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We present a method for calculating the electronic structure of disordered. alloys with short-
range order (SRO) which guarantees a positive density of states for all values of the SRO param-
eter. The method is based on the generalized augmented-space theorem which is valid for alloys
with SRO. This theorem is applied to alloys with SRO in the tight-binding linear-muffin-tin-orbital
(TB-LMTO) framework. This is done by using the augmented-space formulation of Mookerjee and
the cluster-coherent-potential approximation. As an illustration, the method is applied to a single-
band model TB-I MTO Hamiltonian. We Gnd that the SRO can induce substantial changes in the
density of states.

I. INTRODU CTION

During the last two decades a good deal of progress has
been made in understanding the electronic structure of
random disordered alloys using the coherent potential ap-
proximation (CPA). ~ s However, most disordered alloys
have a certain degree of short-range order (SRO) which
cannot be studied using the CPA since it is a single site
theory. The inclusion of the SRO is a challenging prob-
lem since it requires a self-consistent theory which goes
beyond the CPA, i.e. , one has to develop a theory which
includes correlations between different sites and retains
the Herglotz property of the averaged Green's function.
Such a development is important not only for studying
ordering and clustering in alloys, but also for develop-
ing analytic mean-field theories of liquid and amorphous
materials.

During the last few years, we have developed a
theory for random disordered alloys in the Korringa-
Kohn-Rostoker (KKR) and tight-binding linear-muffin-
tin-orbital (TB-LMTO) frameworks, which goes beyond
the CPA and includes correlations between different
sites using the cluster coherent potential approximation
(CCPA). s ~o This theory is based on the augmented-
space formulation (ASF) of Mookerjee ' and guaran-
tees a positive density of states. However, inclusion of
the SRO in this theory became diKcult because the orig-
inal augmented-space theorem is valid only for random
alloys. The best one could do was to expand the aver-
aged Green's function of the disordered alloy with SRO
in terms of the averaged Green's function of the ran-
dom alloy. This expansion, which contained an infinite
number of terms, had to be truncated for numerical cal-
culations. Although the full expansion of the averaged
Green's function was Herglotz, the truncation of the ex-
pansion sometimes gave a negative density of states for
large values of the SRO parameter.

In this paper, we present another method for calculat-
ing the electronic structure of disordered alloys with SRO
which does not use the expansion of the Green's function
as used in the previous paper and guarantees a positive
density of states for all values of the SRO parameter.

The first attempt to include SRO in the ASF was that
of Kaplan and Gray using the empirical tight-binding
Hamiltonian. For construction of certain operators in
the augmented space, we have followed an approach sim-
ilar to theirs and have given a proof of the generalized
augmented-space theorem in Sec. II. Although the theo-
rem was quoted in Ref. 13, its generalization is nontrivial
and a proof of the equality of the configuration average
with a particular matrix element in the augmented space
is essential. In Sec. III, we apply this theorem to the
TB-LMTO Hamiltonian of a disordered alloy with SRO
and derive necessary formulas. In our method the ef-
fective medium is calculated self-consistently using the
CCPA. Within the density functional theory it can be
made charge self-consistent also. Our approach is quite
different &om that of Gonis and Freeman, who have
used the embedded cluster method, which is a non-self-
consistent approach. In Sec. IV, we apply the formula-
tion to an s-band alloy in the TB-LMTO &amework and
present the results for the density of states for several
values of the SRO parameter. In Sec. V we give our
conclusions.

II. THE AUGMENTED-SPACE THEOREM
FOR CORRELATED VARIABLES

We shall consider a function F((n;)) of many vari-
ables (n;j which are random but have correlations built
into their behavior. The average of the function over
all possible configurations of this random set is given
by5, 11.

dfbldA2 ' dAA. ' ' T fbi

x P(nl, n2, . . . , ny). . .) .

