 G
vectors for Si, Ge, and GaAs, and up to 170 G vectors for
diamond and SiC. The sum over q from the first Bril-
louin zone in (10) is performed by again using special
points. Two special points and their stars give sufficient
accuracy. The use of ten special points results in band-
structure energy differences less than 0.05 eV (for Si).

If G =Cx' =0 and m =n, the terms to be summed up in
(10) diverge for small q such as f (q)= 3/q . To per-
form the sum by special points, another function g(q)
has to be taken into account that shows the same
behavior for q —+0: g(q) —1/q . Now the summation
can be done as follows:

We note that in this case the coefficients CG" need not be
determined by diagonalization of a respective Hamiltoni-
an matrix, but simply follow from the known coefficients
of the Gaussian basis. Resulting from (25), the integrals
are evaluated as

J qs ( )
—i(q +G) rq ( )d3

E ELDA +
l&(E'„)—&„,lg „&

a( q.„lr(E) I y.„&

BE E ELDA
mk

(28)

The derivative B(f k X(E)lg k &/BE in (28) is evaluated
as a difference quotient. It is obtained without further
expense. This scheme is used throughout our work.

When computing the dielectric matrices in RPA from
(6), we evaluate the sum over k in (6) by the use of special
points again. Two special points and their stars give
sufficiently convergent results, except for the head of the
dielectric matrix zoo(q), which requires at least ten spe-
cial points to reach a sufficient accuracy, especially for
small q vectors.

V. RESULTS

First, we apply our approach to Si in order to investi-
gate its accuracy and to scrutinize the applicability and
use of the different model dielectric matrices in direct
comparison. Thereafter, we investigate some other rna-
terials with diamond or zinc-blende structures: Ge,
GaAs, diamond, and especially P-SiC (also known as 3C-
SiC). All energy values refer to the valence-band max-
imum, that is set to 0 eV in each case.

2 = lim[q f (q)] .
q~0

The term f (q) —Ag (q) does not contain any divergency,
so the first sum on the right-hand side of (27) can be eval-
uated by special points. The second sum on the right-
hand side of (27), or the corresponding integral over the
first Brillouin zone, is done analytically if g (q) is chosen
properly (see Ref. 35). If only one vector (G or G') is
zero and m =n, the terms to be summed up in (10)
behave like f(q)=B/q for small q. This problem is
solved analogously, using another function that diverges
like 1/q if q —+0. Since these divergencies are less prob-
lematic than the 1/q divergencies described above, we
content ourselves with choosing g(q) =1/q and calculat-
ing numerically its integral over the first Brillouin zone.

As can be seen from Eq. (10), the calculation of the
self-energy matrix requires the computation of the dielec-
tric matrix and the evaluation of (8) and (9) for each spe-
cial point q, and as well for q~0 to determine quantities
A and 8 in (27).

Usually, just inserting the LDA energy value E"k
into the self-energy operator on the right-hand side of (7)
is considered sufficient to obtain reliable band-structure
values. This avoids further iterations of (7) with respect
to the energy E &. However, this procedure neglects the
possibility that the matrix elements of the self-energy
operator may depend on the energy E. Following Hy-
bertsen and Louie, a somewhat better scheme is given

10

&f(q)=—& If(q) —~g(q))+~ gg(q» (27) A. Results for Si

with
For Si, we have carried out two sets of GR' calcula-

tions, based on LDA calculations employing two different
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basis sets. One of them uses 60 Gaussian orbitals (GO's)
(decay constants: 0.18, 0.4, and 0.8 in atomic units). For
the other one, 40 orbitals have been used (decay con-
stants: 0.15 and 0.5). Starting from them, GS' calcula-
tions have been performed including the full scheme
which requires the calculation of the RPA matrices of
Eq. (6). ~e have used the experimental lattice constant
ao 5.43 A

The band-structure results at high-symmetry points are
given in Table I. The LDA band structure and the full
GWA band structure calculated with 40 GO's are shown
in Fig. 1 in direct comparison.

