
PHYSICAL REVIEW B VOLUME 48, NUMBER 3 15 JULY 1993-I

Elastic continuum theory of the structure and dynamics
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A systematic development is given, within the elastic continuum approximation, of the properties of
monolayer solids with parallel arrays of domain walls. The external potentials correspond to cases of
monatomic adsorbates on the basal-plane surface of graphite and on an fcc(111)surface with distinct en-

ergies at the fcc and hcp stacking sites. Heavy and superheavy domain walls (also light and superlight
walls) are treated. The harmonic-frequency spectra are determined, with some cases of anomalous
dispersion and of dynamic instability. The Debye approximation to the specific heat is developed for the
adsorbate on the graphite substrate.

I. INTRODUCTION

A monolayer solid in the presence of a spatially period-
ic external potential may have extended regions
(domains) which are commensurate with the external po-
tential, and which are separated by narrow regions (walls)
in which the misfit is concentrated. ' Such phenomena
were studied first with one-dimensional models, the
Frenkel-Kontorova discrete chain of atoms in a
sinusoidal potential and the Frank —van der Merwe con-
tinuurn approximation to the Frenkel-Kontorova chain.
The extension to planar rnonolayers began with quasi-
one-dimensional models of parallel straight walls, the
striped phases, in which the displacement vectors relative
to commensurate sites had only one nonzero component.
The modeling was then generalized to two-dimensional
configurations in which the domain walls form honey-
comb lattices or striped lattices with two-component dis-
placement vectors. '

Here a systematic development is given, within the
elastic continuum approximation, of the properties of
monolayer solids with parallel arrays of domain walls.
Two classes of external potential are treated: (i) the hold-
ing potential of monatomic adsorbates on the basal-plane
surface of graphite, a triangular lattice of potential mini-
ma; and (ii) the corresponding potential for the (111)sur-
face of a face-centered-cubic solid with two sets of three-
fold sites which are nearly degenerate potential mini-
rna. ' " The optimal configuration and minimum po-
tential energy of the adlayer are determined for alterna-
tive ways' of achieving the same net misfit. The struc-
ture and harmonic dynamics of the compressed solid
("heavy" walls) and the dilated solid ("light" walls) are
closely related. The results are analyzed in terms of ener-
gies of wall-wall interactions. The relative stability of
what are termed' "heavy" and "superheavy" walls (or,
"light" and "superlight") is determined for the static
solutions. Then the harmonic-frequency spectrum' is
derived for small-amplitude oscillations about the opti-
rnized static configurations. A merit of the elastic contin-
uum approximation is that the problem can be expressed

in a scaled form, where the results depend on only a few
dimensionless parameters: the misfit, an elastic constant
ratio, and a reduced wave vector for the frequency. Al-
though the language of "domain walls' focuses attention
on only a few degrees of freedom of the monolayer, the
model calculations do treat the full nonuniform layer.

The results are based mostly on detailed numerical
solutions, although analytical results ' ' are available to
test the methods in special cases. The analysis is less ex-
plicit than in a previous paper, ' which developed analyt-
ical approximations for the static properties of isolated
domain walls, using variational methods. The reliance on
computational results follows from the need to track
small energy increments for the wall-wall interactions
and to have precise static solutions for the force field in
the dynamics calculations.

This work extends applications' ' ' ' ' of the elastic
continuum approximation by (i) treating more complex
two-dimensional structures and the effect of different ad-
sorption energies ' ' at the fcc and hcp stacking sites of
an fcc(111) surface; (ii) examining the relative energy '
of heavy and superheavy structures as a function of
misfit; (iii) determining the dispersion relation' ' of the
normal modes; and (iv) developing the Debye theory' of
the thermodynamics of the nonuniform monolayer. The
stability of the structures is tested using both the static
energies of the structures and the dynamics of small-
amplitude distortions, normal modes. The limitations of
the analysis are that (i) only striped configurations are
treated, and (ii) effects of thermal disordering, ' ' such as
melting of lattices, are omitted.

There are several significant simplifying assumptions.
The external potential, or the substrate in the adsorption
problem, is taken to be rigid; thus long-range interactions
between walls which arise from elastic distortions of the
substrate are neglected. The configurations are deter-
mined by potential-energy minimization, and the wall-
wall interactions are purely mechanical energies. At
finite temperatures and very small mean misfits, the en-
tropic interactions for an adlayer on a rigid substrate, de-
scribed by Coppersmith et al. ' and by Pokrovsky and
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Talapov, ' dominate over the mechanical interactions.
The principal analytic results available for the elastic

continuum approximation are for the static structure
and the harmonic-frequency spectrum' of the one-
dimensional Frank —van der Merwe model. Solutions for
the static structure of atomistic monolayer models have
been given in several cases corresponding to adsorption
on graphite, ' and in a case of the fcc(111)model with
degenerate fcc and hcp stacking sites. The harmonic-
frequency spectrum has been evaluated for some atomis-
tic models. ' ' '

There have been a few observations of striped mono-
layer solids. There are structural signatures for
hydrogen/graphite and for xenon/platinum (111). An
excitation of domain-wall vibrations Inay have been ob-
served with inelastic neutron scattering from
deuterium/graphite. The striped phase is inferred as one
of the monolayer solid phases of helium/graphite; there
are specific-heat data for that part of the phase dia-
gram. The reconstructed surface of gold(111) (Ref. 26)
has a striped phase, with unequal sized domains centered
on fcc and hcp stacking sites, and a herringbone super-
structure. The striped phase also occurs for bromine in-
tercalated in graphite.

The organization of this paper is as follows: Section II
contains the formulation of the calculations. Section III
contains results for the static configurations, and Sec. IV
contains results for the normal-mode frequencies of the
nonuniform layers. Section V contains concluding re-
marks. Analytic results for the superh cavy wall of
monatomics/graphite are collected in Appendix A.

