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Self-consistent spline augmented-plane-wave calculation: Ground-state ProPerties of Cu
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The self-consistent generalization of the spline augmented-plane-wave method within a full-potential
density-functional framework is presented. The band-structure scheme properly accounts for the @-

dependent split-up of the radial wave functions Rl into R& in the case of an arbitrary potential. As an
application we investigate ground-state and related properties of bulk Cu. Full-potential effects turn out
to play a minor role. Surprisingly, the absolute value of the equilibrium total energy is found 1.305 Ry
below the former result of Moruzzi et al. , although the same exchange-correlation potential is employed.
The calculated equilibrium values of the lattice constant, bulk modulus, and form factors agree quite sat-
isfactorily with experimental results, while the band energies characteristically deviate from photoemis-
sion data. Whenever possible, we compare our results to experimental and previous theoretica1 data.

I. INTRODUCTION

Full-potential, linear, all-electron calculations within
the local-spin-density approximation (LDA) on the
density-functional formalism have contributed essential-
ly to the microscopic understanding of crystalline solids.
Calculations of the ground-state properties based on
modified augmented-plane-wave (MAPW), on linear
combination of Csa us sian orbitals (LCGO), or full-
potential linearized-augmented-plane-wave (FLAPW)
band-structure schemes are commonly believed to be very
accurate.

Although these (and other) schemes are successful, re-
cent discoveries show that significant problems remain:
(i) The so-called extended core-state problem'0 " in
current FLAPW investigations, which is a consequence
of the nonorthogonality' '" that occurs generally within
this scheme. (ii) The incompleteness of the finite-basis set
in any calculation scheme. This was shown to reduce the
numerical accuracy in current calculations of the dielec-
tric matrix. ' ' (iii) Furthermore, many full-potential
methods, e.g. , FLAPW, treat the nonspherical potential
only by including matrix elements underlying the solu-
tion of the Schrodinger equation for the spherical part of
the potential.

The origin and the consequences of these failures can
be divided into logically difFerent contributions. (i) The
nonorthogonality of states (e.g., in LAPW) occurs usually
because energy derivative techniques are used to linearize
the secular equation, with the outcome that states are no
longer orthogonal to each other if they belong to different
energy windows. This might cause an unphysical lower-
ing of the eigenvalues as well as artifacts in the charge
density. " (ii) The incompleteness of the finite numerical
basis set becomes important if infinite sums are in-
volved. ' For their evaluation, the number of valence
and conducting bands which can be obtained is often too
small to ensure convergence. For linear schemes the
number of bands is, in turn, limited by the rank of the
secular equation. Therefore, it becomes important to
linearize the band-structure problem over a large energy
range. ' (iii) A nonspherical potential in the muffin-tin
spheres is inevitably difBcult to treat exactly. In princi-

pie, it requires the solution of an infinite set of differential
equations' for the radial functions RI or, equivalently,
a solution of a Volterra-type integral equation. ' ' This
has up to now never been employed in an APW-like
framework.

In a previous paper' the authors proposed the spline
augmented-plane-wave method (SAPW), which has a
basis that numerically forms a complete set with respect
to the important (but here cumbersome) operator of
momentum to any accuracy desired. This method con-
sists of an expansion of the R& into cubic B splines, '

one form of the one-dimensional finite element method, '

which is among the most powerful techniques of numeri-
cal analysis: On the one hand it makes the computations
as simple as possible, on the other hand it enables direct
estimations of the accuracy of the final Ritz pro-
cedure. ' ' Also the orthonormality of the wave func-
tions is precisely ensured.

In the present paper we continue this work attaining
the self-consistent generalization of Ref. 14, and turn our
attention on the inAuence of the shape of the effective
one-electron potential. After a brief review of the SAPW
method, which introduces our notation, the theory of our
self-consistent procedure is outlined in Sec. II. In Sec. III
we present our numerical results for Cu. First of all, we
analyze the magnitude of full-potential effects and the
split-up of the RI into RI . Secondly, we analyze the
ground-state properties under uniform pressure and corn-
pare the LDA eigenvalues to photoemission data. We
close by discussing our results in Sec. IV. Details of the
generalized Ewald technique to calculate the electrostatic
potential of the proton and multipole lattice are given in
the Appendix.

II. THK CALCULATION SCHEME
A. The band structure

We divide the elementary cell 0 into M nonoverlap-
ping spheres A„with radius s centered at the atomic
sties R and into the remaining interstitial region 2. Re-
stricting ourselves to the paramagnetic case we write the
Ritz-Galerkin SAPW ansatz in the central Wigner Seitz
cell'4
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as polynomials of third order pieced together with con-
tinuous second derivative on each point of the partition
(2). In addition, these 8,&

fulfill the boundary condition

B,((t)=B,'i(t)=0 for all s =0, . . . , N„(l) (3)

and t ~ 1, so that the first derivative of '0„i, will become
continuous. By construction, each 8,&

is zero over most
of the domain [0,1] and enters the computation only in
the neighborhood of t". Usually, these functions are re-
ferred to as B splines' or one-dimensional finite ele-
ments. ' In order to satisfy the boundary condition (3)
we defined a special basis of 8 splines consisting of as
many functions as there are points in the grid (2). This
set is used in the ansatz (1), and discussed in detail and il-
lustrated in Ref. 14.

The variational parameters 3"' and A ' ' of the ansatz
(1) are evaluated by a linear, Hermitian eigenvalue prob-
lem of the general type

with the usual notations k =k+ &. and t„=(r —R„)/s„,
where t„~1.YL (t„) is a real valued spherical harmonic,
L =(l, m) an angular momentum multiindex, and L ~A,

stands for all pairs (l, m) with 1 ~ A, . Outside the first cell
0'„),(r) is continued according to Bloch's boundary condi-
tion.

So far the idea is an old one. What is new is the choice
of the trial functions B,((t): We defined' them on a radi-
al grid, which in numerical calculations is the one first in-
troduced by Moruzzi, Janak, and Williams

needs the capabilities of large computers. The details, the
resulting properties, and the accuracy of the SAPW
method are discussed exhaustively in Ref. 14 and we only
summarize the most important of them here.