First, we compare our LDA band-structure results to
those of a highly converged plane-wave LDA calculation
performed with 450 plane waves. As can be seen from
Table I, both our 60- and 40-GO LDA calculations yield
nearly the same results as the 450-PW LDA calculation.
This indicates that LDA calculations with localized fu.nc-
tions are suitable to obtain reliable results for LDA band
structures. Furthermore, our LDA calculations should
be suitable to give a good foundation for the following
68 computations. Second, we compare our 68'results
to the 68' results of Hybertsen and Louie, ' who used
plane waves in their computation. The results of other
authors"' are not included in the table for direct com-
parison, because of slight differences between their ap-
proaches and our scheme. Cxodby, Schliiter, and Sham"
did not use a plasmon-pole model. Bott' used empirical

xl
—10—

L 1 X N K T'

FIG. 1. Calculated electronic band structures along lines of
high symmetry for Si (in eV). We show LDA and GWA results
in comparison. The dashed lines display the LDA results calcu-
lated with 40 Gaussian orbitals (cf. Table I, column 2). The
solid lines show the GR' results based on these LDA calcula-
tions, using the full scheme with dielectric matrices in RPA (cf.
Table I, column 5).

TABLE I. Calculated band-structure energies at points of high symmetry for Si (in eV). The LDA
calculation of the third column has been performed by Chan, Vanderbilt, and Louie (Ref. 37), using
plane waves. The G8'calculations are performed using the full scheme of RPA matrices. The values
of the sixth column have been calculated by Hybertsen and Louie (Ref. 10), using plane waves. The ex-
perimental data are from Ref. 36 except where noted otherwise.

Si

r„
res.
r„,
I2,

LDA
60 GO

—11.91
0.00
2.57
3.24

LDA
40 GO

—11.96
0.00
2.57
3.28

LDA'
450 PW

—11.91
0.00
2.55
3.28

G8'
RPA

60 CxO

—11.95
0.00
3.36
3.89

GR'
RPA

40 GO

—12.04
0.00
3.39
3.93

G 8'"
RPA
PW

,

—12.04
0.00
3.35
4.08

Expt. '
—12.5+0.6

0.0
3.40,3.05
4.23,4.1

X„
X4,
Xl,
X4,

—7.77
—2.78

0.65
10.03

—7.81
—2.80

0.68
10.04

—7.76
—2.86

0.66

—7.95
—2.93

1.43
10.76

—8.01
—2.98

1.47
10.80

—2.99
1.44

—2.9, ' —3.3+0.2
1.25

Lzv
L
L3,
Ll,
L3c
L2,

—9.58
—6.94
—1.17

1.47
3.32
7.77

—9.62
—6.97
—1.14

1 ~ 51
3.40
7.80

—9.56
—6.96
—1.20

1.50
3.33

—9.70
—7.14
—1.25

2.19
4.25
8.56

—9.77
—7.21
—1.24

2.26
4.33
8.63

—9.79
—7.18
—1.27

2.27
4.24

—9.3+0.4
—6.7+0.2

—1.2+0.2, —1.5~

2.1,"2.4+0. 15'
4.15+0. a'

0.52 0.56 1.31 1.29 1.17

'Reference 37.
"Reference 10.
'Reference 36.
Reference 38.

'Reference 39.

Reference 40.
gReference 41.
"Reference 42.
'Reference 43.
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pseudopotentials instead of ab initio pseudopotentials.
Our 68' calculations, using 60 or 40 Gaussian orbitals,
respectively, agree very well with the plane-wave 68're-
sults, as well. This shows that calculations using Gauss-
ian orbitals are suited to obtain very good quasiparticle
energies. Localized functions are as suitable as plane
waves to perform state-of-the-art band-structure calcula-
tions. Minor differences in the numerical realization of
the 68' approximation, such as different plasmon-pole
models or different treatments of divergencies [cf. (27)],
seem to be of little importance.

Since our 60- and 40-GO results differ only very little,
no more than 40 localized basis functions are necessary to
perform convergent band-structure calculations (both
within the LDA and within the GWA). For all materials
investigated in this paper, we have carried out calcula-
tions with both 60 and 40 Gaussian orbitals, and found
for most of the energies only very smal1 differences in the
LDA and GWA results, respectively. This holds if the
decay constants are chosen carefully.

On comparing the GWA results to the LDA, the
valence-band energies are shifted to lower energies by a
small amount. On the contrary, the conduction-band
states rise in energy. They are shifted to higher energies
nearly rigidly. As can be seen from Table I, our GWA
band-structure results are in good agreement with experi-
mental data. In particular, the gap problem no longer
occurs. We come back to a more detailed comparison
with experimental data further below in the discussion of
Fig. 3.

