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Effect of d electrons in transition-metal ions on band-gap energies
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We present a theoretical study of the effect of partially filled d electrons in transition-metal ions on the
E& and E& + 6& band-gap energies of the diluted magnetic semiconductors. Semiempirical tight-binding
calculations were performed to study the effects of interactions arising from the hybridization between
the localized d orbitals of a transition-metal impurity and the bulk band states of II-VI semiconductors
on the I - and L-point band gaps. Our results account for the concentration dependence of the L-point
band gaps in the Zni (Mn, Fe,Co)„Se system in the range of small x. The effect of this hybridization
strongly depends on the location of the d states relative to the valence- and conduction-band levels, giv-
ing a decrease of the L-point band gaps in Zn& Mn„Se, an increase in Zni „Fe Se, and very little
change in Zn& „Co Se. The exchange interaction has a much smaller effect on the band-gap energies.

I. INTRODUCTION

Semimagnetic or diluted magnetic semiconductors
(DMS's) (Refs. I and 2) are a class of semiconducting ma-
terials formed by randomly replacing some of the cations
in a compound semiconductor with magnetic ions. Most
extensively studied has been the Mn-based DMS family,
in which the Mn + (3d ) ion has a S5i2 free-ion ground
level. Recently, the Fe- and Co-based compounds have
been synthesized and studied. The unusual electronic
and optical properties of the DMS were interpreted first
in terms of a (direct) sp dexchange -interaction of the
form —Js S, for the coupling between the band electron
spin s and magnetic ion spin S. ' Later, another inter-
pretation based on p-d hybridization interaction was pro-
posed and developed to expand the microscopic analysis
of several DMS systems.

In the Zn, Mn Se system, an unusual initial decrease
of the fundamental band-gap energy Eo with x has been
reported' " and interpreted using the exchange interac-
tion model with a Kondo-like Hamiltonian, ' as applied
earlier to other Mn-based DMS's. ' ' This concentra-
tion dependence of the band-gap energy in the absence of
applied magnetic field is of great importance for under-
standing DMS heterostructures.

Recently Kim et al. presented a study' of the E
&

and
E, +b, , band-gap energies of Zn, „(Mn,Fe,Co) Se show-
ing that the sp-d exchange interaction model could mar-
ginally explain the band-gap energies of Zn& Mn Se but
not those of Zn& Fe Se and Zn, Co„Se. It was sug-
gested that to understand all three systems, the sp-d hy-
bridization effect on the sp band structure of the host ma-
terial should be considered. This effect has been applied
mostly to analyze the I -point band gaps, ' ' and to our
knowledge no systematic study of this hybridization
effect has yet been reported for the higher band gaps in
DMS s. Higher interband transitions can yield informa-
tion about the exchange interactions because they occur

at positions in the Brillouin zone (BZ) offering different
symmetry from that of the I point.

In this paper, we present a quantitative study of the
sp-d hybridization effect on the energies of the E, and
E& +b

&
band-gap transitions, assumed to occur at the L

point of the BZ of Mn-, Fe-, and Co-doped ZnSe systems,
using a semiempirical tight-binding model. In Sec. II an
sp-d hybridization model Hamiltonian is derived, which
consists of the host sp s* bands, the impurity d states,
and the interactions among them. Section III describes a
quantitative application of the model to explain the re-
ported E& and E& +6& band-gap energies of
Zn, (Mn, Fe,Co), Se. We conclude in Sec. IV with a
brief comparison of these two different interaction mech-
anisms.

II. sp -d HYBRIDIZATION MODEL HAMILTONIAN

An empirical tight-binding Hamiltonian, used to study
the effect of the hybridization interaction on the band-
gap energies, has the form of a diluted Anderson lattice
Hamiltonian and has been applied to explain mainly
Cd& „Mn Te systems. ' ' In this section we rederive
the formula to include more sp orbitals and justify our
approximations for the small concentration range. Ex-
plicitly,

H =Ho+Hd +H, d +H,„.
Here

Ho= g E„(k)c„j,c„l,
oker

describes the unperturbed ZnSe sp s* bands using two s
orbitals and six p orbitals for both cation and anion sites,
including the spin-orbit interactions. Two s orbi-
tals are included only to improve the description of the
conduction band near the X point. ' The operator c„&
creates an electron in the Bloch state in band n, with
wave number k and spin o.. This Bloch state can be ex-
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pressed as