II. FORMULATION

A two-dimensional elastic continuum approximation is
developed' for the adlayer motions in a plane at a per-
pendicular distance zo from the substrate. The potential
energy is the sum of the elastic energy of the adlayer and
the adlayer/substrate (holding potential) energy. These
terms are formulated in Secs. II A and II 8, respectively,
with some comments on the values for parameter ratios
which appear in the expressions. The lateral average of
the adatom/substrate potential sets the height zo of the
plane of two-dimensional motions, but does not enter ex-
plicitly into the rest of the work. The geometry of the
uniaxially incommensurate layer is defined in Sec. IIC,
and the total energy is stated in terms of the displace-
ments of atoms from commensurate sites. Scaled equa-
tions determining the minimum energy configuration and
the normal modes of small amplitude oscillations are
given in Secs. II D and II E.

in terms of the spreading pressure P and pressure-
renormalized elastic constants I », I,2, and I 33 which
satisfy

~11 ~12 +2~33 (2.2)

The speeds of longitudinal and transverse sound in the
uniform medium of mass density p are given by

c,'=r»/p, c,'=r»/s
The ratio

(2.3)

3 =3I 33/r» (2.4)

is a measure of the relative contribution of shearing
motions in distortions of the monolayer. The fact that
the bulk modulus is positive sets upper bounds 3 ~ 3 and
c, ~c&. A Cauchy solid' at zero spreading pressure has
A =1; model solids with Lennard-Jones pair potentials
generally have 3 in the range 1 —2. Experimental data
place 3 near 1 for H2/graphite, and in the range
0.4—0.7 for He/graphite. '

B. Holding potential

A model for the lateral variation of the
adatom/substrate potential is

3

V(r, z)=2 g V~(z) cos(gj r) —VI(z) sin(g r) .
j=l

(2.5)

A, (=a,-a,)
,(=a,—a~)

a 1

g3

The orientation of the substrate surface reciprocal-lattice
vectors g1, g2, and g3 relative to primitive vectors a1, a2,
and a3 of the surface mesh is shown in Fig. 1. The vec-
tors g; have magnitude go =4'/&3L; the length L of the
primitive vectors a; is the nearest-neighbor spacing of
atoms in the fcc(111)surface or the lattice constant (2.46
A) of the graphite surface. The origin of the x,y coordi-
nates is at a corner of the surface unit cell. An assump-
tion in using Eq. (2.5) is that only the leading Fourier
component of the potential is significant.

The model permits a distinction " in the adsorption

A. Elastic energy

The elastic continuum energy for an isotropic two-
dimensional solid with vector displacement u is' a3

b,E„=J d r{—P[B u„+8 u ]

+-,' r„[(a„u„)'+(a,u, )']

+-,'r„[a„u,+a, u. ]'+r„a.u„a,u, j

(2.1)

FIG. 1. Coordinate system, primitive vectors, and
reciprocal-lattice vectors. Primitive vectors a&, a2, and a3 of the
surface mesh and A, and Az of the &3 commensurate lattice
are shown, as well as Cartesian axes x and y. The orientation of
the reciprocal-lattice vectors g„g2, and g, relative to these axes
is shown at the right.
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energy at the hexagonal-close-packed (hcp) and face-
centered-cubic (fcc) stacking sites of the (111) face of a
fcc solid. These two sets of sites, at p, =(—,

' )(a, —a2) and

p2=2p, in the unit cell, have equal energy for VI =0.
The model used here for graphite (GR) has VI =0; then

the two sites in the unit cell atop the surface carbon
atoms have equal energy. If the sites of minimum energy
V are at the centers of carbon hexagons, vertices of the
surface lattice, the amplitude Vz (zo) at the minimum of
the holding potential is negative, and is written as —V .

For physical adsorption, the VI term of the fcc(111)
model arises from the first underlying layer; it is believed
to be smaller than the Vz term by a factor of 10 —10
When the potential minima are at p, or p2, Vz (zo) is pos-
itive.

The two-dimensional approximation for the adlayer
arises when the minimum of the adatom/substrate poten-
tial is sharp enough that adatom motions are restricted to
the plane z =zo. Such is assumed to be the case here.

V)„=(2'/a, )

X f d r[3cos(0)—cos(gou„+0)

—2 cos(g u„—8) cos(g~ u~ )],
where

g, =go/2, g =(go/2)&3, and a, =(3L /2)&3 .

(2.8)

(2.9)

9=m. /3 —g .

The difference in energy V(r, zo) between the hcp and fcc
sites is

The phase angle 0 is zero for the GR model.
For the fcc(111)model, the parameters in Eq. (2.8) are

Vs =Q( V~ + VI ), tan( P) = —VI / V~,

(2.10)

C. Commensurate and uniaxially incommensurate
lattices

R,(J„J~)=p,+j, A, +J2 A2, (2.6)

Positions in the commensurate V'3R 30' lattice, ' with
primitive vectors AI and Az of length L&3, oriented as
shown in Fig. 1, are given by po.

V(pz, zo )
—V(p„zo ) =6&3 Vs sin( P), (2.11)

and the difference between a saddle point r, =(—,
' )(al —a2)

and the site pI is

V(r„zo ) —V(p„zo ) =2 Vz [3 cos( 8)—cos(3$) ] .

The phase g is of the order of 10 —10 rad for model
potentials in physical adsorption.

R(j„J,)=p, +j, A, +j, A, +u(g„J, ) . (2.7)

where j, and j2 are integers, and po sets the placement
relative to the origin of the substrate surface unit cell.
Similarly, positions in the incommensurate lattice are
given by

D. Minimum potential-energy con6gurations

The theory is developed in terms of parameters

V0 =2'/a, and y=gy Vo/I, I, (2.13a)

The GR model has po=0; the corresponding fcc(111)
model has po=p, . For the uniaxially incommensurate
lattice, the function u is constant along rows of the corn-
mensurate lattice. For vectors oriented as in Fig. 1, u de-
pends only on the combination jl+jz. The increment in
u for the superheavy/superlight wall' is +a3 after M
rows, with a fractional misfit of +2/(3M). The incre-
ment in u for the heavy/light wall' is +( —al) or
+( —a2) after M rows, with a fractional misfit of
+1/(3M).

This development is for uniaxial incommensurate lat-
tices derived from the +3R 30' commensurate lattice,
which arises in several cases of physisorption. The re-
sults apply, with some relabeling of coordinates, to lat-
tices derived from the 1 X 1 commensurate lattice on the
fcc(111)substrate, e.g. , for Au(111).

These incommensurate lattices have equilibrium posi-
tions satisfying u =u(y ), uniaxial compression along the y
axis. The formalism adapts easily to the case of uniaxial
compression along the x axis, u=u(x). The case of uni-
axial compression along an arbitrary axis n, u =u(n r ), is
discussed briefly in Secs. III A and IV A.

The continuum approximation for the change in the
adlayer/substrate potential energy relative to the com-
mensurate state value is, for the Cartesian axes shown in
Fig. 1,

a dimensionless length Y along the direction (a3) of uni-
axial compression, and scaled displacement functions:

Y=y+y, X=g„u„, and %=g u (2.13b)

The domain size LD is the length b, Y required for u( Y) to
change by one lattice vector a;; the lateral extent of the
domain is I. . The displacement functions have the fol-
lowing periodicities:

0 (SHW)
X(Y+LD)—X(Y)= '+

2' (SHW)—
'P( Y+LD )

—4( Y)= '

(2.14)

hE = j u (Ln )
—u„(0) I ( L~P)+ ( VOL /+y —

) . e(2.15)

The scaled energy e, defined by

where SHW and HW denote the superheavy- and heavy-
wall configurations defined' in Sec. II C. The signs of
the increments in Eqs. (2.14) are reversed for the
superlight- and light-wall configurations (SLW and LW).