Unlike the case of independent random variables, the
joint probability distribution, P(nq, n2, . . . , nk, . . .), does
not break up into individual probability densities. How-
ever, we may rewrite the above equation in terms of con-
ditional probability densities pq(nj), p2(n2~nq), etc. ,
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(F((n;))) = ff dnqdnq. dna, F((n, ))

xP1(nl)P2(n21ni)P3(nsln2 nl) Pk(nk ink —1 nk —2» ni) . (2)

We notice that each of the conditional probability den-
sities has the positive definiteness necessary for the
augmented-space theorem to hold. In addition we also
impose finiteness to all the moments of these densities,
in order to avoid diKcult convergence problems. This
restriction is not stringent, since almost all the physi-
cal conditional probability densities obey this restriction
anyway.

We shall first describe construction of operators asso-
ciated with each of the probability densities and subse-
quently give a proof of the generalized augmented-space
theorem regarding the configuration average of the type
shown in Eq. (1). We start with the unrestricted proba-
bility density pi(ni). We associate with this an operator
Mi such that

I

may easily find their representation in the basis (i f~~))
by premultiplying and postmultiplying by the transfor-
mation matrix U. For the binary case, for example, we
have

PA
i

A Q A B
q g~A~B ~B )

PB
i

B Q A B
(,

—i/~A~B ~A )
The full configuration space consists of the product of the
individual configuration spaces of each of the variables,
l.e)

pl(ni) — (~/)r)™(yii(niI Mi) ifi )

Given the probability density, the construction of a rep-
resentation of the operator has been described in some
detail by Mookerjee. Here we wish to remark on some
relevant properties of this operator. The operator is a
mapping on the configuration space of the variable ni.
Corresponding to the various values m& randomly as-
sumed by ni, we may assign states imi) to our system.
The space spanned by these states is the configuration
space $1 associated with the variable ni. The rank of
this space, as well as the rank of the operator Mi, is the
number of diferent values which ni can assume. Prom
the relationship between the resolvent of Mi and the
probability density, we can immediately conclude that
the states corresponding to definite values attained by
ni are eigenstates of the operator Mi with eigenvalues
mz. Let uk be the statistical weight associated with the
value mi. From Eq. (2) we can find thatii

We now extend the operator Mi onto the full configura-
tion space by

M& ——M& g I(3I(3 . . - .

Let us now come to the variable n2. For this, we have
several distinct conditional probability densities, depend-
ing on the value taken by the variable n~. For each value
mi taken by ni, we associate with the corresponding con-
ditional probability density p2(n2ini ——mi) an operator
M2, such that

p. (n2ini ™1)= (—~/~)lm(A'l(n2I —M.") 'IA') (7)

The operator M2 we wish to associate with the variable
n2 should be that M2 which corresponds to the particular
configuration m& which ni takes. A natural generaliza-
tion then takes the form

(ni) = (A'IM1IA') = ).mi~k. (4)
M, = ) P," (3 M," (3 I g)

k
The alternative basis (i f1~)f has been constructed as a
linear combination of the eigenbasis with

&k m&

For a binary distribution of nq, e.g. , taking two values
n~ and n~, the transformation matrix connecting the
eigenbasis to the basis

i fi) is given by

U +&A Q&B
& +~B —+~A i

Thus U~MqU is diagonal, with elements n~ and n~. We
shall also define a set of projection operators, P&", which
project onto the eigenstates of Mi. In the eigenbasis
these operators have representation matrices which are
zero everywhere except at the kth diagonal position. We

When we come to the next variable n3, there are now
difFerent conditionat probabilities p3(nsin2 ——m2', ni ——

m. i') depending on the difFerent configurations attained
by both the variables ni and n2. With each one of these
we now associate an operator M3" '. Using the same
type of argument as in the previous case, we associate an
operator M~ with the variable n3, given by

M, = ) ) P,"' g P,"' g M, ""'g I g
kg kg

We go on associating operators M„with each of the vari-
ables n„in turn. In general,

M = ) . . . ) P"' g)P"' . g M"' "'"".-' g Ig
kg k~
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Having done this, we now wish to prove the central the-
orem.