%'„z(r)= —g e ' C„„(k)$„(r—R—v;)y, (3)
N „,it

where P„(r R—r,—) is an atomic wave function at lattice
site R with symmetry p(=s, xy, z,s') and atomic posi-
tion ~, (=Zn or Se). y denotes the electron-spin wave
function. His the total number of lattice sites. For sim-
plicity, we consider only nearest-neighbor interactions in
Ho. The parameters C„~ (k) are eigenvectors obtained
from diagonalizing the 20 X20 tight-binding Hamiltonian
matrix. Since the purpose of this work is to study the
effects of magnetic impurities in the small concentration
range, the alloying effect is not included in this term but
will be treated phenomenologically below. With the
proper choice of parameters, this model yields reasonable
bandwidths and wave functions for the highest valence
bands and lowest conduction band, as well as band gaps
in agreement with experiment.

The second term describes an effective one-electron
Hamiltonian for the unperturbed localized d states of the
magnetic impurity: '

eV for Mn, Fe, and Co, respectively. These relative loca-
tions of d states are important because they determine the
direction of the repelling effect of hybridization. For ex-
ample, concerning the conduction band at the L point,
the Mn d level which lies above the I 6 conduction-band
energy pushes the conduction band downward, whereas
the Fe and Co d levels, which lie below the conduction
band of ZnSe at the L point, push it upward. Therefore
this hybridization model qualitatively explains the
different behaviors observed for the three dopants. '

In the dilute impurity limit, when the correlation be-
tween any two localized d states can be ignored, a super-
cell approach is justified. We assume that the magnetic
impurities of the same spin (say, spin-up) are distributed
periodically, with one impurity in each supercell which
has a size 1/x t times that of the bulk unit cell, x

&
being

the concentration of the spin-up impurity. Note that
x

&
=x if all spins are aligned and x

&
=x /2 if there are as

many spin-up moments as spin-down ones. x is the total
impurity concentration. We denote q to be a wave vector
within the superlattice Brillouin zone. A Bloch state con-
structed from the d orbitals is given as

Hd =g'g n, (ed+ U, s(n, , ) ), (4) ye' 'y,'"(r—R, ),
QNd

where n; is the number operator for d electrons in or-
bital v with spin o. localized on Zn site i. The primed
sum is over only those sites occupied by magnetic impuri-
ties. Implicit in this Hamiltonian is the assumption that
the strongly correlated d orbital's electron-electron in-
teraction takes the Hubbard form, U,z-. The expectation
value (n; ) will be assumed to equal zero or 1.
Therefore we have two fivefold d states which are
separated in energy by U,z. Application of the above
Hamiltonian was quite successful in describing not only
Mn but also more complicated Fe- and Co-based DMS
systems which have minority-spin levels. ' We adopted
the values of U,& for Mn, Fe, and Co from Ref. 9. Ac-
cording to the U, U', J model of Kanamori, ' discussed
by Hass, ' U,&= U+4J, U+3J, and U+2J for Mn, Fe,
and Co, respectively. The values for c.d and U,z are not
sensitive to the host materials; thus we can use the latest
reported values for CdSe. From Ref. 9, the on-site ener-
gies cd, which correspond to the majority-spin occupied
states, are 3.4, 3.7, and 3.5 eV below the valence-band
maximum of ZnSe, and U,z values are 7.6, 6.8, and 5.9

where P,' '(r —R, ) is a d-wave function for the magnetic
impurity atom at cation site i, with v labeling the five d
orbitals, of symmetry t2z(xy, yz, zx) or ez(x y, 3z r-)-
We find that the e orbitals, which had no effect on the
I -point study, make a significant contribution to the hy-
bridization calculation at the L point. The sum is only
over states occupied by magnetic impurities of a given
spin, whose total number is Nd or Xd. Here we consider
only the ferromagnetic (N& =Nd, Nd =0) or paramagnet-
ic (Nd =Nd =Nd) cases The f.erromagnetic (paramag-
netic) case applies when an external magnetic field is ap-
plied (absent).