The energy of one domain of the uniaxially incom-
mensurate layer relative to the energy of the same num-
ber of atoms in the commensurate state is
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LDe= f dY[ —,'(dr%) +(A/2)(drX) +3cos(8)
—cos(2X+ 8)—2 cos(X —8) cos(%') ], (2.16)

is to be minimized under functional variations of 4 and
X.

The coupled second-order nonlinear differential equa-
tions which result from the minimization are

—di 4+2 cos(X—8) sin(%) =0,
(2.17)—A drX+2 sin(2X+8)+2 cos(V)sin(X —8)=0,

subject to the boundary conditions in Eq. (2.14). If the
pair V,X satisfies Eqs. (2.17), then —V,X does also. Thus
the energies e for the HW and LW configurations on a
domain LH~ are equal, as are the energies e for the SHW
and SLW on a domain LsHw.

The energy difference between one SHW on a domain
of size I-sH~ and two HW's in the same total length is
proportional to

~SHW(LSHW ) ~HW(LD1) ~HW(LSHW LD1)

(2.18)

g„u =X( Y)+1i(Y)/+3 exp[i(qx r—ot)],

g~ u~ = 1p( Y)+g( Y) exp[i(qx cot ) ]—.
(2.23)

The scaled wave number Q and frequency 0 are defined
by

(2.24)

The normal-mode equations become coupled second-
order linear differential equations for the functions g and

0'g= —di g+( AQ /3)g iQ—[1—( 2 /3)]dry

+2 cos(X —8) cos(%')g

—(2/+3) sin(X —8) sin(%')ri

scaled displacements g u„and g u are sums of the static
structure functions, Sec. II D, and small-amplitude har-
monic oscillations with wave number q for the phasing
along the x axis:

Since the results for eH~ satisfy

deHw(L)/dL ~0,
d eHw(L)IdL ~0,

there is a bound

~SHW( LSHW ) 2EHW( LSHW /2 )

(2.19)

(2.20)

0'g= —( 3 /3)di2, 1)+Q'i) —iQ [1—( A /3) ]di g

+ ~4 cos(2X+8)g+ —,
' cos(X —8) cos(%)ri

—(2/&3) sin(X —8) sin('P)g . (2.25)

These are ordinarily solved as a matrix eigenvalue prob-
lem using a truncated Fourier series

When Ae' is negative, the SHW configuration has lower
energy than two HW's in the same length LsHw, ' the cor-
responding SLW has lower energy than two LW's.

Houlrik and Landau compared the energy of one
HW in a length I.H~ to the energy of one SHW and one
LW in the same total length. This amounts to finding the
sign of

[~HW(LHW ) ~LW(LHW L 1 )] ~SHW(L1 )

N
g'( Y)= g a„exp[iY[K+n(2w/LD)]},

—N

N

g( Y)= g b„exp I i Y[K+n (21r/LD ) ] } .
(2.26)

The domain size LD is defined by Eqs. (2.14); the range of
Eis

(2.21) (vr ILD ) (K ~—( vr ILD ) . (2.27)

The bracketed first term on the right-hand side of Eq.
(2.21) is negative, by the first of Eqs. (2.19). For 8=0,
esHw is shown to be positive by inspection of Eq. (2.16).
Thus he" is negative for the GR model. Houlrik and
Landau made four energy comparisons among the HW,
LW, SHW, and SLW for atomistic models of adsorption
on graphite; only one detailed calculation, for Eq. (2.20),
is needed in the continuum approximation.

E. Small-amplitude vibrations

The normal modes of the nonuniform elastic continu-
um are obtained by linearization of the dynamical equa-
tions derived from the kinetic energy (p is the mass densi-
ty)

A zero-frequency solution is constructed bg use of Eqs.
(2.17): the functions g~=di+ and r)O=V3drX satisfy
Eqs. (2.25) with Q=Q =0. The elastic continuum model
has no pinning of the domain walls. '

The frequency spectrum of the uniform elastic continu-
um, no external potential, has two dispersionless acoustic
branches with speeds of sound given by Eqs. (2.3). The
uniaxially incommensurate monolayer has only one
acoustic branch.

Equations (2.25) also result from a functional minimi-
zation of a ratio of quadratic forms in g and g. This re-
formulation leads to an upper bound on the speed of
long-wavelength transverse waves with trial functions
based on the static configuration solution. For 0=0, a
quadratic form for a2,

K= f d r(p/2)[(Bu Ir)t) +(Bu Idt) ] (2.22) az =(0/Q) as Q ~0, (2.28)

and the total potential energy, Eqs. (2.1) and (2.8). The is defined by
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az =N(g, ri) /D(g, ri),
with

D(k rj) = J dY[ko+no]

N(g g)= J dY[(A/3)go+re+(di gi) +(A/3)(di, rii) 2[1 (A/3)][il)digo+gidigo]

+2cos(ql) cos(X)[(g, ) + —,'(g, ) ]+—', cos(2X)(i), ) —(4/&3) sin(%') sin(X)g, g, ],

(2.29)

(2.29a)

(2.29b)

where the leading Q dependences are

g=go+iQg, and rj=ilo+iQgi

and the functions go and rio are

go=dr%, i)o=&3 di X .

An upper bound for a2 is obtained by choosing

ki =~demo ni =&d~ko

(2.30)

(2.30a)

(2.30b)

I

The wall-wall interaction energy is given to better than
S%%uo by the right-hand side of Eq. (3.1) for LD as small as
2. The solutions for the SHW energy in this paper are
obtained by Runge-Kutta integration, and their accuracy
is tested by comparing them to the analytic solution Eq.
(A3).

The solution of Eqs. (2.17) satisfying the HW boundary
condition of Eqs. (2.14) has a vector displacement func-
tion u( Y), with components given by X and %. The func-
tion @ilaw satisfies Eq. (2.19), as shown in Fig. 2(a). The

and minimizing N( g, ri) with respect to variations of a
and P. In the case of the GR SHW, with an analytic
solution for 4', a simplified expression for a2 is given in
Eq. (A8).

III. STATIC CONFIGURATION

18.00

16.00-
(a) A=2

1.5

The scaled displacement functions 4 and X, and energy
of the superheavy- (SHW) and heavy-wall (HW)

configurations are obtained as a function of the elastic
constant ratio A and domain size LD. The coupled non-
linear difFerential equations, Eqs. (2.17), are integrated
with a fourth-order Range-Kutta method. For large LD,
the variation of the functions 4 and X is concentrated in
ranges of Y which are small compared to LD, and which
are taken to be locations of domain walls. In most cases,
the symmetry of the solutions permits an identification of
the domain-wall center. The wall width is defined by a
linear extrapolation from the center to the limiting values
of the functions 4 and X.