In addition to the calculations based on the RPA, we
have performed analogous GR' calculations using the
model dielectric functions as described in Sec. III. The
experimental value of the dielectric constant e =11.7

Si
Simple
scheme

—12.14
0.00
3.63
4.11

Scheme
of (28)

—12.04
0.00
3.39
3.93

X)„
X4„
Xi,
X4,

—8.11
—3.02

1.67
11.05

—8.01
—2.98

1.47
10.80

L2U

Li„
L3,
Li,
L3,
L2,

—9.88
—7.31
—1.27

2.45
4.59
8.87

—9.77
—7.21
—1.24

2.26
4.33
8.63

1.50 1.31

has been used. In Table II we compare the band-
structure energies resulting for the six different models
with one another. For direct comparison the full RPA-
GWA results from column 5 of Table I are given, as well.

TABLE III. Calculated band-structure energies at points of
high symmetry for Si (in eV), based on the 40 GO LDA calcula-
tion that is shown in Table I, column 2. The full GW calcula-
tion using dielectric matrices in RA has been performed here.
The results of the first column have been obtained by just insert-
ing the LDA energies into the self-energy operator in (7). The
results of the second column have been calculated by using Eq.
(28). The latter scheme is used throughout our work (therefore,
this column is the same as column 5 of Table I).

TABLE II. Calculated band-structure energies at points of high symmetry for Si (in eV), based on
the 40 GO LDA calculation that is shown in Table I, column 2. The GW calculations have been per-
formed using the model dielectric functions that are described in the text (see Sec. III). These results
should be compared to the corresponding full GW calculation. Therefore, the results of this full calcu-
lation (column 5 in Table I) are listed again in this table (last column) for the convenience of the reader.

Si
(a)

40 GO
(b1)

40 GO
(b2)

40 GO
(c1)

40 GO
(c2)

40 GO
(c3)

40 GO
RPA

40 GO

—17.29
0.00
8.56

10.01

—12.46
0.00
3.17
3.97

—12.45
0.00
3.20
3.88

—12.44
0.00
3.14
3.97

—12.37
0.00
3.33
4.00

—12.04
0.00
3.17
3.82

—12.04
0.00
3.39
3.93

X),
X4,
X),
Xq,

—11.28
—3.92

6.38
18.67

—8.26
—3.09

1.07
10.88

—8.22
—3.05

1.21
10.48

—8.22
—3.05

1.05
10.86

—8.20
—3.03

1.33
10.99

—8.03
—2.99

1.16
10.69

—8.01
—2.98

1.47
10.80

L2,
Ll,
L3,
Ll,
L3c

—13.96
—9.93
—1.61

7.43
9.78

—10.10
—7.43
—1.28

2.05
4.05

—10.07
—7.37
—1.27

2.08
4.12

—10.07
—7.37
—1.27

2.03
4.01

—10.04
—7.35
—1.27

2.19
4.25

—9.78
—7.22
—1.24

2.04
4.07

—9.77
—7.21
—1.24

2.26
4.33
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All these calculations were done using the 40-GO basis.
The dielectric models result in similar behavior of the

band-structure energies to that found for the RPA matrix
of the full calculation scheme. The valence bands shift to
lower while the conduction bands shiA to higher energies.
As one would expect, the results of the nondiagonal mod-
els agree better with those of the fu11 calculation than do
those of the diagonal models. The Hartree-Fock results
(a) do not give any reasonable description of the material.
The valence bands are lowered and the conduction bands
are raised too much. Obviously, our results reAect the
well-known fact that Hartree-Fock theory is not ap-
propriate for the description of the electronic properties
of a semiconductor. ' ' Model (b2), which was
developed by Hybertsen and Louie, agrees well with the
results of the full calculation. It gives a good approxima-
tion of all band-structure energies, but still underesti-
mates the fundamental gap. Model (c2), which contains
the model of Bechstedt, Enderlein, and Wischnewski as
its diagonal terms, and the model suggested by Falter as
its nondiagonal ones, approximate the band-structure en-
ergies of the full 68'calculation well, especially near the
fundamental gap (from about —3 to +5 eV). Neverthe-
less, it yields a smaller gap than the full calculation.
Model (c3), which uses the analytical form suggested by
Falter for all terms, reproduces the valence-band energies
of the full calculation in an excellent way, including the
low ones.

