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Step-edge barriers on GaAs(001)
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We investigate the growth kinetics on vicinal GaAs(001) surfaces by making detailed compar-
isons between reBection high-energy electron-diffraction specular intensity measured near in-phase
diffraction conditions and the surface step density obtained from simulations of a solid-on-solid
model. Only by including a barrier to interlayer transport and a short-range incorporation process
of freshly deposited atoms can the simulations be brought into agreement with the measurements
both during growth and during post-growth equilibration of the surface.

The roughness of growing surfaces has become one of
the main topics in the study of surface processes. One
reason for this is the evident importance of minimizing
surface roughness for applications. Aside &om its rel-
evance for the fabrication of narrow layered structures
(quantum wells, lateral superlattices, magnetic multilay-
ers, etc.), surface roughness has recently been suggested
as triggering the transition &om epitaxial to amorphous
growth during Si, Ge, and GaAs homoepitaxy. Provided
the roughness can be controlled, this opens up the excit-
ing prospect of low-temperature epitaxy and doping. An-
other reason for the intense interest in surface roughness
is purely theoretical. The roughness of growing surfaces
has been observed to exhibit asymptotic dynamical scal-
ing behavior which has led to the classification of growth
models into various universality classes.

In a majority of the theoretical studies, the focus has
been on the evolution of the surface morphology due to
fluctuations in the incoming flux of particles and sur-
face diffusion. Studies of metal epitaxy have revealed
the importance of two processes which directly influence
the evolution of surface roughness. The first is the way
keshly deposited atoms are incorporated into the growing
material ("transient mobility, "s "downward funneling, "4
etc.). Such incorporation mechanisms smoothen the
growth front and lead to quasi-layer-by-layer growth
at temperatures low enough that thermal mobility is
negligible. The second process is the interlayer trans-
port of material and, in particular, the efFect of activa-
tion barriers to adatom hopping between layers. These
barriers lead to the opposite trend of the incorporation
just described, namely, a rapid roughening of the growing
singular surface.

While the e8'ects of an incorporation process and hop-
ping barriers are clearly manifested on metal surfaces,
the question arises as to whether these processes might
also play an observable role in the growth of semiconduc-
tor surfaces. In this paper we address this question by
investigating the growth kinetics on vicinal GaAs(001)
surfaces. We make direct comparisons between the evo-
lution of the measured reflection high-energy electron-
difFraction (RHEED) specular-beam intensity and the

step density of simulated surfaces. RHEED is an in situ
real-time probe of surface morphology and, as numer-
ous studies have shown, can be a sensitive measure of
the presence of various surface processes. We Gnd that
quantitative agreement between the RHEED specular in-
tensity and the step density can be achieved both during
growth and post-growth equilibration of the surface if
our model includes barriers to interlayer transport and
an incorporation process for arriving atoms.

We first describe the basic simulation model be-
fore including the refinements just described. The grow-
ing crystal is assumed to have a simple cubic structure
with neither vacancies nor overhangs (the solid-on-solid
model ). Growth is initiated by the random deposi-
tion of atoms onto the substrate at a rate determined by
the flux. The subsequent migration of surface adatoms is
taken as a nearest-neighbor hopping process with the rate
k(T) = kp exp( —ED/k~T), where T is the substrate tem-
perature, kp =2k~T/h, k~ is Boltzmann's constant, h is
Planck's constant, and ED is the hopping barrier. The
latter is comprised of a term, Es, &om the substrate,
and a contribution, E~, &om each lateral nearest neigh-
bor. Thus, the hopping barrier of an atom with n lateral
nearest neighbors is E~ ——Es+nE~, where n=0, . . . , 4.
Thermal desorption is neglected.