The dependence of the energies es~w and e~w on
domain size is described as the interaction of distinct
domain walls for large LD. The wall-wall interactions
vary exponentially with LD, being derived from mechani-
cal energies for the adlayer in a rigid external potential.

The static stability of a SHW relative to separation into
two HW's is treated as a function of LD and A. The
analysis transcribes (Sec. II D) to the case of the static
stability of a SLW against separation into two LW's.

14.00-

y 12.00-

10.00-

8.00-

6.00-

4.00
0.0

20

(b)

15-

10-

1.0 2.0 3.0
LHW

4.0 5.0

1.0
cj

0.5
X

0.25

A=2

1.5

1.0
o

0.5
x

0.25

6.0

A. GR model

Fsiiw(LD) —8+2=32+2exp( Lz&&2) . —(3.1)

The static SHW case of the GR model, Eq. (2.17) with
0=0, reduces to the one-dimensional model of Frank and
van der Merwe. The solution is independent of the elas-
tic constant ratio A, and the displacement u( Y) has one
nonvanishing component %. The scaled energy, given in
Eq. (A3), is closely approximated for large LD ( =Lsiiw )

b 15

-5
0 3

LHW

FIG. 2. The scaled energy of the heavy wall (HW) for the GR
model as a function of domain size LD=L&~ for specified
values of the elastic constant ratio A. (a) The energy e(L&~),
which has the convexity property stated in Eq. (2.19); (b) the en-
ergy differences he', Eq. (2.20), of 2 HW and 1 SHW.
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difference b,e' is shown in Fig. 2(b); for each value of A, it
increases as L, Hw decreases. Thus, for A =0.25, an array
of SHW's at large LsHw=2LHw has larger energy than
the HW array, but the SHW array has smaller energy for

SHW-
Thermodynamic stability at zero temperature is decid-

ed by constructing the enthalpy as a function of the
spreading pressure, i.e., the Maxwell double tangent con-
struction, to locate first-order phase coexistence. For
A =0.25, the intersection of the mechanical enthalpies
for the SHW and HW occurs for LsHw =5.2 and
L, Hw =3.1. The major part of the enthalpy difference of
the SHW and HW solids at low spreading pressure is
given by the increment defined in Eq. (2.20).

A variational approximation for the HW array at
large LHw led to an estimate that the SHW array is stable
for A ~0.3. The interpolation of data corresponding to
Fig. 2(b) gives the energy stability for A ~ 0.295 at large
LHw, in very good agreement. Gordon' found stability
for A ~

—,
' for a slightly different substrate model.

The scaled energy eHw depends approximately ex-
ponentially on distance LHw, as shown in Fig. 2(a). Fits
for LHw &2 have an exponential scale length which de-
creases slightly as A increases, and a prefactor which in-
creases as A increases.

By choosing the domains to be
LsHw 12 & Y—& LsHw I2 for the SHW and

—LHw/2& Y&LHw/2 for the HW, symmetric static
solutions may be constructed which satisfy

q'sHw( Y)++sHw( Y)=

+Hw( —Y)+qlHw( Y)= 77, —

XHw( —Y)+XHw( Y)= 7r . —
(3.2)

These properties simplify the matrix form of the normal-
mode problem.

The widths of the domain walls centered at Y=O [Eq.
(3.2)] are defined as the ranges b, Y over which a linear
extrapolation of the tangent to 4 at Y=O goes from 0 to
—2m for the SHW and from 0 to —

m for the HW,
wsHW =2~/'II0, and wHW =m/'II0. An analytic form for
wsHw is given in Eq. (A5). Results are shown in Fig. 3,
where the solid line is a limit in which the width hY
equals the domain size. The widths approach limiting
values for large domain size. For LD & 1, AY is at least
95% of LD,' thus the variation of '0 is nearly linear in
small domains. The HW width increases as A increases
at fixed LHw, and as LHw increases at fixed A. The
width 2wHw is larger than wsHw when comParisons are
made at the same A and the same total misfit, as in Fig.
3.

The ratio of the wall width to the domain size is a
guide to understanding the frequency dispersion of nor-
mal modes, because it is a measure of the inhomogeneity
of the medium in which the waves propagate. It is also a
guide to when the incommensurate solid is a nearly uni-
form solid, and when it has a strongly striped structure
with localized domain walls.

An array of HW's parallel to the x axis, as here, is

3.5-

1.5-

0
0 4

LsHw

FIG. 3. Wall widths for the GR model. The wall widths
defined in Sec. III A are shown for the SHW and the HW, at
specified values of A, as a function of the domain size LsH~ of
the SHW. The 8(SHW) are the SHW widths. The HW widths
are plotted as 2 W~ at LD =2LH~; thus total widths for the same
misfit are compared. The ratio 8'„/8'„of the heavy-wall
widths in the Y and x displacements, derived from the ratio
X'/+' of the slopes at the midpoint of the wall, is shown for
specified A. The solid line shows the limit in which the wall

width equals the domain size.

B. fcc(111)model

The displacement function of the fcc(111)model which
satisfies the SHW condition in Eq. (2.14) has vector char-
acter. This is ' a consequence of the small potential-
energy barriers for saddle points between the fcc and hcp
sites.

The SHW solution has a symmetry, for
LsHw /2 & Y &LsHw /2,

q'sHw( Y)+q'sHw( Y)=

X( —Y)=X( Y) .
(3.3)

The solution in the degenerate case, /=0, has a further
symmetry about each of the saddles which is similar to
the HW case of Eq. (3.2).

Results for the scaled energy of the SHW, with /=0,
as a function of the domain size LsHw are shown in Fig. 4
for several values of A. The values for LsHw &20 are

lower in energy than the SHW array for A less than 0.3.
However, related structures have lower energy than this
HW array. The HW array oriented parallel to the y axis
is described by equations of the form of Eqs. (2.17), with
an effective elastic constant A'=9/A. For LD~ ~ and
A less than 0.55, its energy increment for a given change
in adlayer area is lower than that of the SHW array
parallel to the x axis. Also, for LD —+~, an array of
parallel SHW's rotated by a small angle from the x axis is
favored relative to this SHW array for A less than 0.62.
The onset of the rotation is discussed in Sec. IV A. The
effect is similar to one found by Pokrovsky and Talapov'
for rectangular substrates.
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FIG. 4. The scaled energy of the fcc(111)SHW as a function
of the domain size LsHw for /=0 and specified values of A.