(i) Because the scheme is strictly linear, all states are
mutually orthogonal within the accuracy of the comput-
er.

(ii) The matrix elements of the Hamiltonian and the
overlap can be calculated analytically (Appendix A of
Ref. 14).

(iii) To any accuracy desired, the ansatz (1) forms a
complete set with respect to the momentum operator,
provided that the parameters [q, A,„,N„(l)] are suitably
chosen.

(iv) The error of the radial parts of the wave function
decreases pointwise like ( t '+ "—t") with an increasing
number of B splines.

Using the ansatz (1), the shape of the potential in 2
cannot be subject to any restriction of practical use, be-
cause it enters the calculation only by its Fourier
coefficient. ' In each A„we assume that the potential
can be approximated properly by the finite multipole
series

V(r) = g Yi (t ) VL (t„) for all re~„ (6)

R~( )(r )=4iri'g exp(ikJ R„)AJ"YL(kJ j)((k~&„rq),
J

truncated after L =l .
From the ansatz (1) we observe that the radial behavior

of %„i, in W„ is described by a superposition of the follow-
ing two terms:

[Lfq E„qO),]A„),=—0, (4)
g~(~)(t„)=(t„i)'exp(ik R„)g A,'L„'&,((r„),

where H and 0 are the matrices of the Hamiltonian and
the overlap, respectively, and the coe%cients 3'" and
A ' ' of (1) are arranged linearly in the array A. The rank
N of the problem (4) is given by

N =P + g g (21 + 1)N„(l),
p 1 =0

with the number of plane waves P. Generally, the 1V„
which define the radial discretizations were chosen to be
powers of 2, and a reasonable lower limit is 16 if the shell
is occupied in the corresponding atom. In our numerical
investigations in Sec. III, X will take values of about 500
while additional calculations were performed in the case
of Si and Ge with X ) 1000, reAecting that this method

with the spherical Bessel function j&. The first contribu-
tion (7) arises from the plane-wave part in the ansatz, en-
sures Bloch's boundary condition, and is solely responsi-
ble for the behavior of '0„& if L, )A,„. Corresponding to
the upper limit lz in (6) the terms with L ) A,&+lz in (7)
do not contribute to the potential energy in A . Above
that, the second contribution (8) describes the oscillating
behavior near the nucleus p and since the parameters
A,'L„' = A,'~&' ~„are estimated independently by the varia-
tional procedure for different values of m the radial
behavior (8) varies with m. By this variational solution
we avoid the difhculties connected with the coupled
differential equations. Furthermore, this technique en-
ables us to investigate the m dependence of the radial
behavior of 4'„& and compare it with the results of the en-
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ergy derivative technique. '

Closing this summary we point out that the augmenta-
tion scheme of the SAPW ansatz (1) is closely related but
even more lucid than the one used in MAPW (Ref. 2)
which, in turn, benefits from the smaller rank of its eigen-
value problem. However, both significantly deviate from
several techniques used in (F)LAPW (Refs. 6 and 7) and
their extensions" ' by the fact that the plane-wave part
is found also inside the spheres%'„.

&. Electron density

The density of electrons can be written in the form

p(r)= g pG'exp(iG. r)
G. ~Gj max

+ g g ttP~„(t„)Y~(t„)
p=l L&oo

(9)

as superposition of a plane wave and a localized part with

(1)— 2Q
E ~E(277) n nk F

(10)

t„'Pl„(t„)= g g CL L- g f d kIRI.„'(t„)Rt-'„'(t )+2Re[RI '(t„)Rz",'„'(t„)]] .
L'~i. L"~i. +I (2~) n

Here Cr I- = (L'~L~L" ) denotes the Gaunt coefficient
with the real valued spherical harmonics and EF is the
Fermi energy. As a consequence of the boundary condi-
tions (3) the multipole contributions (11) vanish including
their first derivatives at the boundaries t„=1 of every
sphere R„and outside of them. It is worth noting that
(11) gives not only the complete charge in the spheres but
each term pG' contributes, also. In the same manner as

J
for the 4„k in (1) the density of electrons (9) consists of a
finite number of Fourier terms and a localized part with
the continuous first derivative everywhere vanishing out-
side of all spheres. Independently of the ansatz parame-
ter A,„, the multipole expansion of the localized part does
not truncate.

Closely related to the choice of trial functions B,&
the

PL„are expressed by their spline interpolation

3

(t)= ~ P'"t' for t'
Lp ~ Lp

j=0
(12)

in numerical calculations on the grid (2) with %=512
points. In the remainder (12) enables us to evaluate all
radial integrals analytically by the techniques described
in Appendix A of Ref. 14 and, for the sake of simplicity,
we will not give the explicit formulas here.

To perform the k integration in Eqs. (10) and (11) we
use the so-called special point sets, apply the
Hellmann —Feynman-like relation

Vi,E„q A„g [VgLIi, E„—qVi, Oq] A„q (13)

[which is easily verified by differentiating (4) with respect
to k (Refs. 14 and 27)] to obtain Vi,E„&, and carry out a
Gilat-Raubenheimer ' integration. Compared with the
tetrahedron method this special Gilat-Raubenheimer
procedure reduces, even when counting in the evaluation
of (13), the computation time by a factor of 2 while it
reaches the same accuracy.

The total charge density n of the crystal is obtained by
adding the charges —ez„of the nuclei to the charge of
the electrons (9) whereby the requirement of electrostatic
neutrality of the whole system leads to the condition '

with

M
(1)—~ (2)

)M= 1

(14)

1

p& '=Z„&4vrs„ t P—o„(t)dt .

Numerically, (14) is used as a test for the representation
(12) and was fulfilled within 10 ' in every calculation
showing that (12) provides a powerful tool in describing
any oscillating behavior.