The third term

H, d= g g [(vqo ~V, „~nk)d, c„„+H.c. ]
v, q, on, k

describes magnetic impurity 3d-Se 4sp hybridization,
where d~ creates a d electron in the Bloch state 0"q'

with spin o.. This hybridization interaction yields a shift
of the sp band energies and a broadening of the d levels.
The interaction matrix V,~ d is given by

(vqo~v, d~nk&=
1

e
QNN, „,, R, ;

' 1/2
d

N

(k) fP„(r R ~, ) V, dP',"'(—r —R—
, )d r 5& z+&

'C, p (k) f 4p(r &j)Vp d4' (r)d "&I,q+G, -

where Cxi (l =1, . . . , N/Nd ) is a superlattice reciprocal-
lattice vector enclosed within the bulk Brillouin zone,
and summation j is over nearest four Se atoms around a
given impurity atom. We obtain a concentration-

dependent hybridization parameter governed by the fac-
tor t/Nd /N =&x for the ferromagnetic case and
QNd/N =&x/2 for the paramagnetic case. The hop-
ping integral in Eq. (7),
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fP„(r —rj ).V,~ dP' '(r)d r = V„'"', (8)

can be related to interaction parameters Vpd Vpd„, and

V,d, which in turn are determined by fitting experimental
data. The hybridization interaction in Eq. (8) connects sp
orbitals on Se sites with d orbitals (of Mn, Fe, and Co
atoms) on Zn sites in the off-diagonal elements in our
model Hamiltonian. The s -d interactions are not in-
cluded, because the s* orbitals make little contribution to
the lowest conduction band near the L point.

From Eq. (7), we see that each impurity Bloch state at
a fixed wave vector q, ~vqo ) (occupied or unoccupied), is
coupled to 20(N/Nd ) bulk states labeled by ~nk) with
k =q+G&[n =1, . . . , 20;l =1, . . . , (N/Nd)], while
there is no direct coupling between bulk states ~nk) at
different k. Each bulk state at fixed wave vector,
k=q+Cx&, is coupled directly to five (ten) occupied im-

purity Bloch states ~vqo ) and five (ten) unoccupied im-

purity Bloch states vq —cr ) of opposite spin for fer-
romagnetic (paramagnetic) case (v=1, . . . , 5;o =+—').
The bulk state is coupled indirectly to other bulk states
with k differing by a reciprocal-lattice vector G& only via
second-order effects. In principle, we can diagonalize a
Hamiltonian matrix of dimension [20(N /Nd ) + 10]
([20(N/Nd )+20]) for the ferromagnetic (paramagnetic)
case to obtain the total-energy shift of the bulk band
structure due to the sp-d hybridization and the cubic
splitting of impurity levels. After diagonalization, we
will obtain the first-order effect of impurity states on the
bulk bands, and the second-order effect due to the
impurity-state-mediated coupling between bulk states of
different k, separated by reciprocal-lattice vectors. How-
ever, for the purpose of getting an approximate shift of
band-gap energies in the first order, it suftices to ignore
the second-order effects (i.e., the indirect coupling be-
tween bulk states with the wave vector differing by a su-
perlattice reciprocal-lattice vector). In this case, we can
reduce the size of the Hamiltonian matrix by including
the bulk bands of interest (namely the heavy hole, light
hole, and conduction band with spin degeneracy) at a
given wave vector k, and the Bloch states constructed by
impurity orbitals at a wave vector q which is equal to k
shifted by an appropriate 6& such that q falls inside the
superlattice Brillouin zone. Thus the rank of the Hamil-
tonian matrix to be diagonalized is only 6+ 10= 16
(6+20=26) for the ferromagnetic (paramagnetic) case.
With this approximation, the calculation can be per-
formed for any real value of x, whereas the full calcula-
tion can only be performed for integer values of 1/x.
The cubic crystal-field splitting of d orbi-
tals obtained from diagonalizing this reduced Hamiltoni-
an matrix is underestimated. However, their effects on
the shift of band gaps are second order, as discussed, and
can be ignored.