FIG. 5. The size of the minority domain as a function of the
degeneracy parameter t/i for 2 = 1 and specified values of
domain size LsH~. Data for A =2 and 0.5 would scarcely be
distinguishable on this graph. The length L& is the Y range for
the domain of the higher-energy stacking sites, measured be-
tween saddle points of the potential.

within 0.1% of variational estimates for isolated walls.
Values for a given 3 are fit well by the form

e(L)=e„+f~ exp( —y„L); (3.4)

for A = 1, the parameters of the exponential are f„=12
and y„=0.46. The values of e for values of f appropri-
ate to physical adsorption are close to those shown in
Fig. 4; for /=0. 005, e increases by 1% at L =4 and by
5% at L =24.

There are substructures resembling domain walls
which are centered near the potential-energy saddles be-
tween the fcc and hcp sites for large LsHw. For /=0,
the substructures are equally spaced and there is a
characteristic extinction of a diffraction structure factor,
which has been used to conclude that Xe/Pt(111) devi-
ates strongly from this model. For /%0 and large LsHw,
there are unequal-sized domains "of atoms centered on
fcc and hcp sites.

The SHW solution for /%0 refiects a balance between
wall-wall interactions and the difference in site energies of
the two domains. It is treated quantitatively as follows.
The saddle point of the potential energy, Eq. (2.12), is
used as the demarcation between domains. The incre-
ment in Y between the saddles bounding the higher-
energy sites is defined to be the size L& of the minority
domain; the lower-energy sites are in a domain of width
L =LsHw L&. Values of—L& as a function of g and

LsHw are shown in Fig. 5 for A = 1. For large LsHw, the
value of L13 approaches a finite limit which depends on f.
The increment in energy is, with a picture of very sharp
domain walls with nearest-neighbor exponential repul-
sions as in Eq. (3.4),

b e = (fz l2)(exp[ —2y & L ]+exp[ —2y „LS] )

+6L& sin(ir/3) sin(g) . (3.5)

Minimizing he with respect to L& at fixed LsHw gives a
close fit to the data in Fig. 5 for LsHw &10. For large
domains, small values of f lead to quite unequal-sized
subdomains of hcp and fcc sites, but e is only slightly

affected. Then a lifting of the structure factor extinction
of the degenerate case may be achieved with only a small
change in the energy of domain walls.

Wall widths for the fcc(111)model are defined in analo-

gy to those for the GR model (Sec. III A). Results for the
/=0 case are shown in Fig. 6; in this case, the SHW
domain has two walls, each of a width uii =m/qlc, in
terms of the slope of the tangent. For large LsHw, the
range of X( Y) in a domain is m/3, but it can be much less
than this at small LsHw. Figure 6 also shows values for
the ratio 3X0/4'0, which is a rough measure of the ratio
of the wall widths in 4 and X.

The HW of the fcc(111) model is the most complex
case treated in this paper. The differential equations are
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FIG. 6. Wall widths for the fcc(111) model as a function of
LsHw for specified values of A. The SHW widths for /=0 are
derived from the slopes %0 and Xo at the saddle point between
the two subdomains. The width 8'~ is de6ned to be ~/%0. The
ratio 8'~ /8' of the wall widths in the displacements u~ and u„,
given approximately by 3 Xo/%0, is also shown. See Sec. III B
for further discussion.
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IV. HARMONIC DYNAMICS

The frequency spectrum of normal modes of the static
equilibrium configurations is obtained from Eqs. (2.25).
The solutions use matrix diagonalization with the expan-
sion in Eq. (2.26) and Runge-Kutta integrations in special
cases. The nonuniform static density distribution implies
that there is dispersion in the frequency spectrum. Some
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FIG. 7. The scaled energy eHw of the fcc(111)HW as a func-
tion of the domain size LH~ for /=0 and specified values of A.
In each case 2eHw(LHw ) is much larger than esHw(2LHw ).

solved on the interval 0( Y (LH~ with the initial condi-
tions X(0)=XO and 0'(0)=0. The initial values of the
derivatives are adjusted to make the solution satisfy
X(LHw)=XO —~ and 'I'(LHw)= —~; periodicity in the
derivatives is achieved only by a particular choice for X0.
For /=0, the value is Xo=a./3; for it&0, the value de-
pends on A and on LH~.

Values for the scaled energy of the HW structure,
/=0, are presented in Fig. 7 as a function of the domain
size LHw for several values of A. Again, the dependence
on domain size is approximately exponential. An esti-
mate of the HW energy for large L, with the variational
functions used for the GR HW, is about 50% higher than
the values from the direct numerical solution. These trial
functions omit the fact that, as for the SHW structure,
the HW misfit involves a spatially varying displacement
with atoms near both the hcp and fcc stacking sites.

The conclusion remains that the fcc(111) SHW is
stable against separation into HW structures for a wide
range of elastic constant ratios A. The ratio
2eHw(LHw)/esHw(2LHw ) at LHw =8 decreases from 2 at
3 =2.5 to 1.47 at A =0.5 and 1.33 at 3 =0.25. If there
is a regime where the SHW is energetically unstable rela-
tive to the HW, it must involve quite small values of 3
and large values of LHw. Similarly, the results of
Okwamoto and Bennemann show that this SHW is
favored over a HW structure formed in uniaxial compres-
sion along the x axis (Sec. II C) for large LD and 3 )0. 1;
the stability is confirmed here by direct calculation for
3 &0.4.

of the SHW spectra have anomalous dispersion, where
the frequency dependence on wave number is supralinear.
More surprising is that, for both the GR and the fcc(111)
models, the SHW stripe is dynamically unstable for
ranges of A and LsH~ where the SHW has lower energy
than the HW stripe.

A. GR model: SHW array

The harmonic-frequency spectra Q(Q, K) on a given
domain LD are the same for the SHW and SLW. There
are symmetries Q(Q, K)=Q( —Q, K)=Q(Q, —K), so
that only the positive quadrant Q )0 and K )0 need be
treated.

The normal-mode equations for the GR SHW simplify
considerably, using X=8=0 and Eq. (3.2). The frequen-
cies A=A(Q, K) are then the eigenvalues of a real sym-
metric matrix, because the relation

LsHw ~~

V(m ) =(1/LsHw )f cos(4')
sHw~

X exp[& 2vrm Y/LsHw ]d Y

LsHw /2
=(2/LsHw) f cos('k) cos[2nm Y/LsHw]d1'

0

(4.1)

reduces the matrix problem arising from Eqs. (2.25) and
(2.26). Rather explicit results are available along the axes
Q =0 and K=O.

The lowest-frequency solutions for Q =0 are obtained
from the second-order differential equation'

O(O, K) g= —di, g+2cos(%)g,

where %' is the solution of
—di,4+2 sin(4) =0,

(4.2a)

(4.2b)

This is accurate to 2% at L =6. Since the second of Eqs.
(2.25) does not map precisely onto the Sutherland solu-
tion, there may be (and is) more than one gap in the
transverse (g) frequency spectrum.