[=n3(r)]

j max

pG" exp(iG, .r) [=n4(r)] . (16)

This allows us to evaluate the Coulomb potential easily,
because each term for itself has a vanishing mean value
over Q.

The contribution U1 of n1, the point charges with

C. The effective potential

Within the Hohenberg-Kohn-Sham formalism' the
effective potential is given by a sum of the electrostatic
potential U and the exchange-correlation potential
V„,(r) =5E„,[p]/5p(r) with the exchange-correlation en-
ergy E„,of the electron gas with density p(r). The tech-
niques we discuss here extend the considerations of Bross
and Eder beyond the warped muffin-tin approximation.

To construct the electrostatic potential we use require-
ment (14) to separate the total charge in Q into four parts

M
n (r)/e =—g p' '[1—Q5(r —R„)] [ =n i(r)]Q„

+ g g t„'Pt„(t„)YL(t„) [=n~(r)]
9=1 0(L

M
+ g (p„' ' —Z„)5(r—R„)+
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strength —
p„'

' at site R„counterbalanced by a uniform
background charge, reads in Rydberg atomic units (i.e.,
Pi= i, m =

—,', and e =2)

5E„
V„,I (t„)=f YL(e)d e

sK(t„,R„) 8p(t
(22)

M

U, (t„)=—2 g p„"' 5„,t. '+
v=1

p, vI p

p, v p, v

'I
YL (t„) (17)

M

U~(t„)= g SiL(t„)YI (t„)+g g yII't„'Yl (t„) (18)

with

L)0 L v=1

S~s„
S~z(t)= " r' ' u '+ P (u)du2l+1 0

and is designed from a special inhomogeneous solution in
A„(first two terms in the square brackets) and a general
homogeneous part. The coefficients Pil" of the latter ex-
clusively depend on the crystal structure and need to be
evaluated only once for each type of lattice and the ap
are scaling coefficients. Explicit expressions for P~l' and
a„are found by the Ewald technique outlined in the
Appendix.

In the same manner the potential produced by the mul-
tipoles n 2 can be written as

extended over the surface of the sphere with radius t„
centered at Rp which we evaluate numerically using 40
equidistant intervals for the y direction and the Gauss
formula with half of the number of points in the 0 direc-
tion.

Besides the r representation in the spheres A„ the po-
tential also enters the SAP' scheme by its Fourier
coefticient. The corresponding expressions can be evalu-
ated straightforwardly (using the r representation in the
spheres and the Fourier representation in 2) but they are
lengthy and, therefore, we omit them here.

D. The total energy

The Hohenberg-Kohn-Sham formalism' yields the to-
tal energy per unit cell as a sum of the band energies and
the Coulomb energy of the protons at the atomic sites
minus a term that corrects for double counting parts of
the electron-electron interaction. Thereby, as was proven
generally in r (Refs. 4 and 9) and in p space, the infinite
Coulomb energy of the protons and an infinite correction
to the Coulomb energy of the electrons cancel each other
exactly. Using this result we obtain in LDA with
E„,[p]= f d r ps„,(p),

+t'f uPI„(u)du
t

(19)
E„,= g f d kE„i,

(2)r) „~na&z

Contrary to (17) the expansion coefficients y~l' of the
homogeneous solution in (18) do not only depend on the
crystal structure but also on all multipole strengths

$1 (1). Their explicit evaluation involves also the I3~z'

and the Gaunt coeScients. This is also described in the
Appendix.

Using (15) we find that the spherical charges n3 coil-
tribute to the Coulomb potential by

M
+ f d rp c.„,(p) —Vdr+ ——g Z C

v=1
(23)

C=g P) V f?p. v~l =0 (2) ~l =0
2 " a P, V

where C is, apart from a constant, the value of the Har-
tree potential at site v which can be expressed by the
coefficients PII' and y~l'

Z —p"' Zyr )U(r)= —2 " " +
&4~

(2O)

0&G. &G

(1)
PG,.

2 exp(iG r)
G2

in & only, and since the moment of n 3 vanishes over
each sphere JY„ it is zero everywhere outside ~„.3 3'

Finally, the potential U4 due to the smooth plane-wave
part n4 is

(1)
PG,.

U4L (t„)=8' g 2j i(Gqspr~)
' & Gmax

G2

+&4~s2 f rP, ,„(r)dr
0

(24)

and c„, stands for the exchange and correlation energy
density of an interacting homogeneous electron gas with
density p. For further applications it might become im-
portant that (23) holds indeed for several nonlocal func-
tionals E„involving derivatives of p.

XYI (G ) exp(iG R„).(21)
III. NUMERICAL RESULTS

and can be shown to be real by accounting for the sym-
metry of the p&'. Owing to the linearity of Maxwell's

J
equations the entire electrostatic potential U is given by
the sum of U1 up to and including U4.

The exchange-correlation potential V„, in A„ is given
by the integral

Since the pioneering work of Chodorow the electron-
ic structure of Cu has been investigated self-consistently
by frequent theoretical work' ' ' and its narrow s-d
valence-band complex provides a severe test of the accu-
racy for any calculation scheme. Because correlations
are not too important in Cu, it turns out to be suKcient
enough to use the exchange and correlation energy in the
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parametrization of Hedin and Lundqvist with numeri-
cal parameters of Gunnarson and Lundqvist. What is
more, this choice enables us to compare our results
directly with the previous data of Moruzzi, Janak, and
Williams and, thereby, to study the local-density limit.

In what follows we first discuss the convergence of the
ground-state and structural properties of Cu. Therefore
we use self-consistent effective potentials of general shape
in the sense of (6) and in warped muffin-tin approxima-
tion (WMT). In this approximation we neglect the non-
spherical terms in A„and, in addition, the contributions
of the electrostatic multipoles U2 since they would bring
in only a constant shift in each sphere.

The accuracy of the SAPW band calculation itself is
determined by the choice of the ansatz parameters: angu-
lar momentum limit A, =2, a number of B splines
X(l)=32, l =0, 1,2, and the plane-wave cutoff
q =(2m. /a) X3.89 with the cubic side lattice constant a.
For the occupied bands in Cu this choice leads to an ad
hoc error that is less than 0.10 mRy for the one-particle
energies as we found by intrinsic convergence tests and
by comparing our band energies to the results of a highly
converged MAP W calculation.

