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Noise in STM due to atoms moving in the tunneling space
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A theory of electron tunneling through an adiabatically time-dependent potential barrier is applied to
describe Auctuations of the scanning-tunneling-microscope current, induced by the motion of atoms in

the tunneling gap. We show that atoms of a gas intervening between the tip and the sample introduce a
noise small compared to the shot and thermal-electron noises. On the contrary, the noise induced by the
movement of adsorbed atoms can be large enough to be observed. Simple formulas for the average
current and temporal correlation functions of the current are offered to treat data on surface diffusion.

I. INTRODUCTION

Noise in the scanning-tunneling-microscope (STM)
current is usually a feature one tends to suppress or re-
move as a factor obscuring the signal. Only recently,
Moiler, Esslinger, and Koslovski carried out specially
designed noise measurements that can themselves be re-
garded as a tool to obtain the surface atomic-scale
landscapes, particularly promising in the case of low bias
voltages, when the tunneling current is small. Having
managed to distinguish the thermal noise, the power
spectrum of which is proportional to k~TG, where 6 is
the conductance of the tunneling gap, the authors of Ref.
1 suggested working in the constant noise regime, adjust-
ing the distance a between the tip and the sample subject
to the exponential dependence of G(a). The results ob-
tained so far do not seem to give images different from
those given by the conventional STM, which was regard-
ed as a verification of this new method. ' However, this
method is, indeed, advantageous in the case of a small
signal-to-noise ratio, encountered in some situations that
require an application of very small tunneling currents.

The strategy used in the present paper is different. We
wish to focus on the features of the STM noise, which are
directly related to the atomic dynamics at interfaces.
This is the noise due to fluctuations of the tunneling bar-
rier induced by the motions of "third" particle(s) between
(near) the tip and the sample. Binnig, Fuchs, and Stoll
were the first, to our knowledge, to show that the
diffusion of adatoms gives rise to fluctuations of the STM
current that can be used to evaluate diffusive properties
of adsorbates. Further progress in this direction may
help to resolve a problem of identification and characteri-
zation by STM of weakly adsorbed species.

Motions of a particle intervening between the tip and
the sample must affect the measured average current and
introduce a contribution to the current noise. It is in-
teresting to make use of these effects to investigate the
surface diffusion of adsorbed atoms ' or the properties of

the medium in the case of in situ STM (electrochemical
configuration). However, to suggest an instructive ex-
perimental approach one has to establish a theoretical
framework for a description of these phenomena.

Below we develop a theory for the cases of adsorbates
moving along the substrate surface and of gas atoms
moving near the STM tip. We obtain analytical expres-
sions for the average current, the current temporary
correlation functions, and the noise spectral density via
the temperature, density of atoms, and few parameters
which characterize the tunneling barrier and the interac-
tion between a tunneling electron and moving atoms. We
show that over a wide range of gas temperatures and
pressures the contribution of gas atoms to the average
current and current noise is negligible. However, the
inAuence of adsorbed atoms moving near the STM tip
could be large enough to be resolved at the background
of other contributions to the noise. That might give us a
new method for the study of surface diffusion.

Our results suggest that one could study the properties
of moving adsorbed atoms by analyzing the dependence
of the transmitted electron current and the current noise
on the variable parameters such as the tip-sample dis-
tance a, system temperature T, the particle density n, and
the type of atoms and molecules under investigation.
Such investigations could, furthermore, be useful for ob-
taining additional information about the tunnel junction
and the surface of the substrate.

The outline of the paper is as follows. We first discuss
the fundamentals for a calculation of the average current
and the noise-characterizing functions, distinguishing the
thermal, shot, and barrier-fiuctuation-induced noise (Sec.
II). In Sec. III we choose a model of interaction between
the tunneling electrons and the intervening atoms. In
Sec. IV all the basic formulas for the average current and
temporary current correlation functions are derived.
These formulas are applied to a particular case of free gas
atoms in Sec. V. Section VI deals with atoms diffusing in
a liquid in which the tip and the sample are immersed,
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and with surface difFusion of adsorbed atoms. The main
results (qualitative eff'ects, simple analytical formulas for
the treatment of experimental data, etc.) are formulated
in Sec. VII so that one can benefit from this article without
~eading the detailed derivations in Secs. IV—VI. A short
discussion and an outlook (Sec. VIII) conclude the paper.