Equation (4.2) provide a test of the numerical solu-
tions, which include the Bloch-Floquet construction of
McMillan and the truncated matrix eigenvalue problem
using Eq. (2.26).

A second special case is K=O, for which the lowest-
frequency motions are transverse oscillation s of the
domain-wall array. The variational approximation
defined in Eqs. (2.29) and (2.30) gives a tight upper bound
on 0 at small Q, Eq. (A8). For very large L, it is

satisfying 4( Y+L ) =4( Y)—2m. . This problem was
solved' by Sutherland and by Pokrovsky and Talapov.
Sutherland showed that Q(O, K) has only two bands and
that the gap in 0 at K =~/L is 2. Pokrovsky and Tala-
pov constructed the small-K solution in terms of integrals
of %. Their solution can be expressed in terms of elliptic
integrals, Eq. (A6); the large-L limit is

Q(O, K) /K =(co /yK )/ci =8L exp( —L&2), K~O.

(4.2c)
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Q(Q, O) (3/AQ )=(co/qc, ) =1—hf(A ), Q~O,

&f„,=(5/3A )(3—A )2/(11+7A ) .
(4.3)

Q(Q, O) (3/AQ )=1—(ti/Q ), Q~ac

with

5= 1+(6/A )
—i/[I+(24/A )] . (4.4)

Thus the phase velocity approaches the speed of trans-
verse sound in the uniform medium.

The transverse wave has anomalous dispersion, i.e.,
co(q, O)/q initially increases as Q increases. Results in
Fig. 8 from the direct solution for fl(Q, O) show the

A direct numerical solution for Af obtained by scaling
Eqs. (2.25) is within 10% of hf„„at A =1.5, 5% at
A = 1, and 1% at A =0.5. For finite L, the variational
bound Eq. (A8) is even tighter. For A =1, the bound for
1 —Af is 1.3% larger than the numerical solution at
LsHW =4 and 0.4%%uo larger at LsHw

There are several noteworthy features of Eq. (4.3): (i)
the speed of transverse waves (as Q ~0) is independent of
the corrugation amplitude Vs; (ii) the propagation of
long-wavelength waves may be quite anisotropic, com-
paring Eqs. (4.3) and (4.2c); and (iii) there is a dynamic in-
stability, Q &0, for small A. At large LsHw, the varia-
tional estimate Eq. (4.3) ensures that there is a range of
negative 0 for 3 &0.617; a direct solution shows that
Q(Q, O) &Oat small Q for A &0.6219.

The dynamical instability can be linked to the onset of
a rotation of the parallel SHW array relative to the x
axis. The static energy for an arbitrary direction n of
uniaxial compression (Sec. II C) is expanded to second or-
der in the (small) rotation angle. The quadratic form is
identical to that in Eq. (2.29) for the small-Q limit of
Q(Q, O) . Then the condition az &0 implies that the stat-
ic energy is lowered by the rotation. Pokrovsky and Tala-
pov' treated the rotation on rectangular substrates.

The limit of Q(Q, O) at large Q and L is

dynamical instability for small 3 and the anomalous
dispersion. The effect of wall-wall interactions is illus-
trated in Fig. 9 for several values of LsHw and 3, using
the coefficient a2(L ) in a fit to the lowest frequency at
small Q:

(co(q, O)/qc, ) =a2+a~Q +0(Q ) . (4.5)

at finite L, p is given in Eq. (A7); for L —+ Go, it is

p*=p Jdy(du /dy) =(8p/g~)i/(2y) .

The line tension is defined to be

r=p*(co(q, O)/q), Q~O .

(4.6)

(4.7)

It is distinct from the energy per unit length of a domain
wall, which is a combination of the scaled energy e [Eq.
(2.16)] and the spreading pressure P [Eq. (2.1)]. The utili-
ty of the definitions for ~ and p* is unclear, because both
quantities vary as L varies. The effective mass p*, the

The coefficient a2 increases as L decreases and thus
remains positive to smaller 3 as L decreases. The
coefficient a4 is positive (anomalous dispersion) for all
cases represented in Fig. 9. It decreases as L decreases;
this is in accord with the increasing uniformity of the
medium refiected by the domain-wall widths (Sec. III A).
It increases as A decreases and becomes large for small
A, as indicated in Fig. 8.

There are phenomenological accounts' ' ' of the trans-
verse vibrations of a domain wall in terms of the 1ine ten-
sion and effective mass of a stretched string. The fre-
quencies at small Q can be used to identify the line ten-
sion governing small-amplitude vibrations of the wall.
Shrimpton and Joos ' derive an effective mass p' from
the kinetic energy by the construction

J d r p(Bu /Bt) = f d r p[Bu [Y+g(t)]/Bt]
= f dx p*(d g/dt )
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FIG. 8. The dispersion of the lowest-frequency transverse vi-
bration of the CxR SHW. The solution for II(Q, O) is plotted in
the form (co/qc, ) vs Q for specified A. In the results shown,
for LsH~=20, the effects of wall-wall interactions are very
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FIG. 9. The long-wavelength behavior of the transverse fre-
quency spectrum of the GR SHW. The coefficient a2, Eq. (4.5),
for the small-q limit of (co/qc, ), is plotted as a function of LsH~
for specified A.
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with reduced temperature T*=T/Tp and characteristic
temperature T0.

Tp = ( fl /kg ) 1/ ( y I ] & /p ) (4.9)

The sum in Eq. (4.8) is over branches of the frequency
spectrum defined on the first Brillouin zone.

The low-temperature limit of the specific heat is

C= Apk~y(3$(3)T* )j(mcgc~), (4.10)

with Riemann zeta function g(3) and speeds c& and cx.,

Q(Q, O) =c&g, Q ~0; Q(O, K) =cx.K, K —+0 .

The specific heat of a uniform Debye solid, with longitu-
dinal and transverse acoustic branches, is

C= Apksy(3$(3)T' )[1+(3/A )]/vr . (4.11)

The specific heat for A =1 is shown in Fig. 10 for a
range of temperatures between the low- and high-
temperature limits, Eqs. (4.10) and (4.11). The pattern of
variation depends on LsHw; C/T* may have strongly
nonmonotonic dependence on T*. The range of C/T*
is larger for smaller A, but the qualitative pattern for
A =2 and 0.7 is similar to that shown in Fig. 10. The
crossing of the curves in Fig. 10 demonstrates that the
sPecific heat does not vary monotonically with L, sHw.
First, at very low temperatures, the dominant contribu-
tion arises from the low-frequency transverse vibrations
of the domain walls; then, at intermediate temperatures,
the specific heat for smaller L, sHW is enhanced by the nar-
rowing of the gap in the second branch of the spectrum
with increasing misfit.