We used 10 special points for k integration during their
first self-consistent iterations, while final convergence and
the results were obtained with a 60 special points mesh.

TABLE I. Band energies relative to the Fermi energy in mRy
at the special point k=m/4a (3, 1, 1) and lattice constant 6.6945
a.u. near the calculated equilibrium value for the high-core lev-

els (3s and 3p), the valence bands, and the first conducting band.
The completely hybridized bands 10—15 are labeled by their
band numbers. WMT stands for the warped mufBn-tin approxi-
mation and FP8 and FP14 denote truncation values of l~=8
and i~ =14 in the multipole expansion of the potential {6), re-
spectively.

Band

6(3s)
7(3p)
8(3p)
9(3p)

10
11
12
13
14
15

WMT

—7943.3
—5048.7
—5043.7
—5042.9
—379.4
—344.0
—170.0
—152.0
—126.3

107.6

FP8

—7943.5
—5048.9
—5043.8
—5043.0
—377.3
—345.5
—170.9
—151.5
—126.6

106.0

FP14

—7943.5
—5048.9
—5043.8
—5043.0
—377.3
—345.6
—170.9
—151.5
—126.5

106.0

A. Inhuence of the shape of the e8'ective potential

We start to investigate the convergence of the shape
approximations by considering the band energies and the
wave functions.

Table I shows the energies for one k point out of the
ten special points integration mesh in WMT and for two
nonspherical potentials characterized by the angular
momentum cutoff l =8 (FP8) and l =14 (FP14). In or-
der to obtain the exchange-correlation potential, we used
a larger cutoff l +4 for the charges PL„. First of all, we
observe that FP8 gives a sufficient description of the band
energies within 0.1 mRy and note that the sum of the en-

ergies over all occupied bands in the total energy (23) will
converge, even in WMT, more rapidly since, for different
bands, the corrections WMT-FP8 show the tendency to
cancel each other. Secondly, the energies of the high core
states (and of the not shown 1s, 2s, and 2p states) are
more negative for a potential of general shape. As it
turns out, the self-consistent calculation redistributes the
electron charges and localizes the valence electrons more
near the nuclei. Thirdly, the valence-band energies show
moderate modifications up to roughly 2 mRy in magni-
tude and alternating sign. Thereby, the interband dis-
tances in the narrow s-d band complex are altered by up
to 10%.

However, the more interesting point is the behavior of
the wave function. Since the variational principle of
quantum mechanics guarantees that, in relation to a
change in the wave function, the energy is less affected,
moderate changes of the energies might be connected to
significant modifications of the wave functions. The most
important effect in the case of a nonspherical potential is
the split-up of the radial functions R& into R& which
arises from the coupling of the radial Schrodinger equa-
tions. We govern this effect by comparing our results
(RI =RL"„'+RL'„') at a k point without symmetry to the
result an energy derivative technique would yield

Rl'. (r;E)=~i~ fi(i;E)+bi~ fi(1;E), (25)

where f& denotes the solution of the radial Schrodinger
equation with the spherical part of the potential and the
dot denotes the energy derivative. ' These functions are
used, e.g. , in all FLAPW and LMTO (linearized-muffin-
tin-orbital ) schemes. Thus, because there are two
coefficients in (25), at most two linear independent func-
tions can be found among the entity of the Rl' while
there are, in general, 2l +1 for a k point without symme-
try. For this reason, one expects the neglect of the cou-
pling to be large at higher values of l. To be specific,
there are three linear independent p functions but five d
functions while the energy derivative technique supports
only two of them in both cases. The coefFicients al and
b& in (25) are fixed to match the plane-wave part in 2
with a continuous first derivative and we used our result
in J for this fit. In general, the difference RI —RL de-
picts the errors which arise from neglecting the coupling
of the radial equations as well as from the linearization
by the energy derivative technique. In order to isolate
the first effect, we consider a single band and minimize
the linearization error by setting E =E„z in (25). To en-
sure the convergence of the fit we used a larger value
q =(2m/a)X4. 37 for the plane-wave cutoff than in all
other calculations. If E =E„& exactly, in the limit
q~ao, and in case of a muffin-tin potential, it follows
from the original formulation of the augmented plane
waves by Slater ' that b& =0.

Figure 1 displays the differences between the RL and
the RL" for l =2, two different values of m, and the
highest valence band. The energy E was chosen roughly
to minimize the differences RL —RL, so that this Rl' is
the best estimate which can be obtained by the energy
derivative technique. For a best estimate the deviations
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FIG. 1 . Radial functions at point k =~/4a {1,2, 3 ) for the
highest valence band, I =2, and two different types of d func-

tions: (a) ct PI (z ); (b) ct P& (z)sin( 2y ) in arbitrary units. The
solid lines are the SAPW results of a FP8 calculation as ex-

plained in Table I and the broken lines depict the results of the

energy derivative technique Rz for the energy E =200 mRy.
The energy of the band is 204.7 mRy. This is the best agree-
ment that can be obtained by minimizing the linearization error
of the energy derivative technique and accounting for its slower

convergence with respect to the number of plane waves. For
the three other types of d functions these best results of the en-

ergy derivative technique almost coincide with the SAP%' func-

tions.

are remarkably large in both cases even though smaller
difFerences occur for the three other values of I which
are not shown. As it is expected in a general k point,
there exists five linearly independent RL for 1 =2 while
there are only two R~ . We find that the R~ evaluated by
the variational procedure including nonspherical parts of
the potential are more localized than the RI . A similar
behavior is found also for other k points, and is responsi-
ble for the more tightly bound behavior of the valence
electrons in our FP8 calculation. The magnitude of the
differences in Fig. 1 proves the necessity to use R& (in-
stead of R& ) to adequately treat a nonspherical potential.