As mentioned above, inserting the LDA band-
structure energies into the self-energy operator in (7) is
often considered to give satisfying results. If the im-
proved scheme of Hybertsen and Louie, taking the
dynamical properties of X(E) better into account, is used
[see Eq. (28)], the results change noticeably. This is
shown in Table III, where the results of both approaches

11.0 12.0 13.0

r„
l zs.
l is

2G

—12.38
0.00
3.36
4.03

—12.35
0.00
3.33
4.00

—12.33
0.00
3.31
3.97

TABLE IV. Calculated band-structure energies at points of
high symmetry for Si (in eV). The energies have been calculated
using the model dielectric function (c2). Several values of the
dielectric constant e have been investigated, showing the
dependence of the band-structure results on it.

are compared for the full calculation, using the RPA ma-
trix and 40 GO's. Compared to the simple scheme, the
scheme of (28) makes the valence-band energies rise
slightly, while the conduction-band energies drop a bit.
This behavior agrees with the fact that the matrix ele-
ments of the self-energy operator, (g k~2(E) ~g z), have
a negative slope with respect to the energy E, as can be
expected from the theory of the Green's function, and
as has already been discussed by Hybertsen and Louie. '

Finally, in the case of Si we investigated the depen-
dence of the results on the value of the dielectric constant
e, which enters as a parameter for models (b) and (c).
For this purpose, we have chosen model (c2) and per-.
formed G8' calculations using diA'erent values of e
(11.0, 12.0, and 13.0), chosen ad hoc. The respective
band-structure energies are given in Table IV.

If e„changes from 11.0 to 13.0 the absolute values of
the band-structure energies become smaller, but change
by less than 0.1 eV. This shows that the results do not
depend crucially on the value of e . An approximate
value of the dielectric constant e is thus sufhcient to
perform GR' calculations using a model dielectric func-
tion. We come back to this aspect in Sec. VI.

B. Results for Ge, GaAs, and diamond

We have carried out similar calculations for Ge, GaAs,
and diamond. The results are based on LDA calculations
with 40 Gaussian orbitals (Tables VI —VIII). The 40-GO
LDA band structures and the respective full GR' band
structures are compiled in Fig. 2. The lattice constants,
dielectric constants, and decay constants of the wave
functions are given in Table V.

We remind the reader that the dielectric constant e
rather than E'0 must be used for ionic crystals, to take ac-
count of the electronic part of the dielectric function
only.

For all three materials, in Tables VI —VIII we give the
LDA band-structure energies as well as the results of the
full 68'calculations. Furthermore, results obtained with
model (c2) for the dielectric matrix are shown. We have
chosen this model since for Si it yields a good overall
agreement with the results of our full G8 calculation, as
we have seen in Table II. All results are compared to ex-
perimental data as well. We have also performed calcula-
tions with 60 basis functions. The diA'erences in the band

Xl,
X4,
Xl,
X4,

—8.22
—3.03

1.35
11.02

—8.20
—3.03

1.32
10.98

—8.18
—3.02

1 ~ 31
10.95

0
TABLE V. Lattice constants (in A), dielectric constants, and

decay parameters, as used for our calculations. The lattice con-
stants and the dielectric constants are from Ref. 36.

Decay parameters

L2,
Ll,
L3v
Li,
L3c
Lac

Earp

—10.04
—7.36
—1.27

2.22
4.29
8.52

1.20

—10.03
—7.35
—1.27

2.19
4.25
8.48

1.17

—10.00
—7.32
—1.25

2.18
4.23
8.45

1.16

Si
Ge
GaAs

C
SiC

'Reference 36.

5.43
5.66
5.65

3.57
4.36

11.7
16.0
10.9

5.7
6.5

0.15,0.5
0.2,0.5
0.2,0.5 for Ga,
0.2,0.5 for As
0.35,1.4
0.2,0.5 for Si,
0.35,1.4 for C
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structures from the results displayed here are small. As
was found for Si, 40-GO basis functions are sufFicient to
give reliable results. Similar to the case of Si, the valence
bands are shifted to lower energies by a small amount.
For diamond, the first valence band is lowered by more
than 1 eV. The conduction-band energies of al1 materials
rise considerably, and agree well with experimental re-
sults. In comparison to the full calculations, the model
calculations show the same behavior as that found for Si.
Model functions (b2) and especially (c2) yield good results
in the gap region, while model function (c3) reproduces
the valence-band energies of the full calculation very
well.

Our results for Ge are given in Table VI. The LDA
yields a fundamental gap which nearly vanishes. In
G~A the gap is enormously improved, but remains

direct instead of indirect. We compare the results of our
full GR' calculation to those of Hybertsen and Louie. '

Our band-structure results show very good agreement
with those values and with the experimental data except
for a few states, most noticeably E(Lz, ). With 60 Gauss-
ian orbitals we obtain 7.46 eV in LDA and 8.11 eV in
GWA for E(Lz, ). The results of Hybertsen and Louie
show a direct gap as well. It should be noted that taking
account of core polarization results in even better band-
structure energies. In particular, the fundamental gap of
Ge becomes indirect.