B. GR model: HW array

The spectra Q(Q, K) on a given domain LD are the
same for the HW and LW. The symmetry is lower than
for the GR SHW: there is inversion symmetry

sPeed co/q, and the line tension all increase as LsHw de-
creases.

Frequencies at general K and Q are obtained from the
matrix eigenvalue problem, Eqs. (2.25) and (2.26). The
frequency spectrum is composed of several branches
defined on the one-dimensional Brillouin zone,

LsHw (E(7T/LsHW. There is one acoustic branch,
which is a longitudinal acoustic mode for Q =0, and a
transverse acoustic mode for E =0.

The spectrum A(Q, K) enables a generalization of the
Debye theory of the specific heat to the case of the
nonuniform (striped) lattice. A consequence of the strong
anisotropy in the frequency spectrum for large L, Eqs.
(4.2) and (4.3), is that the characteristic T variation of
the specific heat of the two-dimensional solid is reached
only at very low reduced temperatures T*.

The specific heat for the monolayer solid of area A 0 is

C = ( A p k~ y ) /(4m )

X g f dg J dK[(Q/2T*) jsinh(Q /2T*)]

(4.8)
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FICx. 10. The specific heat of an elastic solid with a SHW ar-

ray of the GR type. The quasiharmonic specific heat C for a
solid of area A o is related to the function C by
C= Aok&(y/~)C*. The ratio C /T*, is plotted as a function
of the reduced temperature T*, Eq. (4.9), for A = 1 and
specified values of L»~. The on the right-hand axis denotes
the high-temperature limit, Eq. (4.11), independent of LsH~.
The zero-temperature limits are given by Eq. (4.10).

Q(Q, K)=A( —Q, K), but —there is no reAection sym-
metry with respect to the Q axis.

There are notable contrasts to the results for the SHW.
No dynamical instability is found, even for ranges of A

and L for which the HW array has much larger static en-

ergy than the SHW array. The lowest K=O frequency
A(Q, O) has normal dispersion with Q.

With the sign conventions used here, at each positive Q
there is a minimum frequency at a negative value K (Q)
which depends on A and LHw. For LHw )4, the
minimum frequency is a few percent lower than the K =0
value, but at LHw =2, the reduction is of order 20% for
A (0.5.

The K =0 spectrum is analyzed for small Q in a similar
fashion to Eq. (4.5):

C. fcc(111)model: SHW array

The spectra Q(Q, K) on a given domain LD are the
same for the SHW and the SLW. There are inversion

O(Q, O) /Q =(co/qc() =b2+b4Q, Q~O . (4.12)

The coefficient b2 is shown in Fig. 11 as a function of
LHw for several values of A. The corresponding
coefticient b4 is negative, with a magnitude which varies
slowly with LHw and which decreases as A increases.

The variational bound for b2 obtained from Eqs. (2.29)
and (2.30) has an accuracy relative to the direct solution,
which improves as LHw decreases at constant A and as
A increases at constant LHw. For A =2, it is accurate to
1% as LHw ranges from 1 to 16; for A = 1, the accuracy
is S%%uo at L, Hw=16 and 0.5% at 1; for A =0.25, the
bound is at least 50% above the direct solution for
LHW ) 3 and only 1% larger at L, HW=1. The bound is
tighter at smaller domain size, where the static density
distribution is rather uniform.
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with A at fixed LsHW.
There is a range of parameters with anomalous disper-

sion, a~ )0 in Eq. (4.5). For A =0.5, the range
LsHW ~ 12 has a4 &0. The anomalous dispersion sets in
at smaller LsHW for smaller A; a4 decreases and changes
sign as LsHW decreases at constant A. The magnitude of
a4 is smaller and has a slower variation with LsHW than
the coefficient for the GR SHW in corresponding ranges
of A and LsHW.

Several branches of the frequency spectrum Q(O, K) are
shown for the fcc(111) SHW, A =1, and LsHw=8, in
Fig. 14. The lowest branch is primarily a longitudinally
polarized mode, with the g component as the dominant
part of the eigenvector. In higher branches, the dom-
inant component of the polarization varies as E varies.
For /=0, the lowest branch would unfold to give a spec-
trum without gaps on the range 0 & K & 2m /LsHw. This
is because the F dimension of the distinct space lattice
unit cell is LsHw /2 when the hcp and fcc sites are degen-
erate. The spectrum in Fig. 14 for /=0. 005 has small
gaps at K =n./LsHw, consistent with the larger unit cell.
The gap for the lowest branch increases with increasing
LsHw'

satisfying precisely the boundary condition Eq. (2.14).
Correlated with this is the onset of a strong curvature in
the dependence of Q(Q, O) /Q on Q at small Q. That is,
fitting with Eq. (4.12) reproduces the spectrum for Q up
to 0.4 at LHw=4, but only for Q up to 0.05 at A =1,
LHw =12. The coefficient b2 [Eq. (4.12)j has behavior
similar to that in Fig. 11 for the GR HW. The coefficient
b4 is negative, normal dispersion.

The minimum frequency at given Q occurs for KWO,
as for the GR HW. The topography of the Q(Q, K) sur-
face is more complex than for the GR HW and the
minimum frequency at Q )0 does not remain in one qua-
drant for all the cases. For the cases treated, the reduc-
tion from Q(Q, O) ranges up to 40%; the largest effects
are for A =0.5, LHw in the range 4 to 10, and Q & 0.2.

Lifting the degeneracy of the fcc and hcp sites, up to
/ =0.005, does not change qualitative aspects of the spec-
trum.

To summarize, no dynamic instability 0 & 0 is found
in the fcc HW cases surveyed here; there is no indication
that an extrapolation would lead to such a case.

V. CONCLUDING REMARKS

D. fcc(111)model: HW array

The spectra for the HW and the LW on a given
domain LD are related by Q(Q, K)Hw=Q( Q, K)„w. —
There is inversion symmetry but not reAection symmetry,
Q(Q, K)=Q( —Q, —K), as in Sec. IV 8.

The fcc HW is unstable in energy with respect to the
SHW for all the conditions explored in these numerical
studies. However, no dynamical instability of its
harmonic-frequency spectrum is found for static solu-
tions with LHw in the range 1 —18 for A =2, 1 —16 for
A =1, and 1 —10 for A =0.5. Finding solutions is limited
at the largest L by an extreme sensitivity to the initial
conditions in the integration and a consequent problem in
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FIG. 14. The frequency spectrum for the fcc(111)SHW with

Q =0. Several branches of the frequency spectrum Q(O, K l are
plotted in the upper half of the first Brillouin zone. The abscis-
sa XK is related to K by XK=(KLsH~)/m. The spectrum
shown is for A =1, LsHw =8, and /=0. 005.