The final term in Eq. (1) describes the sp-d exchange
interaction and can be expressed as '

H =+J(r—R )s S (9)

where J(r —R„) is the ordinary exchange integral for an
sp s* band electron of the host ZnSe with spin s at r and

a d electron of magnetic ion with spin S„at R„. Since
Zn, „(Mn,Fe,Co)„Se samples show paramagnetic
behavior at room temperature, ' the first-order perturba-
tion given by this term, which is proportional to the
thermal average of S„' is zero in the absence of an exter-
nal magnetic field. Therefore a second-order perturba-
tion theory within the k p method was developed'
and applied to the Zn& Mn„Se system to explain the in-
itial decrease of the E0(x) band gap due to the exchange
interaction. The theory predicted' a splitting between
heavy- and light-hole bands at the top of the valence
band at k=0. This result is unphysical because the p-d
exchange interaction should not affect the symmetry of
the crystal in the absence of the external field. The cru-
cial approximation in this exchange interaction model'
is that the k-independent I"-point (k=O) wave function
was assumed to be valid up to the nonzero cutoff wave
vector qa. Due to valence-band degeneracy, when k is
nonzero, there is a strong k-dependent mixing of those
valence-band wave functions defined at the I point
(k=O). Therefore the above assumption should not be
true. This discrepancy has been resolved by Ryabchenko,
Semenov, and Terletskii using a Green's function
method which considers the Auctuations in the local con-
centrations of the magnetic ions and k-dependent ex-
change constants. This approximation worked well for
the study of the E, band gap' because the wave func-
tions near the L point are not sensitive to k.

III. ESTIMATION FOR L-POINT
BAND GAPS OF Zn, (MI,Fe,Co)„Se

Now we apply the model Hamiltonian we developed in
Sec. II to calculate the concentration dependence of the
E& and E& +5& band-gap energies of
Zn, (Mn, Fe,Co)„Se alloys in the absence of an external
magnetic field.

As the first step, the sp s* band structure of ZnSe is
calculated to obtain coefficients of Bloch states in Eq. (3).
We consider only nearest-neighbor interactions, and Ha
is then characterized by 13 Slater-Koster parameters in-
cluding three sps* on-site energies for each cation and
anion. For the hopping parameter between nearest-
neighbor cation and anion sites, seven parameters are
needed to express ss, sp, ps, ppo. , ppm, s*p, and ps* con-
nections. With the choice of these parameters tabulated
in Table I, the resulting room-temperature band structure
shown in Fig. 1 describes both the top valence bands and
the bottom of the conduction band of ZnSe quite satisfac-
torily. The spin-orbit interaction is included with two
more parameters X, and A, A, , =6, , /3, where b, and
4, are the "renorrnalized" atomic spin-orbit splitting of
the anion and cation p states. As shown in Table II, the
calculated band gaps and their spin-split gaps are in ex-
cellent agreement with the reported ones both at I and
L points.

The second step is to determine atomic sp-d hybridiza-
tion parameters (V~d, V~d, and V,d). To accomplish
this we used the reported value of the splitting of the
valence-band edge at the I point in an external magnetic
field. The energy splitting can be expressed by the experi-
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TABLE I. Tight-binding parameters (in eV) for the band
structure of ZnSe. The V„parameter denotes the atomic hy-
bridization matrix element between the orbitals on the Se (a)
and Zn (c) sites.

Tight binding Ellipsometry

TABLE II. Comparison of the band gaps calculated using
the tight-binding method with experimental values reported in
Ref. 28.

E(a)
S

—11.8383

V„

E(a) E(a) E(c)
S

Vp,

1.5072 7.5872 0.0183

E(c) E (c)
S

Vppm

5.9928 8.9928 E() +60

E)+6)

2.6897
3.1102
4.8308
5.1115

2.69
3.11
4.83
5.10

—1.5541 1.5147 2.7111 3.8872 —0.7472

l.1211 —1.7118 0.141 0.137

mentally determined exchange constants (a and p) which
are reasonably insensitive to x,

~E =.~a&S, & and ~E =XXP&S, & (10)

for conduction and valence bands, respectively. Since no
room-temperature data for a and P are available, we use
low-temperature data with the approximation that
&S, &