Figure 1 does not only exemplify the magnitude of the
split-up of the R I into R I but also gives an idea of the
magnitude of the error of the full-potential treatment in
FLAPW. However, this error, on the one hand, is
overestimated by the deviations depicted in Fig. 1 since
its estimation entails two further aspects: First of all, just
matching RL on our solution in 2 violates the normaliza-
tion of +„&.Secondly, for the same reason, the Rz are no
longer a variational solution of the Schrodinger equation.
The correction of both defects will, due to the variational
principle, diminish the error. Nevertheless the outcome
of the difFerences is larger than one would expect from
the magnitude of other full-potential efFects

On the other hand, by considering the best estimate
with respect to the energy E, we tried to neglect the
linearization error in our investigations which depends on

the energy difFerence E —E„& and can become almost a
magnitude larger than the split-up efFect shown in Fig. 1 .
In addition, this linearization error sensitively depends on
the number of plane waves that enters the calculation by
the logarithmic derivative at the sphere boundary. When
we increased the plane-wave cutoff from (2'/a) X 3.89
(i.e., 60 plane waves) to ( 2m. /a ) X4.37 (i.e., 84 plane
waves) our RL were not visibly modified while in case of
the Rz the larger value of q was necessary to achieve
convergence.

In conclusion, even the best estimate of the usual ener-

gy derivative technique cannot describe the correct split-
up in the case of d states and needs a larger plane-wave
cutofF to ensure convergence when compared with our re-
sults.

B.Ground-state and related properties of Cu

f(hkl)(a ) f(hkl) «)+« &)g(hkl)— (26)

The charge density is the fundamental quantity of the
density-functional formalism and can, on the other hand,
be measured directly by the form factors of x-ray scatter-
ing or by y -ray difFractometry. Having in mind the shape
restrictions of the potential, the crystal anisotropy which
occurs first at the (51 1) vs (333) reAection is of particular
interest.

In Table II we list experimental data of Jennings, Chip-
man, and DeMarco, Freund, Schneider, Hansen, and
Kretschmer, and Temkin, Henrich, and Raccah to-
gether with our results FP8 and WMT and the values of
previous theoretical work of MacDonald et al. Unfor-
tunately, because of the large atomic number of Cu the
experiments are dificult and the available data scatter
considerably (sometimes even with nonoverlapping error
bars) and furthermore, only Schneider, Hansen, and
Kretschmer are able to access any experimental
difference between the (511) and the (333) reliection and
this value lies within their error bars.

Comparing first our results for the shape approxima-
tions WMT and FP8 we observe negligible difFerences ex-
cept for those rejections where the anisotropy plays an
important role. In Table II this is demonstrated for the
refiections (511) and (333): While the FP8 results show a
significant difference between the (5 1 1) and the (333)
refiections no anisotropy effect occurs (within the listed
digits) in the WMT calculation. Contrary to the charge
redistributions between core and valence states individu-
ally which we found in the last section, the total charge is
scarcely influenced by restrictions on the shape of the po-
tential. Only the anisotropy reacts sensitively.

Our theoretical results lie always in the uncertainty re-
gion between the difFerent experimental data and are in
good overall agreement with the mean values of the x-ray
measurements of Temkin et al. : The difFerences are al-
ways smaller than 0.3%, except for the (111) and (400)
reAection where they are about 1 /o. Therefore, we
suspect that these data are more accurate than their large
error bars suggest.

Moreover, we found that the form factors f~kk&~(a), as
functions of the lattice constant, behave like
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TABLE II. Experimental and theoretical values of the form factors. Our calculations WMT and

FP8 were carried out with the lattice constant a =6.8312 a.u. near room temperature. The x-ray exper-

iments of Jennings, Chipman, and DeMarco, Freund, and Temkin, Henrich, and Raccah were also per-

formed at room temperature, while Schneider, Hansen, and Schneider worked at 50 K which corre-

sponds to a =6.80963 a.u. The errors of the experimental data are given in parentheses. Other nota-

tions are explained in Table I.

(hkl)

Jennings,
Chipman, and

DeMarco'

Schneider, Temkin,
Hansen, and Henrich, and This work This work MacDonald

Freund Kretschmer' Raccah WMT FP8 et al. '

(111)
(200)
(220)
(311)
(222)
(400)
(333)
(511)

21.52( 10) 22.63

9.41{10) 9.45(10)

14.01( 10) 14.64( 10)

21.38(9)
20.10(6)
16.45(5)
16.54(4)
13.99(8)
12.29(6)
9.45(9)
9.49(6)

21.93{15)
20.36( 15 )

16.70( 16)
14.71{17)
14.18( 17)
12.33(20)

21.729
20.405
16.675
14.747
14.212
12.464
9.618
9.618

21.731
20.400
16.674
14.747
14.212
12.464
9.612
9.626

21.73
20.39

14.25

9.66
9.67

'Reference 42.
Reference 43.

'Reference 44.
Reference 45.

'Reference 35.

in a large region around the equilibrium a. The expan-
sion coeKcients g~&k&~ are listed in Table III and vary only
slightly with the index of the reAection. With these pa-
rarneters it is possible to reduce the differences to the
complete y-ray data set of Schneider, Hensen, and
Kretschmer significantly taking into account that their
experiments were performed at 50 K, corresponding to a
lattice parameter a =6.80963 a.u. , while our calculations
were performed with a lattice parameter near room tem-
perature, where the other experiments were carried out.
With the correction (26) the discrepancies between our
results and Schneider's experiment become generally
smaller than 1.5%%uo.

The differences between our data and the theoretical
values of MacDonald et ah. are small, strikingly when
compared with the deviations from the experimental re-
sults and with the fIuctuations among them. This is quite
remarkable because MacDonald et al. used a different
calculation scheme and a different approximation for the
exchange and correlation energy. The first fact shows
again that the total charge density reacts insensitively on
computational details while the latter supports our form-
er assumption that the exact form of the correlation func-
tional plays no important role in the case of Cu when
dealing with the charge density.