In attempting to develop a model with as few free
parameters as possible while retaining the essential fea-
tures of the growth kinetics, some simplifying assump-
tions have been introduced. Those that require the clos-
est examination are as follows. (i) The mobility and
nearest-neighbor bonding of adatoms are isotropic. (ii)
The group-V kinetics are not included explicitly in the
model, since it is assumed that under normal growth con-
ditions the group-V species is present in suKcient quanti-
ties to ensure microscopic stoichiometry. (iii) The efFects
of the surface reconstruction on mobility can be incorpo-
rated as part of the effective migration parameters (Es
and E~)

In the experiments reported by Shitara et al. , growth
and diffraction conditions were chosen to conform as
closely as possible to these assumptions. In particular,
to satisfy (i) the surfaces were misoriented toward the
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mechanism has been invoked to explain the monolayer to
bilayer transition in the growth of group-IV materials,
though we can only speculate about its possible micro-
scopic origins for the case of GaAs(001). The simulations
reported below were carried out on 232x 232 lattices with
steps running diagonally across the lattice (a miscut to-
ward the [010] direction) with the parameters Eg = 1.54
eV, E~ ——0.23 eV, E~ ——0.175 eV, and A=7.

A comparison of our modified model with the data of
Ref. 15 for two different Ga fIuxes is shown in Figs. 1
and 2. The step densities show a much better agree-
ment with the RHEED curves over the entire growth and
recovery periods than those produced with the original
model. The incorporation process brings the simulations
and the measurements into closer agreement at the onset
of growth and during growth, where the improvement is
manifested particularly in a much better reproduction of
the first maximum delay phenomenon. This is due to
an increase in the number of atoms incorporated into pre-
existing steps immediately after they are deposited. In
Fig. 3 is an Arrhenius plot of the temperature dependence
of w~, which now does exhibit an Arrhenius dependence,
in agreement with measurements.

The comparisons in Figs. 1 and 2 are compelling not
least because the effects of the incorporation process and.
step-edge barrier act in opposition during growth, as dis-
cussed above, but in concert during recovery. The step-
edge barrier slows down the equilibration process by in-
hibiting interlayer transport while the incorporation pro-
cess produces a smoothing of step edges and a decrease
in the number of free adatoms, which leads to a high co-
ordination of most of the adatoms forming clusters on
the uppermost layer. This reduces the infIuence of fast
processes such as free adatoms migrating to coordinated
sites and the elimination of sites with low coordination,
both of which were overemphasized in the original model.
Therefore, according to our simulations, both step-edge
barriers and the incorporation process are important fac-
tors for correctly reproducing the recovery curves.

A question naturally arises: are there any other ex-
perimental hints of there being barriers at step edges
or an incorporation process on semiconductor surfaces?
The role of step-edge barriers has been examined. in the
regularization of terrace width distributions on vicinal
surfaces. The existence of step-edge barriers has also
been suggested recently as being responsible for the un-
expectedly rapid increase in the surface roughness in
low-temperature growth of Si (Ref. 10). The "forbid-
den temperature window" in the growth of AlAs(001)
(Ref. 23) is very suggestive of reentrant layer-by-layer
growth behavior caused by the step-edge barriers. Alter-
natively, the observations of epitaxial growth at very low
temperatures could be explained as the effect of an
incorporation process.
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FIG. 3. The Arrhenius temperature dependence of the time
constant 7& of the fast stage of post-growth recovery.

A final comment is in order concerning the results pre-
sented here with regard to the presence of As. Shitara
et al. observed that the areas of disagreement between
the RHEED measurements and the original model are in
transient regimes of growth before the As/Ga ratio has
attained a steady state value. The explanation of the
recovery effect presented in this paper relies on the value
of the step-edge barrier (and also other model param-
eters) being the same during growth and recovery. In
particular, if the step edges are the preferred sites for ad-
sorbed As, then maintaining a steady state As/Ga ratio
over the entire surface is not required, though the ab-
sence of As at these sites would be expected to have an
observable effect. In fact, at the highest temperatures,
where As desorption becomes most appreciable, the step
density recovers more slowly than the RHEED specular-
beam intensity (Figs. 1 and 2), suggesting that a step
edge without As has a lower barrier to interlayer hop-
ping than the same edge with an adsorbed As.

In conclusion, we have studied growth and post-growth
recovery on GaAs(001) surfaces using computer simu-
lations of a solid-on-solid model. To the best of our
knowledge, we have achieved for the first time quanti-
tative agreement between the evolution of the RHEED
specular-beam intensity and its theoretical counterpart,
in our case the surface step density. Our results support
strongly the idea of there being step-edge barriers to in-
terlayer transport as well as an incorporation process for
arriving atoms on GaAs(001) surfaces.
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