Theorem. The configuration average of the function
W((n, )) is given by (E ~X((M;))~E ), where ~E )
H; lf. ')

Proof. Let us first note that

Mklyk2'''k~ —1 Pkp [ fo$ Mkl&k2'''kp —1 ~' ~ P &
[ k~)

p I p

1I
k

so that

P„kP„k= bkk P„. (8)
(f ~Mk, k" „Pk~f )

k
p p p p p kJ

Let m„'denote the eigenvalues of M„"' " ' with sta-
tistical weights equal to wk

' ' " '. Then we note thatk1,k2" k~

we can expand

k~ k1,k2"-k~Since ~mz") are eigenfunctions of M„"'" ', a simple
generalization will give us

(fo~ Mkyk2 k& y Pk&~fe) kp '' P—
p p p p p

If,') =). kg, k2." kp g ( k
) (10)

where r is an integer.
Consider now the following relationship:

(~'IIM~I"' @ IM~I"' @' "l~') = (~'IMi' ) ~"' @ (M*")
k1

k'
x ) P," Pk, g M, ""' g. . . IE').

k,',k,

If we now expand the terms in the brackets and gather terms together, we get

) ) .) (M )"'P"'P ' . .P ' ) ) . ) (M"') 'P"'P '. . .P, '
k1 k' kl I

1 k2 k' kl I
2

Using Eq. (8), the relevant b functions reduce all multiple summations per variable label to only one per label and
only one projection operator per label survives in the above expression and we get

) (M, )"P"' @) (M"')"P"' @

Now taking the matrix elements between ~E ) and using (10) we get

k1 (dk (dk

k1 k2

By definition, it is easy to see that this is (ni'nz' . ).
Finally we de6ne a well-behaved operator function X((M,)) of the operators (M, ) as the series

P((M;j) = ) ) . ) B„„Mi'M2'...
&1 &2 7 p

Using the result already proved above, we obtain

(E'~P((M;))~E') = ) ) . B„,„.(E'~M,"M .. ~E')
&1 &2

).):
&1 &2

k1 k2

k1 k2

' Cdk1 Cdk Cdk

) ) .a., „,.. .(~", )"(m,")" . .
&1 &2

k1 k2
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From de6nition this is the con6gur ation average
(F(ng, nz . )).

This completes the proof of the generalized augmented-
space theorem.

labeled TB-LMTO basis.

R R'

III. THE TB-LMTO
AND THE CLUSTER-COHERENT-POTENTIAL

AP PROXIMATION

= P~ R) IR)(BI + bP) IB)

x (&lnR —) ) .~a~R, I&)(&'I,
R R'

The tight-binding or screened version of the linearized-
muKn-tin-orbitals method (TB-LMTO) has provided
an excellent starting point for first-principles electronic
structure determination of disordered alloys. The re-
sulting Hamiltonian is short-ranged and therefore ideally
provides the extension &om the traditional ad hoc tight-
binding ideas into a fully-self-consistent first-principles
theory. The basis of the method has been described in
detail by Andersen and relevant details necessary for
disordered alloys are given in Refs. 8 and 17. Here we
shall quote only some of the principal results necessary
for our discussion.

We shall be using the most localized TB-LMTO repre-
sentation called P representation. In this paper, we shall
focus on a binary substitutional disordered alloy of A and
B atoms. Let Bdenote an atomic position and L a collec-
tive angular momentum index for (l, m). The scattering
properties of the potentials are characterized by the po-
tential parameters CRL„ARL„andpRI, . Kudrnovsky and
Drchal have rewritten the Green's function of the sys-
tem in terms of site-diagonal random functions A~RL(z)
and pRL (z), which are functions of the potential param-

eters, and an auxiliary Green's function g~&L R, L, (z),

GRL R I, (z) = ARL(z)bRR bLLp

+PRL ( )gRL, R'L' ( )PR'L' (z)P p

with

where

and we have suppressed the angular momentum index
I for convenience. As described in the earlier section,
we may now associate with various site occupation vari-
ables nR corresponding operators MR in the configura-
tion space of the random variables. We notice that

p(nR, ) = xb(nR, —1) + yb(nR, ),

p(nR, InR, = 1) = (z + ny)b(nR, —1) + (1 —n)yb(nR, ),

p(nR, InR, = 0) = (1 —n)xb(nR, —1) + (y+ nx)b(nR, ) .