Beside the charge density the total energy of the elec-

TABLE III. Linear expansion coefficients of the form factors
as defined in Eq. (26) for the form factors in Table II.

tronic system, as a function of the volume or the lattice
constant, is a ground-state property and can be used to
calculate structural properties. Our calculated total ener-

gies for lattice parameters in a range of I0% around the
experimental value excellently fit in the interpolation for-
mula

E„,(Q) =C, +C2/0+ C3/A (27)

near the equilibrium lattice constant a as well as in the
universal expression of Rose, Ferrante, and Smith

E, ,(a) =E, , (1+x)exp( —x) (28)

E,p =9/8 k' ed ( Qo/0 )s, (29)

with x =C~(a —a ). The parameters of both formulas
were calculated by least-mean-square fits and are listed in
Table IV. From (27) we calculated the bulk modulus
B = —QBP/Ml. In Table V our results for a, B, and the
total energy at equilibrium E,„(WMT and FPS) are com-
pared with experimental data of %'east, Overton and
Gaffney, as well as with the previous theoretical
Korringa-Kohn-Rostoker (KKR) calculation of Moruzzi,
Janak, and Williams. ' For completeness, we also listed
the result of an early configuration averaged atomic Har-
tree Fock (HF) calculation by Mann. To obtain the ex-
perimental lattice constant at T =0, we used the results
for the thermal expansion of Cu at low temperatures of
Hirnrnler et al. Additionally, we included the efFect of
the zero-point energy within the Debye approximation

(hkl)

(111)
(220)
(222)
(511)

8(hkl)

1.340
1.769
1.808
1.386

(hkl)

(200)
{311)
(400)
(333)

8 (hkl)

1.490
1.811
1.734
1.390

in our FP8 calculation, where ed =336 K (Ref. 51) is the
Debye temperature, Qo =78.92 is the corresponding
atomic volume, g =2.00 (Ref. 51) is the Griineisen con-
stant, and kz is the Boltzmann constant.

We find the total energy infIuenced only very little by
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TABLE IV. Parameters for the first of the calculated total energies in the energy curves of formulas

(27) and (28) in a.u. Other abbreviations are explained in Table I.

WMT
FP8

0E tot

—3277.0518
—3277.5029

6.6429
6.6398

Cl

—3276.5726
—3276.5738

—70.280 542
—70.177 540

+2575.2936
+2567.8840

6.7954403 X 10
6.780 528 6X 10-'

TABLE V. Calculated lattice constant a (a.u. ), bulk modulus

B (mbar), and total energy E„,(Ry) at equilibrium. The abbre-

viations WMT and FP8 are explained in Table I while FP8+ZP
denotes that the zero-point energy is included within the Debye
approximation in the FP8 calculation. For comparison, we list-

ed the experimental values for different temperatures, the re-

sults of a self-consistent Greens-function (KKR) calculation,
and the absolute value of the total energy of a configuration

averaged atomic Hartree-Fock (HF atom) calculation.

0E tot

WMT
FP8
FP8+ZP
Expt. (T=298 K)
Expt. (T=O K)
KKR
HF atom

6.6429
6.6398
6.6529
6.8314(9)'
6.8107(9)'
6.76

1.925
1.927
1.902
1.37 lb

1.420
1.55

—3277.0518
—3277.0529
—3277.0493

—3275.768"
—3277.928'

'Reference 47.
Reference 48.

'References 47 and 50.
Reference 20.

'Reference 49.

the shape of the potential, especially in comparison to the
large deviations which occurred for the one particle ener-
gies and for the wave functions. The differences between
our calculations for potentials of different shapes are less
than 0.1% for the lattice constant and for the bulk
modulus while the FP8 result for the equilibrium total
energy lies 1.1 mRy below the WMT value. -Contrary to
that, the deviations between our results and the calcula-
tions of Moruzzi, Janak, and Williams are notably large:
First of all, in the calculation of Moruzzi, Janak, and
Williams the lattice constant as well as the bulk modulus
agree much better with the experiment. Secondly, the
value for the equilibrium total energy E„,of Moruzzi,
Janak and Williams lies 1.284 Ry above the value of our
WMT calculation, although both calculations are based
upon the same approximation for the exchange and
correlation energy. From the variational principle' the
lower value is always the more accurate one. Moreover,
because our calculations show that the infiuence of shape
approximations is in the magnitude of mRy s, we con-
clude that the muffin-tin approximation in the calcula-
tions of Moruzzi, Janak, and Williams cannot be solely
responsible for the large deviations. This might indicate
that Moruzzi, Janak and Williams possibly made too
rough truncations within their Greens-function scheme
or within other numerical approximations that were
necessary to enable their calculation. Another hint can
be taken from the configuration averaged atomic HF re-

suit of Mann, which lies again 0.8 Ry below our equilibri-
um value. Although this old calculation should not be
expected to be very precise from the viewpoint of today, a
HF calculation neglects correlation but treats the ex-
change energy exactly by definition. Therefore, it is par-
tially more accurate than any LDA calculation. Since
the correlation energy is always negative, and the solid is
more stable than the free atom, the atomic HF value
marks an upper limit for any solid calculation, also. Nev-
ertheless, our values for E„,remain above Mann's result
but we ascribe this failure to the LDA in principle. From
our investigations the value of —3277.0S3 Ry represents
the local-density limit in the case of Cu, at least for the
correlation-energy functional of Gunnar son and
Lundqvist and when neglecting relativistic effects. This
demonstrates a need for a nonlocal treatment of exchange
and correlation for a further significant improvement.

As usual in LDA, our calculation underestimates the
equilibrium lattice constant while it overestimates the
bulk modulus when compared to experiment. If we
neglect the zero-point energy the lattice constant comes
out 2.5% too small while the bulk modulus is 36% too
large. Including the zero-point correction (29), the devia-
tion of a is reduced to 2.3% while the error for the bulk
modulus is still 33%. These errors are characteristical
for the LDA in sign and magnitude. Thus, taking togeth-
er all observations we conclude that the less accurate cal-
culation of Moruzzi, Janak, and Williams caused values
of a and B that are in better agreement with the experi-
ment than the LDA can predict, in particular, with the
form of exchange and correlation employed.