= —,', 2, and —', for Mn, Fe, and Co, respectively, at
x =0.1. There is some variation in the reported values of
a and P, and therefore we have chosen the average of the
reported ones in Zn1 Mn„Se, ' ' Zn, Fe Se,10,29, 30 31,32

and Zn& „Co Se (Refs. 20 and 33) systems. The on-site
energies and U,z values for d states are chosen based on
the latest values reported in Ref. 9, as discussed in Sec.
II. To reproduce the splittings [Eq. (10)] in our calcula-
tion, the applied magnetic-field effect on the band struc-
ture is modeled as a sp-d hybridization efFect between
those sp s* band states and localized d states having the
same spin states. We chose V~& to be the only adjustable
parameter, relating V~&„and V,z to Vpp~ by use of
Harrison's ratio (V,&=1.07V~&, V~&

= —1/v'3V~& ).
The values obtained for V& are —1.267, —1.148, and—1.083 eV for Mn-, Fe-, and Co-doped ZnSe systems, re-
spectively. The ratios of V & between Mn, Fe, and Co

0.02
V

sd

0.0

I I I

V =-1.267
pcicj

obtained in this work agree well with those reported in
Ref. 9.

The final step is to calculate the effect of this hybridiza-
tion interaction on the band-gap energies in the absence
of an external magnetic field, using the fixed interaction
parameters determined in the previous step. For this cal-
culation the restriction of the interaction between only
the same spin states should be removed. Instead, the unit
supercell used to construct the Bloch state is doubled in
size to accommodate equal amounts of spin-up and
-down states of the magnetic impurities. With the in-
teraction parameter values determined by the I -point
(k=O) studies above, the model Hamiltonian is calculat-
ed along the (111) direction. The advantage of this
method is that we can calculate band structure at any k
point. The effect of V,& turns out to be very important at
the L-point [k=(0.5, 0.5, 0.5)2n/a] band gap. Such s-d
hybridization has been neglected in the Eo band-gap
studies because it makes no contribution at the I" point
due to the tetrahedral symmetry. However, since the s-d
hybridization is no longer canceled by symmetry at kXO,
the efFect of V,& should not be neglected. Figure 2 shows
the change in energy of the lowest conduction band and
highest valence band due to the sp-d hybridization efFect

!L

2 — E,+5, E +P
0

0
(3
CC

-2
LLI

-0.02
Q)

-0.04—
Q)

UJ

0.05

0.03

-1.0

0.01
L A I

k along (111)direction

WAVE VECTOR (k)

FIG. 1. ZnSe band structure calculated by the tight-binding
method using the parameters in Table I. Arrows indicate
several interband transitions.

FIG. 2. The sp band energy change produced by the sp-d hy-
bridization effect for conduction (upper) and valence (lower)
bands along the [111]direction. The s-d hybridization has little
eft'ect on the valence band, while it changes the conduction band
drastically. We plot with fixed V~&

= —1.267 eV to show the
effect of varying V,q.
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FIG. 3. Concentration dependence of the calculated sp-d hy-
bridization interaction energy, b,E,~ d in eV, for Zn& Mn„Se
(filled circles), Zn& Fe Se (filled triangles), and Zn& „Co Se
(open diamonds).

along the (111) direction. The values of V,d have little
effect on the valence band (lower panel), since that band
consists of mostly p-like states. The cancellation of the
s-d hybridization effect in the conduction band at k =0 is
also easily seen in the upper panel. However, away from
k=0, the crystal symmetry no longer produces a cancel-
lation of the effect of V,d. The same behavior is also seen
for Fe and Co calculations.

When the conduction (A6) and valence (A4 s, A6) bands
are nearly parallel, the E, and E, +6, band gaps receive
contributions not only from the L point but also from the
A bands. In ZnSe, however, since the A bands are
nearly parallel only in a region close to the L point, ' we
consider only the L-point contribution to simplify the
calculation. The calculated change in the E& band-gap
energy (b,E, d ) due to the sp-d hybridization effect at the
L point as a function of x is shown in Fig. 3. Recall the
case of Fe, in the sp-d direct exchange interaction mod-
el, ' where the slope was negative. The slope for Fe now
is positive, and the earlier model's large negative slope for

Co now becomes almost zero, in agreement with the re-
ported data. '

For further quantitative analysis, the alloying effect is
approximated by adding a linear-dependent term [Dx,
where D =0.2 eV (Ref. 30)] to the calculated sp s' band
gaps of ZnSe as a perturbation. Final estimates of the E&
and Ej+6& band gaps along with the reported' experi-
mental data are shown in Fig. 4. Even though there are
some discrepancies in the E, +4& band gaps, judging
from the fact that our model used parameters fixed from
other experiments without any further adjustments, it re-
markably appears to explain the different behaviors of
concentration-dependent band-gap energies in the three
Mn-, Fe-, and Co-doped ZnSe systems.