Here x and y are the concentrations of the A and B con-
stituents and a. is the Warren-Cowley SRO parameter.
Note that o. = 0 when there is no SRO and the condi-
tional probabilities of the second variable become iden-
tical and equal to the unrestricted probability density of
the first variable. o. & 0 indicates a tendency towards
ordering, while o. & 0 indicates a tendency towards seg-
regation. The representations of the different operators
associated with the variables, discussed in the earlier sec-
tion, are

gRL, R'L' (z) (A )RL,R'L'p —1 (12)
Mg ——

I

g g*y y

where

ARL, R~L~ = P (z) —S
RL,R'I '

v'( — )y(*+ y)
( Q(1 —n)y(2:+ ny) (1 —n)y

The potential functions P&~L(z) are random and site-

diagonal but the screened structure functions 8&1 R, &,
7

are nonrandom if there is no structural disorder. The
potential function has a binary distribution and may be
written in terms of random occupation variables {nR)
which take the values 1 if the site B is occupied by an
atom of the type A and 0 if it is not. The probability
weights associated with the variables will, of course, de-
pend upon whether we wish to incorporate SRO or not.

Our first task would be to obtain a CCPA for the
con6guration average of the auxiliary Green's function,

gRL R, L, (z). For this we follow a procedure very simi-

lar to that of Razee and Prasad. We shall first consider
the auxiliary Hamiltonian A written as an operator in a
Hilbert space 0 spanned by the site-angular momentum

M, =lo ( (1 —n)x Q(1 —n)x(y+ nx) &

!( Q(1 —n)x(y+ o,x) y+ nx

po
I

y -g*y
&I

In this representation, the operators associated with the
sites Bi and R2 operate only on the configuration spaces
of the respective variables. These configuration spaces
are of rank 2, as the operators described above. We
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have to generalize these operators on the full con6gu-
ration space of the alloy in a manner described in the
earlier section. Let us introduce projection and transfer
operators in the configuration space P

P.' = If.')(f.'I 7.' = If.')(f.'I .

In terms of these, the two operators M~ and M2 may be
written as

Mi —— zp,'+ y p,' + g(zy) (7, ' + 7;") e I e ".

M, = [zp,' g p,' + yp,' CI p,' + Xp,' g p,' + X'p,' Cm p,' + B,p,' g (72
' + 7,")

+B,p,' ~ (72'+ 72") + B.(P'+7;")e p2o+ B.(7, '+7iio) e p2i

+Bs(7, ' + 7;")e (7, ' + 7,")]e I e "
where

X = z —n(z —y); X' = y+ n(z —y),

Bi ——zg(1 —n)y(x+ ny) + yg(1 —n)x(y+ nx),

yV'(1 —n)y(z + ny) + z V'(1 —n)*(y + nz)

Bs ——ngzy,

B4 = —n Qzy

Bs ——gzy Q(l —n)y(x+ ny) —Q(l —n)x(y+ nx)

We check that when o. =0, i.e., when there is no SRO,

X = z, X' = y, Bi ——B2 ——gzy, Bs ——B4 ——Bs ——0,
reducing M2 to a form identical to Mq, as it should be for independent random variables.

The generalized augmented-space theorem then leads to

(g'„„,) = (RF'IA-'IR'F'),

where

).IR)(RI I+ ~&).IR)(RI Mn —).).~'» IR)(R'I I.
R R'

(19)

The CCPA now proceeds in a way identical to that de-
scribed for the KKR-CCPA by Razee et al. The princi-
pal steps involve the following.

(i) Partitioning the full augmented space @ = H 13

4 into a subspace 4 spanned by the cluster C and its
configurations. If the cluster C is of size N then the
rank of this subspace is Nx2 . The Hamiltonian in the
rest of the augmented space is replaced by an efFective,
nonrandom, translationally symmetric Hamiltoiiian A
corresponding to the potential function P~' at each site
and the structure functions SRR, of the e8'ective medium.

(ii) The Green's function in this subspace is obtained
by the partition theorem or domnfolding into this sub-
space. This Green's function will therefore involve the
effective Hamiltonian A'@.

(iii) We next partition this subspace into a subspace
spanned by the vectors (IR E CFo) ) and its complement.
Again the Green's function in this subspace is obtained
by the partition theorem or dozunfolding

(iv) The generalized augmented space theorem-then
tells us that the Green's function which we have obtained,
l.e.)