Contrary to the form factors and to the total energy,
the LDA one-particle energies are no ground-state prop-
erty and have no direct physical meaning. Most impor-
tantly, they must not be interpreted as quasiparticle ener-
gies. Therefore it is precarious to compare them with,
e.g., photoemission data. Nevertheless, from a pragmatic
point of view, the LDA eigenvalues should reveal a
reasonable approximation to the quasiparticle energies in
the case of metals and if states close to the Fermi level
are considered. Figure 2 displays the valence bands of
our FP8 calculation along the X and S directions in the
first Brillouin zone together with the results of a previous
self-consistent LCGO investigation of Bagayoko et aI.
and the results of angle-resolved photoemission. While
our calculation was carried out near the experimental
value of the lattice constant at room temperature, no
value was reported for the LCGO calculation which also
employs a different local exchange and correlation poten-
tial proposed by Rajagopal.

Figure 2 demonstrates that the LDA eigenvalues de-
scribe the energy bands quite satisfactorily along both
directions and as it is expected the deviation from the



48 SELF-CONSISTENT SPLINE AUGMENTED-PLANE-WAVE. . . 17 711

photoemission data enlarges if bands move away from the
Fermi level. Near EF only the X', ' level deviates remark-
ably from the experimental values. However, our result
shows a better overall agreement with the experimental
data than the LCGO bands along the X direction, mainly
the X'," band and the X3 and X4 bands near point E are
improved. A different behavior is observed along the S
direction where the lack of consistency between experi-
mental data and theoretical results is larger in general. It
remains uncertain if the lower cascade of photoemission
peaks along the S direction stems from the Grst or the
second S, band. Also the higher sample of experimental
values along this direction can only be approximately in-
terpreted to describe the S4 band. The differences be-
tween the calculated and the observed bands can be as-
cribed to the Hohenberg-Kohn-Sham formalism in gen-
eral. Therefore, from Fig. 2 one would expect self-energy
corrections for the LDA results to be large for X, bands
(which are delocalized s-like states) and along direction S
but small in the other cases. The differences between the
two theoretical calculations are originated in a possibly
difFerent lattice constant (which seems to be smaller in
the LCGO calculation), in difFerences in the calculation
schemes for the band structure and for the self-consistent
potential, and in other exchange and correlation poten-

—10

tials, but cannot be reliably assigned to one of these
reasons in particular.

IV. CONCLUSIONS

.The SAPW method is a linear, self-consistent, all-
electron, full-potential scheme which combines the attri-
butes of exact orthogonality of all states to each other, a
well-de6ned error of the Anal Ritz procedure, and com-
pleteness of the basis set.

For Cu, full-potential effects are in the order of 2 mRy
for the energy bands and 1 mRy for the total energy. The
ground-state properties are not much affected by the
shape of the potential, except those form factors which
reveal the crystal anisotropy. The most surprising fact is
that the valence electrons behave perceptibly more tight-
ly bond and that the split-up of the RI into R& is respon-
sible for this behavior. Our absolute value of the total en-
ergy at equilibrium is lower than the value of the former
calculation of Moruzzi, Janak, and Williams' and indi-
cates that nonlocal effects become important for further
essential progress.

For Cu some attempts exist to include nonlocal effects
of exchange and correlation in the framework of the
density-functional theory: Norman and Koelling used
the Langreth-Mehl gradient correction to the LDA and
Przybylski and Borstel constructed nonlocal exchange
and correlation potentials from the pair-distribution
function of the homogeneous electron liquid. Unfor-
tunately, these authors focused their interest on the band
energies and on the Fermi surface but did not calculate
the total energy or other ground-state properties. Thus
no clues about the magnitude of nonlocal effects on the
ground-state and structural properties of Cu exist.

However, the recent development of the generalized-
gradient approximation (Ref. 55) seems to be more
promising than previous approaches: Current calcula-
tions for the alkali metals show that the GGA predict the
structural properties in better agreement with the experi-
ment than the LDA does. In addition, calculations of
the total energies of spherically symmetric atoms (with
exchange only) reach almost the Hartree-Fock results.
This suggests that the GGA, in particular, for the ex-
change energy, might be a useful approach beyond LDA
for Cu.

The tools to improve the band energies are different,
since the deviation of the band energies from measured
photoemission peaks is not a failure of the LDA but of
the Hohenberg-Kohn-Sham formalism in general. There-
fore, an advanced scheme has to involve the self-energy
operator, e.g., in GW approximation which includes a
screened and nonlocal interaction as well as lifetime
broadening. The SAPW method is well suited for this
purpose because its complete basis set enables a reliable
evaluation of the dielectric response, also.

FIG. 2. Band energies and photoemission data along the
directions X and S. The solid line depicts our FP8 results with
lattice parameter a =6.8312 a.u. while the dashed line shows
the result of a self-consistent LCGO calculation of Bagayoko,
Laurent, and Singhal (Ref. 36). The experimental data were
taken from Thirty et al. (Ref. 52).

APPENDIX: PROTON
AND MULTIPOLE CONTRIBUTIONS
TO THE POTENTIAL OF A CRYSTAL

As is generally recognized, the Coulomb potential of
any periodic system can be determined approximately by
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the pseudocharge method. " In contrast to that we use
an improved Ewald ' technique following the ideas of
one of us, which gives the exact result. Additionally,
we gain an insight into the convergence properties of the
multipole expansion (6) of the crystal potential.

—p„''exp( —iG R ) GAO
n~i(G) = .