The band-structure energies for GaAs are listed in

Table VII ~ The general improvement of the results of the

GW approximation is similar to that found for Si or Ge,
and leads to a reliable electronic band structure, although
some values do not match experiment perfectly. Also in

0

—10

L T' X N K

IO
I

1. 0

-20

L 7' X N K L T' X ItII K

FIG. 2. Calculated electronic band structures along lines of high symmetry for (a) Ge, (b} GaAs, (c) diamond, and (d) P-Sic (in eV}.
We show LDA and GWA results in comparison. The dashed lines display the LDA results calculated with 40 Gaussian orbitals (cf.
column 1 of Tables VI—IX for Ge, GaAs, diamond, and SiC, respectively). The solid lines show the GWA results based on these

LDA calculations, using the full scheme with dielectric matrices in RPA (cf. column 2 of Tables VI —IX for Ge, GaAs, diamond, and

SiC, respectively).
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LDA
40 GO Expt. bGe

TABLE VI. Calculated band-structure energies at points of high symmetry for Ge (in eV). The 68'
calculations have been performed using both the full scheme of dielectric matrices in RPA (column 2)
and the model dielectric function (c2), which is described in Sec. III (column 3). The results of column
4 have been obtained by Hybertsen and Louie (Ref. 10) who have performed a full 68 calculation us-
ing plane waves. It should be noted that effects of spin-orbit coupling have been included in this calcu-
lation. The experimental data are from Ref. 36 except where noted otherwise.

GWA GWA GWA'
(RPA) (c2) (RPA)
40 GO 40 GO PW

—12.79
0.00
0.01
2.53

—12.84
0.00
0.65
3.21

—12.99
0.00
0.57
3.12

—12.86
0.00,—0.30

0.71
3.04,3.26

—12.6, —12.9+0.2'
0.0

0.89"
3 01 3.21

X),
X4„
X),
X3,

—8.91
—3.02

1.03
9.54

—9.06
—3 ~ 16

1.74
10.19

—9.17
—3.18

1.59
10.25

—9.13
—3.22

1.23

—9.3+0.2'
—3.15+0.2 —3.5+0.2'

1.3+0.2

L2,
Li„
L3,
Li,
L3c
Lac

—10.71
—7.63
—1.40

0.33
3.80
8.33

—10.82
—7.81
—1.47

0.98
4.57
9.20

—10.94
—7.90
—1.48

0.86
4.48
9.03

—10.89
—7.82

—1.61,—1.43
0.75

4.33,4.43
7.61

—10.6+0.5
—7.7+0.2
—1.4+0.3

0.744
4.3+0.2,4.2+0. 1'
7.8+0.6,7.9+0.1'

'Reference 10.
Reference 36.

'Reference 40.

0.01 0.65 0.57 0.71

Reference 46.
'Reference 47.

0.744

this case we find an appreciable deviation for E(L„),
which is similar to the deviation mentioned above for Ge.
In this case we obtain with 60 Gaussian orbitals 8.08 eV
in LDA and 8.86 eV in GWA for E(I.i, ). We do not
display the results of other authors for GaAs, because of
some differences in their approaches"' to our scheme.

Our results for diamond are given in Table VIII, in
comparison with those of Ref. 10 and with available ex-
perirnental data. The agreement with experiment is not
perfect, as also has been found by Hybertsen and Louie. '

But neither is it bad, and the calculated gap energy com-
pares extremely well with the data.

In Fig. 2 we have compiled all the results from our
LDA and GWA calculations using the full RPA matrices
and the 40-GO basis sets. In addition to Ge, GaAs, and
diamond, we have included our results for SiC, which will
be discussed in detail in Sec. VC. This compilation
highlights similarities and differences between the band
structures of these four important materials.

To allow a direct comparison with experiment of our
GWA results for Si, Ge, and GaAs, as calculated with
40-GO basis sets using the full RPA dielectric matrices,
in Fig. 3 we show the respective band structures along
the I.-I -X high-symmetry lines, together with available
experimental data from photoemission and inverse photo-
emission spectroscopy. A similar comparison has been
given recently by Ortega and Himpsel in their paper on
inverse photoemission spectroscopy results for these
three solids. While these authors had to compare their
data to theoretical results from two different sources, ' '

here we compare a full body of experimental data to

GaAs

r„
I isr„
I is

LDA

—12.69
0.00
0.57
3.73

GWA
(RPA)

—12.69
0.00
1.32
4.60

GWA
(c2)

—12.91
0.00
1.25
4.54

Expt. '
—13.21

0.0
1.52
4.61

X)„
X3„
X5,
X),
X3,
X5,

—10.37
—6.79
—2.56

1.80
1.85

10.33

—10.27
—7.16
—2.71

2.65
2.72

11.20

—10.53
—7.17
—2.73

2.53
2.60

11.27

—10.86
—6.81
—2.91

1.90
2.47

Li,
Li,
L3,
Li,
L3,
Li,

—11.08
—6.59
—1.10

1.13
4.67
8.88

—11.02
—6.91
—1.17

1.92
5.65
9.92

—11.27
—6.94
—1.20

1.84
5.56
9.78

—11.35
—6.81
—1.41

1.74
5.45b

8.6b

'Reference 36.
Reference 38.