The elastic continuum theory provides a framework for
qualitative and semiquantitative discussions of several
signatures in observations of uniaxially incommensurate
monolayer solids. It helps to put observations and mod-
els in a broader perspective. The GR SHW case has im-
mediate application to hydrogen/graphite and
helium/graphite, and probably ' ' to Xe/Pt(111).

The superheavy walls (SHW's) defined by Kardar and
Berker' are aligned parallel to a pair of reciprocal-lattice
vectors of the GR surface. The results of Sec. IV A show
that they are dynamically stable for elastic constant ratio
A &0.62 at very small misfit, and to smaller values of A
for larger misfit (smaller wall spacings). The results of
Sec. III A show that the dynamical instability at small A
corresponds to a rotation of the axis of the parallel walls,
an effect also found by Pokrovsky and Talapov. ' The
elastic constant ratio for helium/graphite is inferred to be
in the range A &0.7, using the work of Greif and Good-
stein' and also using a combination of their work with
that of Greywall. Thus a SHW phase of
helium/graphite may be preempted by a rotated uniaxial-
ly incommensurate lattice. However, the derivation of A
from the data' ' is based on expressing the Debye tem-
perature and bulk modulus in terms of uniform lattice
elastic constants. There is not yet a self-consistent
analysis of the helium data which includes the lowering
of the effective Debye temperature by domain-wall exci-
tations at small misfit, illustrated in Fig. 10.

Heavy-wall (HW) structures have been defined'2 in
which the misfit which would be due to a SHW is
achieved by subdivision into two domain walls, each with
two-component displacement vectors. The relative ener-
gies of HW and SHW lattices with axes parallel to sub-
strate reciprocal-lattice vectors have been calculated pre-
viously ' ' and in Sec. III. The aligned HW lattice has
the lower energy at a small elastic constant ratio, but a
rotated uniaxially incommensurate solid appears to have
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still lower energy. The HW lattice has been suggested
to occur for He/graphite, by associating the average
density of a specific-heat signature with a striped struc-
ture. The stability of an aligned HW lattice would, on
the basis of the present work, be attributed to effects of
atomic discreteness which are omitted from the continu-
um models.

The uniaxially incommensurate solid has one rather
than two acoustic branches, but it may have a Debye
( T ) temperature dependence at sufficiently low tempera-
tures. The strong anisotropy of elastic-wave propagation
in the solid at small misfits, discussed in Sec. IV and illus-
trated in Fig. 12, causes this T regime to be reached only
at very low temperatures. The model calculations, as in
Fig. 10, show that the ratio of the specific heat to the
square of the temperature decreases, as the temperature
decreases, to a value less than that inferred from the uni-
form lattice elastic constants. It then increases to a finite
limit with further decrease in temperature. This last rise
reflects the domain-wall excitations and occurs at temper-
atures less than 10% of ADO/kz, where Qo is the angular
frequency of the Brillouin-zone center gap of the com-
mensurate lattice. Discreteness effects, such as the
Peierls pinning of domain walls, would limit the extent of
the rise at low temperature. There has been no interpre-
tation of specific data for striped lattices in such terms:
the model calculations indicate the effects may be prom-
inent at low temperatures and small misfits.

The monolayer solid of Xe/Pt(111) is an anomalous
physisorption system. Diffraction data for the incom-
mensurate solid have been interpreted as excluding the
fcc(111)model with degenerate hcp and fcc stacking sites.
Two classes of interaction model had been proposed,
one ' ' with adsorption sites atop surface platinum atoms
and one with the diffraction signature attributed to a
slight breaking of the degeneracy of the hcp and fcc sites.
Small differences in the energy at the fcc and hcp sites
lead to unequal-sized subdomains, as discussed in Sec.
IIIB and illustrated in Fig. 5. There are also conse-
quences to the excitation spectrum, as discussed in Sec.
IVC. To use the data of Kern et al. to distinguish be-
tween the two classes of interaction model will require
quantitative analysis of the atomic diffraction intensities.
However, the result may be a fitted value for the amount
of the energy difference between the hcp and fcc sites,
with a conclusion depending on how plausible the fitted
value appears in the light of modeling of the interac-
tions. '

There are several examples of anomalous frequency
dispersion in the elastic continuum theory, shown for the
GR model in Fig. 8 and discussed for the fcc(111)model
in Sec. IV C. How much of this can be attributed to the
omission of anharmonicity in adatom-adatom interac-
tions will become clearer as further calculations are made
with atomistic models.

The interaction energy of parallel domain walls varies
exponentially with distance at large separations in this
approximation. It is not yet known how the parameters
in the dispersion relation of domain walls with large
meanders' ' are related to the small-amplitude vibra-
tions theory and hence how the entropic interaction' '

depends on the elastic constants and corrugation. From
that, the relative sizes in a physisorbed system at finite
misfit of the exponential interaction, the entropic interac-
tion, and the elastic interaction through a deformable
substrate might be determined.
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APPENDIX A: ANALYTIC RESULTS
FOR THE GR SHW

Frank and van der Merwe expressed solutions of the
nonlinear differential equation

—dr%+2 sin(%) =0 (Al)

in terms of elliptic integrals. Their results transcribe to
the GR SHW [Eq. (2.17)] with X=8=0. An extension
gives expressions for the domain size, energy, elastic
wave speed, and effective mass in terms of complete ellip-
tic integrals of the first and second kind, IC(p) and E(p).

The domain width and scaled energy, Eq. (2.15), are
given parametrically by

L =&(2p)&(p), (A2)

e=4v'(2/p) [2E(p) (1 —p)E—(p) J .

The contribution of e to the spreading pressure is

bP= de/dL =4—(1—p)/p .

The wall width defined in Sec. III A is

w =2vrl+O=2~&(p/8) .

(A3)

(A4)

(A5)

The speed of longitudinal waves along the y axis [Eq.
(4.2c)] derived from the initial slope of Q(O, K ) is'

(c~/ci) =(1—p)[J:(p)/E(p)]
The effective mass ' [Eq. (4.6)] is

p*=(8p/g~)&(2y/p%'(p) .

(A6)

(A7)

The variational theory for the transverse elastic wave
speed, constructed from Eqs. (2.28) —(2.30), is obtained by
minimizing the following quadratic form with respect to

—,'(c„/c&) I& =( 3 /6)I, +a[1—( 3 /3)]I2

+a [( 3 /6)I6+ —', I2+ ,'I4], —(A8)

where

Ii =8+(2/p)E(p),
—', I2 =(4/p)'(p 1)L+[(2/p) —1]—I, ,

,'I4 = [(2/p) —1]I2———,'Ii,
I6=2I( —I4 .

The expression in Eq. (4.3) is obtained from Eq. (A8) in
the limit L ~~(p —+1).
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