0 Ci =0.
(Al)

As a result, besides an arbitrary constant, the Coulomb
potential is given by the series

1. The contribution of the protons
U~&(r) = —8irp„' ' g exp[iG. (r —R„)]/6

GAO
(A2)

The charge density n~&(r) in the first cell, which in ac-
cord with (16) is defined by n, (r)=Q 'X„in~&(r),
possesses the Fourier transform

which is at best conditionally covergent, so that we must
not interchange the sum and the integral when substitut-
ing f 0 exp( 6—t)dt for G . By careful but straightfor-
ward manipulation one obtains

U", (r)= —8np' ' exp[iG (r —R )
—6 il ]g f exp[(r R—„") /4t]t ~ dt —ri + g8~'"

GWO 6 (A3)

where R„" denotes the vector to site p in cell n and the split-up parameter g ensures the absolute convergence of
both sums over R" and 0, individually. Therefore we are able to expand each term around site R

U", (r)= g U",I'(t, )YI (t ) if re%'
L

and obtain from (A3)

(A4)

2

U~ (t. ) = 8rtp"' —5„v'4~—rt'+ g Yl. (R„" .)f j~ exp
2ti

r +(R„" ) '"dt
4t

+4~ y exp( —G'ri' —~'G Rp y)j/(r 6)/G'Yl. (G) (A5)

therein we used the generating function of the spherical Bessel functions jI,R„" =R„"—R, and z =r —R„. Comple-
mentary to (A5), we know from electrostatics ' that the solution of Poission's equation can be, at least in the immediate
vicinity of site R„, set down in the form (17). For l & 0 we expand (A5) into powers of r and compare each power with
the corresponding term in (17) to obtain the coefficients P~L'. Integrating l times by parts, we are left with

P"'"=4m.a'+'
~L pv

(R" /'g)™
2l +1 „v'mi) =0 2 (2m +1)!!

(R„" )

4g

erfc(R „" /2') YL, (R„" )

R„" (R",)'

ex —G+ g' P' (G)YL (G ) . ,n (2l+1)!! Gi-i (A6)

where erfc denotes the complementary error function, a„ is a scaling constant (see below) that ensures the independen-
cy of the P~L' from the volume Q, and the prime on the sum indicates its extension over all values R" and G, respective-
ly, for which the denominators do not vanish. The structure factor P is given by

P„',(G)= cos(G R —/ir/2) . (A7)

Since (A5) also includes the inhomogeneous solution, which is irregular at site R„, the case l =0 shows different
behavior. However, we can expand U",o into a Laurent series around R„up to terms ~, cancel the inhomogeneous con-
tributions, and then compare with (17). We get

P() =a„,&4n.
Rn

erfc( R„" /2il ) 4m. z, exp( —G 2g2) (G)
E."p v G

(A8)
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which by (A2) guarantees the U~&o has vanishing mean
value over Q.

In (A6) and (A8) we have to choose the values of the
split-up parameter q and the scaling coefficients a„:q
controls the convergence of the sums over R„" and Cz in
(A6) and (A8) and we found g=7.9XQ'~ to be quite a
good choice. The results, of course, are independent of g.
To find a meaningful value for the scaling coefBcients a„
we chose it as the radius of convergence of the multipole
expansion (A4) which can be found as follows: In the lim-
it g~~ (A6) becomes

2I + 1 (g n )I+ I

and can be found also by direct expansion of the
Coulomb kernel

(A9)

I

I+1, YL(r) )Yr. (r& )
Ir,—r„' —R.„" .

(A10)

for all distinct pairs v and p and

if v=p, R"%0 and r'EQ (A12)

for all atomic sites p to hold simultaneously, while the ra-
dius of convergence for each U~iL separately is given by
—,
' IR„ I for pAv. Thus (Al 1) and (A12) can be fulfilled
coincidently only by the choices
s„~-,' min IR„.I

R WR

with v„'=r' —R„and r
~

~=min(max) I~,;r„'+R„" I.
The application of this expansion necessitates the condi-
tions

if pWv, R"=0 an«'Cn
(Al 1)

while at and beyond these radii the expansion (17) for the
proton potential is invalid, in general. However, the con-
ditions (A13) reveal no substantial restrictions because
the corresponding choices of the spheres %'„ is geometri-
cally obvious. Moreover, it is possible to obtain a mul-
tipole representation for the proton potential even for)a„,if the nearest-neighbor terms in (A10) are treat-
ed differently and thereby the terms ~ ~' ', which also
are regular for ~ &a„„are taken into account. In the
case of p= v or one atom in the basis (A13) reduces to

s& r0 and a„„=r0

where r0 is half of the nearest-neighbor distance.

(A14)

2. The contribution of the multipoles

(A15)
extended over the unit sphere because p& (r)=p/ (t) =0lp lp
for t ~ 1, and can be rewritten as

U2(t )= g $1 (t )YI (t, )
L &0

M i+i+ g g S~L(1)s' ' g' " (, (A16)

with T„" =r —R„" . The sum in the last term has to
be extended over all R" for which R„" WO and therefore
is homogeneous in the neighborhood of ~ =0. Actually,
studying the relation

The potential due to the multipoles n2 in (16) reduces
to the integral

M t'P,„(t)YL(t)
p=i L, )O

(pla bI )YL(a b)4m g i CL I-j~ (pa)h~+-(pb)YI (a)Y&„(b) if IaI & IbI,
L IL II

(A17)

where hl+ denotes the spherical Hankel function of first
kind in the limit p ~0 we find

YL (a —b)

I.—bl'+'
l'

4m

2l +1 L,L„g"+'g DI L („,YL (a)YL-—(b),

(A18)
which attains the usual structure of harmonic functions.
The coupling coefficient DL.L- essentially is the Cxaunt
coe%cient with the additional selection rule l"= l + l'

)'~'= X X
L'&0 L" p~

1'+ 1 l

~E(1»LL-'&c

(A20)

From (A16) and (A18) the result previously introduced
(18) is obtained directly with the expansion coefficient
y~L' given by

(2I + 1)I!(2l+ l')!
(2l)!(I + l')!2' (2l'+ 1)!!

~ ~L', L"~/", I+l' (A19)

and the same radius of convergence as U&. Finally, we
want to mention that the sum over I. in the second term
of (18) also includes L =(0,0), yielding a constant shift in
the spherical symmetric potential.
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