0.57 1.32 1.25 1.52

TABLE VII. Calculated band-structure energies at points of
high symmetry for GaAs (in eV). The G8' calculations have
been performed using both the full scheme of dielectric matrices
in RPA (column 2) and the model dielectric function (c2), which
is described in Sec. III (column 3). The experimental values are
from Ref. 36 except where noted otherwise.
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TABLE VIII. Calculated band-structure energies at points of
high symmetry for diamond (in eV). The G8'calculations have
been performed using both the full scheme of dielectric matrices
in RPA (column 2) and the model dielectric function (c2), which
is described in Sec. III (column 3). The results of column 4 have
been obtained by Hybertsen and Louie (Ref. 10), who have per-
formed a full GR' calculation using plane waves. The experi-
mental data are from Ref. 36 except where noted otherwise.

LDA
40 GO

GWA
(RPA)
40 GO

GWA
(c2)

40 GO

GWA'
(RPA)

PW Expt b

theoretical results obtained on equal footing from one
single approach. We observe a very good overall agree-
ment between theory and experiment. In the case of Ge,
the agreement is excellent except for the highest mea-
sured band on the A line from I to L. For GaAs the
agreement is very good, and again we find pronounced
deviations only for the highest conduction band mea-
sured. The plane-. wave results in Ref. 10 for Ge and in
Ref. 23 for GaAs agreed very well with this measured
band, as well (see Fig. 6 of Ref. 38 for that matter). We
had mentioned these particular differences already in dis-
cussion of Tables VI and VII. This single deviation high
up in the conduction bands seems to be the only price one
has to pay for the computational advantages of using a
40-Gaussian-orbital basis set. If a 60-Gaussian-orbital
basis set is used, the agreement between theory and ex-
periment is very good for these states, as well. In the case
of Si, our results reproduce the experimental data very
well. The same type of agreement was observed for the
results of Zhu and Louie (see again Fig. 6 of Ref. 38).
In summary, Fig. 3 highlights the type of agreement one
obtains nowadays between experiment and state-of-the-
art electronic structure calculations for the three most
important semiconductor materials Si, Ge, and GaAs,
when the GR approximation together with the full RPA
dielectric matrix is employed.

C. Results for P-SiC

TABLE IX. Calculated band-structure energies at points of
high symmetry for P-SiC (in eV). The GW calculations have
been performed using both the full scheme of dielectric matrices
in RPA (column 2) and the model dielectric functions (b2), (c2),
and (c3), which are described in Sec. III (columns 3—5). The ex-
perimental results are taken from Ref. 36.

SiC
LDA GWA

(RPA)
GWA

(b2)
GWA

(c2)
GWA

(c3) Expt. '

As a last material, we investigated cubic SiC. The
band-structure results are displayed in Table IX. Since
our results are the first quasiparticle energies for SiC, we
summarize the band-structure results of several of our
GR calculations, using both the full RPA matrix as well
as the three nondiagonal models for the dielectric matrix
that have been described above [(b2), (c2), and (c3)j.
They are based again on a 40-CxO LDA calculation (for
the decay parameters, see Table V). The experimental
values of the lattice constant and of the dielectric con-
stant e„(for the models) have been used (cf. Table V).

A few band-structure energies have been measured so
far. Our GWA results of the full calculation agree amaz-
ingly well with the data, except for E (L „)and E (1», ).
E (L „)is overestimated even by the LDA, which is very
strange. Many of those experimental data have been ob-
tained by reAectivity measurements. The classification of
measured values as belonging to a certain point in the
Brillouin zone may yet not be definite. Further measure-
ments, in particular by photoemission and inverse photo-
emission spectroscopy, may give more detailed informa-
tion on the band structure. The fundamental gap is given
excellently by our calculation.

The model dielectric functions exhibit the same
behavior in these results as they do for Si. Model (b2)
largely agrees with the full calculation except for the
lowest valence band. Model (c2) gives good energies
around the gap region, while model (c3) reproduces the
valence-band energies of the full calculation excellently.