IV. CONCI. UDING REMARKS

The sp-d exchange interaction model was widely used
in the past to explain concentration- and temperature-
dependent band-gap energies of several DMS sys-
tems, ' ' ' assuming ' that the experimentally mea-
sured exchange integral P [deftned in Eq. (10)] is due en-
tirely to direct exchange interaction. Recently, another
interpretation which describes /3 as fully arising from the
p-d hybridization interaction was proposed and
developed. Since both exchange and hybridization in-
teractions coexist in the total system Hamiltonian of Eq.
(1), the effects of both interactions should be added to de-
scribe the d electron effects on the L-point band-gap ener-
gies of the system. Our calculation in this paper shows
that only the hybridization interaction effect is strong
enough to explain the observed concentration depen-
dence of the L-point band gaps of all Zn& Mn Se,
Zn& „Fe,Se, and Zn& „Co„Sesystems. The exchange in-
teraction alone, however, could marginally explain the
L-point band gaps of the Zn& „Mn Se system. ' In Ref.

U)
Q)

LU

5.2—

5.0—

Fe
E+5,

Co
-4 e

Mn

Fe

Co

5.2—

)~ 5.0—
U)

LU

4.8 — E 4 4

Fe

Co

Mn

Fe

Co

4.8— 4 4
T

Mn
4.6 l

0.0

Mn g

0.1 0.2
L

0.0 0.1 0.2
Concentration (x)

FIG. 4. Estimated concentration-dependent band-gap ener-
gies of our model are shown as lines for Zn& Mn Se (dot-
dashed line), Zn, Fe Se (dotted line), and Zn, Co Se (solid
line). Symbols represent the experimental data of Ref. 16.

Concentration (x)

FIG. 5. Estimated concentration-dependent band-gap ener-
gies predicted with the exchange interaction model are shown as
lines for Zn& „Mn Se (dot-dashed line), Zn& „Fe„Se (dotted
line), and Zn& Co„Se (solid line). Symbols represent the data
of Ref. 16. We used D =0.1 eV, and qo =3.3 X 10' cm ' in Eq.
(11)of Ref. 16.
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16, the cutoff wave vector qo value used to predict the
band gaps of Zni Mn, Se is 6.6X10 cm ', which is 0.6
of the distance to the Brillouin-zone (BZ) boundary.
Even though a similar value was reported in the
Cd, Mn Te system (qo =6.6X 10 cm '), this value
is too large to be consistent with the perturbation theory
of the exchange interaction model. When we use a more
reasonable value such as qo =3.3 X 10 cm ', which is 0.3
of the BZ, the estimates using the exchange interaction
model appear as in Fig. 5, which clearly shows that the
eff'ect of the interaction is too small to explain any results
on the Zn, „(Mn,Fe,Co)„Se system. (Furthermore, if we
use values of theoretical exchange interaction parameters
at the L, point interpreted by the hybridization mode1,
the estimation in Fig. 5 comes out to be an order of mag-
nitude smaller. ) This estimation is reasonable, because
the exchange interaction should be smaller by an order of
magnitude than that from the hybridization for the fol-
lowing reasons. As shown in Sec. II, the eff'ect of ex-
change interaction on the band-gap energies is of second
order, while that of hybridization is of first order. We
also interpret that the former can be considered to be the

scattering of the band electrons by the impurity d elec-
trons (two-electron system), whereas the latter determines
the appropriate one-particle states for interacting sp band
states and localized d states within the Hartree-Fock
theory. Therefore we conclude that the sp-d interaction
in these DMS materials is to be interpreted as a hybridi-
zation interaction whose strength is much larger by an
order of magnitude than that of the exchange interaction.
However, this quantitative agreement between our
analysis and the data should be taken carefully since
there are considerable uncertainties in the interpretation
of the photoemission data, in particular the position of
the d levels and the values of U,z. More systematic stud-
ies, such as temperature- and magnetic-field-dependent
experiments on the E, and E, +6,, as well as on the Eo
and ED+ho band gaps, should be done to confirm our
analysis.
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