(ReCF IA IRcCF ),

is the configuration averaged Green's function (g~», ).
(v) We now choose the effective Hainiltonian A'

such that the auxiliary Green's function for the efFec-

tive medium, g&R„is the configuration averaged Green's
function obtained in (iv), i.e.,
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gzz = (gaz).P P

This gives us the CCPA equations for obtaining the ef-
fective Hamiltonian and hence the configuration averaged
Green's function.

This procedure has been described in detail several
times in diferent contexts. We shall refer the reader to
the earlier references ' ' and quote only those results
which are modified when we introduce SRO. In Appendix
A of Razee et al. , it was shown that if we take a one-atom
cluster, then the self-consistent equations reduce exactly
to the traditional CPA equations. It becomes also clear
that within a one-site approximation SRO cannot be log-
ically introduced. We require at least a two-site approxi-
mation. Thus we choose our cluster C as consisting of two
sites, Bq = 1 and B2 = 2. Within this approximation,
the partitioning inentioned in (i) leads to a subspace I of
rank 8 = 2x22, and after replacing A in the subspace II
by

PP,«[gP gP (gP ) 1g—P
]
—1

SP,efF [gP gP (gP )
—igP

]
—1

PP '" =P —(DtZ 'D-) (21)

sP '" = sP + (atE 'D)-
where

t'owo o o oi
(0 0 0 Bi Bs Bs)

The further partitioning of this matrix as in (iii) is in-
dicated in the above matrix itself. The augmented-space
theorem then gives

x. = pP. ) iz)(ai —) ) s„'„',]a)(a'i,
R R'

100 200
100 P, V
200 V P,
101 0 0
110 R' 0
111 0 0
201 0 B]
210 0 B3

0 B,'

101 110 111
0 tV 0
0 0 0

Pg 0 W
0 P2 0

H 0 P,
V 0 0
0 V 0
0 0 V

201 210 211
0 0 0

Bl Bl
V 0 0
0 V 0
0 0 V

B,' B4
B,' P, B,'
B4 82 P2

Here,

P = (zPP' + yPP' ),

P2 ——(yP ' + zP '
) —(11

we get, for the matrix A [see Eq. (2.20) of Razee et al. , ]
an 8x8 matrix:

(Pi 0
0 P2

TV 0
V 0
0 V

( 0 o

wv o 0)
0 0 V 0

P2 0 0 V
0 P2 B5 B4
0 B5 Pg B2
V B4 82 P2)

Equations (21) and (22) are the self-consistent CCPA
equations which determine P~' and S~' . It is easy
to check that these equations exactly coincide with Eqs.
(30) and (31) of Razee and Prasads when the SRO van-
ishes, i.e., o.=0. The above discussion allows us to com-
pletely obtain a CCPA version of the auxiliary Green's
function (g~&&, ). The calculation of the full Green's func-
tion average then proceeds in a way very similar to Razee
and Prasad and, therefore, we shall not repeat it here.
From these average Green's functions, the density of
states and charge density can be calculated. We note
that the structure of the augmented-space Hamiltonian
(19) remains the same as in the case of no SRO, the only
change being in the construction of the operators M~
associated with the random variable nR. As a result,
the proof of analyticity of the CCPA based on the ASF
given earlier by Razee et al. also carries through and the
density of states is guaranteed to be positive.

Pi ——(1 —a)Pi + nP2 —(ii, IV. APPLICATION TO AN a-BAND ALLOY

P 2 ——nP1 + (1 —o,)P2 —(11,

& = —(si. +&»)

B' = B bP for n = 1, . . . , 5,
where (zz are given by

(2o)

To illustrate our formalism, we have chosen a simple
8-band model, on a bcc lattice. The model, while com-
putationally simple, contains essential ingredients of the
realistic TB-LMTO Hamiltonian. The model has been
previously used by Razee and Prasad in connection with
the implementation of their TB-LMTO-CCPA formula-
tion and, therefore, we shall not repeat the details of
the model here. For this calculation, we have chosen a
two-atom cluster, consisting of site (0,0,0) and one of its
neighboring sites (0.5,0.5,0.5). The self-consistent equa-
tions for this cluster, Eqs. (21) and (22), were solved iter-
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