I 2s,
I is
I2,

0.00
5.58

13.10

0.00
7.63

14.54

0.00
7.54

14.68

—21.35 —22.88 —23.42 —23.0

0.0
7.5

14.8

—24.2+ 1,
—21+1

0.0
7.3

15.3+0.5'

Il,
I is
I ~

I is

—15.44
0.00
6.41
7.16

—16.44
0.00
7.35
8.35

—17.05
0.00
7.35
8.29

—16.75
0.00
7.42
8 ~ 54

—16.54
0.00
7.24
8.35

0.0

7.75

Xi„
X4,
X),
X4,

L2,
Ll,
L3U

L„
L3c
Lz,c

Exap

—12.61
—6.26

4.63
16.91

—15.51
—13.33
—2.78

8.39
8.76

15.67

4.01

—13.80
—6.69

6.30
19.50

—16.95
—14.27
—2.98

10.63
10.23
18.14

5.67

—14.15
—6.86

6.04
19.92

—17.39
—14.61
—3.05
10.56
10.16
18.15

5.43

—17.3
—14.4

17.9

5.6

—15.2+0.3'
—12.8+0.3'

20+ 1.5'

5.48

Xi,
X3V

Xs,
Xl,
X3,
Xs,

Ll,
L„
L3„
Ll,
L3c
Ll,

—10.31
—7.89
—3.22

1.31
4.33

14.05

—11.80
—8.63
—1.06

5.46
7.20

10.31

—11.24
—8.64
—3.62

2.34
5.59

15.78

—12.75
—9.42
—1.21

6.53
8.57

12.04

—11.77
—8.75
—3.69

2.14
5.42

15.99

—13.29
—9.55
—1.24

6.46
8.45

12.08

—11.56
—8.71
—3.66

2.35
5.66

16.15

—13.06
—9.48
—1.22

6.64
8.71

12.19

—11.46
—8.65
—3.65

2.18
5.48

15.91

—12.93
—9.43
—1.22

6.46
8.52

11.97

—3.6
2.39

5.5,4.7

—1.16
4.2
8.5

'Reference 10.
Reference 36.

'Reference 48.

1.31

'Reference 36.

2.34 2.14 2.35 2.18 2.39
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In general, they give an overall description of the band
structure of cubic SiC which is as reliable as that of the
full calculation.

VI. THE DIELECTRIC CONSTANT e

In this section we will discuss our results for the dielec-
tric constant e„which we have calculated from Eqs. (6)
and (24). The wave vector q has been chosen along the
(1,0,0) direction (q~~q„, q —+0). We have done this evalua-
tion for both our 60- and 40-60 LDA calculations. The

results are displayed in Table X. For ionic crystals this
method yields only the electronic part of the dielectric
constant, e

Since our 60- and 40-60 results agree rather well, the
use of 40 bands seems to be sufhcient to compute the
dielectric constants as well. %'e compare our results to
those of other authors ' and find good overall agree-
ment. Nevertheless, the agreement is not perfect. This
may result from the fact that we have used no more than
ten special points in the calculation of eGo.(q, 0).

Dl
C

CUc 5

-10
-L,

d

T,
'

r ~ x L ~ t

- -10

10

CA
C
Glc 5

-10
L, SaAs

X

L & t' & x
FIG. 3. Calculated electronic band structures along lines of high symmetry for (a) Si, (b) Ge, and (c) GaAs (in eV). We show GWA

results and experimental data in comparison. The solid lines show the 40 GO GWA results, using the full scheme with dielectric ma-

trices in RPA (cf. Table I, column 5 for Si; Table VI, column 2 for Ge; and Table VII, column 2 for GaAs). The experimental data
have been obtained by photoemission and inverse photoemission. They were summarized in a recent paper on inverse photoemission
spectroscopy by Ortega and Himpsel (cf. Fig. 6 of Ref. 38). The symbols refer to difterent works: full diamonds and full squares,
from Si(100)-(2X1), Ge(100)-(2X1), and GaAs(100)-(4X2) surfaces (Ref. 38); open circles, from Si(100)-(2X1), Ge(111)-c(2X8),
Ge(111)-(1X1)H, and Ge(100) (Ref. 40); full triangle, from Si(111)-(2X1) (Ref. 41); open diamonds, from Si(111)-(2X1) and
Ge(111)-(2X1) (Ref. 47); open triangles, from Sb-saturated Si(100) and Si(111) (Ref. 49); open squares, open dels, and crosses, from
GaAs(100)-(1X 1), GaAs(100)-c(2X 8), and GaAs(100)-c(6X4), respectively (Ref. 50); filled circles, from GaAs(110) (off'-normal)

(Ref. 51).
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Si

Ge
GaAs
C
SiC

60 GO

12.8

21 ~ 8
13.1
5.5
6.7

40 GO

12.7

20.3
12.2
5.5
6.6

PW'

12.2,
12.04'
19.2

5.62

Expt. '
11.7

16.0
10.9
5.7
6.5

TABLE X. Calculated dielectric constants, obtained from
our 60 GO LDA calculations and from our 40 GO LDA calcu-
lations for q~~(1, 0,0),q~0. The values of the third column
have been computed by Hybertsen and Louie (Ref. 28), and by
Baroni and Resta (Ref. 52) using plane waves. The experimen-
tal data are from Ref. 36.

(Expt. ')
Egap

a~(c2) (calc. )

Egap kV

G~(c2)

TABLE XI. Dependence of the calculated electronic gap
Eg p

and the calculated valence-band width 8 (in eV) on the
value of the dielectric constant, which is used as an input pa-
rameter for the model dielectric functions. We compare the ex-
perimental dielectric constants (column 1; from Ref. 36) to the
corresponding calculated values (column 4) that have been ob-
tained from our 40 GO LDA calculations (cf. Table X, column
2). The band-structure values are calculated using the model
dielectric function (c2), that has been introduced in Sec. III.
The results obtained with the experimental values of the dielec-
tric constants (columns 2 and 3) are compared to those obtained
with the calculated dielectric constants (columns 5 and 6).

'Reference 28, except where noted.
Reference 36.

'Reference 52.

Si
Ge
GaAs
C
SiC

1 1.7
16.0
10.9
5.7
6.5

1.17 12.37
0.57 12.99
1.25 12.91
5.43 23.42
2.35 16.75

12.7
20.3
12.2

5 ' 5

6.6

1.16 12.34
0.50 12.97
1.21 12.88
5.47 23.46
2.33 16.74

The calculated dielectric constants of GaAs and espe-
cially of Ge are somewhat larger than the experimental
values. This may result from the fact that the LDA un-
derestimates the fundamental gap, especially for Ge. The
energy differences between occupied and unoccupied
states enter into the dielectric matrices in terms of a
denominator [cf. (6)]. Therefore, underestimation of the
fundamental gap leads directly to an overestimation of
the dielectric constant.

The dependence of band-structure energies, however,
on the value of the dielectric constant was not very
strong for Si (see Table IV). In order to investigate the
inhuence of the dielectric constant on the band-structure
results of other materials, as well, it is interesting to per-
form GR' calculations with a model dielectric function
using our calculated dielectric constants. For this
matter, we have chosen the model dielectric function (c2).
For the calculated dielectric constants, we have taken the
results from our 40-GO LDA calculations (cf. column 2
in Table X). The band-structure results are compared to
those obtained when using the experimental values of the
dielectric constants for the same model. To represent the
main properties of the band structures, we concentrate on
the results for the fundamental gap, Eg p and the
valence-band width 8'. The results are displayed in
Table XI.

A larger dielectric constant in general results in a
slightly lower fundamental gap, as is found for all materi-
als considered here. Nevertheless, this infiuence is not
very strong, even for Ge, where our calculated dielectric
constant e is overestimated by as much as 20%. The
valence-band width is hardly affected by the value of the
dielectric constant.

'Reference 36.

VII. SUMMARY

In this paper we have presented calculations of quasi-
particle band structures for semiconductors and insula-
tors. The required self-energy operator is evaluated
within the GR' approximation. It yields energy correc-
tions to carefully performed LDA calculations. We have
used basis sets of Gaussian orbitals. Norm-conserving ab
initio pseudopotentials have been employed to obtain
very good wave functions from the LDA. For the dielec-
tric matrix, both the full RPA expression and several
model functions have been employed. The nondiagonal
model functions yield band-structure results in good
agreement with the results of the full GR'calculations us-
ing the dielectric matrix in RPA.

We have presented calculations for Si, Ge, GaAs, dia-
mond, and P-SiC. Our results are in very good agreement
with experimental data. Our scheme, based on relatively
small basis sets of localized Gaussian orbitals, turns out
to be a powerful method for the calculation of quasiparti-
cle energies and excitation spectra of semiconductors and
insulators. It should be applicable to more complex sys-
tems such as bulk defects, surfaces, and interfaces.
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