II. AVERAGE CURRENT AND THE SPECTRAL
FUNCTION OF NOISE

The interaction among the current-carrying electrons
and between the electrons and any quasiparticle excita-
tions in a tunnel-junction system leads to the temporary
current Auctuations. The corresponding current noise
has, generally, a complicated nature. According to the
experiments of Moiler, Esslinger, and Koslovski, carried
out at room temperature, it is the Nyquist thermal noise,
proportional to the conductance of the tunnel junction,
that is observed in STM for the zero applied voltage. At
a small but finite voltage of several meV and for typical
tip-sample distances of several angstroms, the 1/f noise
becomes dominant. With a further decrease of voltages
(down to —1 meV) the shot noise appears, linear in
current and compatible with the thermal and 1/f noise.
There is a narrow voltage interval where the thermal and
shot noises are dominant. The interval where the shot
noise prevails, presumably, increases with a temperature
decrease and the increase of the tunneling gap.

The goal of this paper is to describe the average
current and the noise induced by the motion of "extra"
particles in the tunneling gap. We must, however, first
establish the conditions when this "atomically driven"
contribution to the noise could be registered at the back-
ground of shot and thermal noises.

The problem of quantum noise in microscopic junc-
tions is a topic of recent interest. ' The current-noise
spectral density is defined as

S(~)=J™dt e' '[-,'(& J(t)J(0)+J(0)J(t)&&

G =(e/M)Tr(t t), (2.4)

eV
exp — + 1

T

eV
exp —1

kBT

(2.5)

S,(co)= J dt e' 'K(t),

where t is the transmission operator. In Ref. 9 one can
find examples of analytical formulas for G, obtained in
the semiclassica1 approximation subject to the STM
geometry. The limiting cases of the thermal noise
S(0)=4ktiTG and of the shot noise S(0)=2eJ follows
from Eq. (2.2) for small and large values of eV/kz T, re-
spectively.

Formulas (2.1)—(2.4) were obtained for the static volt-
age across the junction and hence for the time-
independent transmission probability. Our goal is to
study the case of time depen-dent G=6(t) caused by parti-
cle motions in the tunneling space. Generally, such a
time dependence could give rise to the excitation of tun-
neling electrons and the appearance of nonequilibrium
electron gas in the leads. A solution to this problem, par-
ticularly for the mesoscopic STM confinement, is an ex-
tremely complicated task. We may, however, avoid it in
the adiabatic approximation when all the relevant de-
grees of freedom of particles have characteristic times
greater than those of the current-carrying electrons. Act-
ing in the manner of Refs. 5 and 6, we can deduce an ex-
pression for the noise spectral density. The adiabatic ap-
proximation [valid under an assumption that the charac-
teristic time of barrier fluctuations t, is large compared
with the tunneling time' and also compared with the
characteristic electron correlation time, the magnitude of
which is estimated by the smallest of the two values,
R/(kii T) and fi/(e V) j leads to a simple result:

S(co)=So+S,(ai),

(2 1) where we introduce the temporary correlation function

S(0)=2eJ

eV
exp + 1

B+

eV
exp 1

(2.2)

where the average current

J= «i)) =eVG . (2.3)

Here, the tunneling conductance is given by the three-
dimensional Landauer formula

where J(t) is the current operator expressed via' the
creation and annihilation operators of electrons, and
(( )) means the averaging with the electron density ma-
trix. In STM we deal with the exponentially small tun-
neling probability. For this case, at relatively small ap-
plied voltage V and temperature T, Larkin and Ovchinni-
kov obtained

+(t) (J(t +r)J(r) ) (J(r) ) (2.6)

with the current

J(t)=eVG(t) (2.7)

averaged with electron-density matrix (not over
configurations of moving particles). The brackets ( )
mean averaging over the time, or, equivalently, over the
configurations of atoms in the barrier region.

0
The typical tunneling time for the barrier —5 A thick

is 10 ' —10 ' s. At room temperature and for e V-0. 1

eV we have A'/(eV)-ih'/(ks T) —10 ' s. It takes much
more time, t, —10 ' s, for a free atom to pass a region of

O-5 A; the corresponding time for adsorbate surface
difFusion is much greater. Thus, the adiabatic approxi-
mation is valid and Eqs. (2.5) and (2.6) are justified. The
noise cannot be smaller than the first term in Eq. (2.5).
Proportional to the tunneling conductance G (t), this
term is finite even in the limit of zero current at finite
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temperatures. The second term is proportional to the
current squared. Thus, for the sufficiently small currents
the second term in Eq. (2.5) becomes negligible. In the
case studies we shall derive the detailed criteria when the
contribution of the second term becomes considerable
and could be resolved at the background of the first one.

electrons as moving in a static three-dimensional poten-
tial V(r), defined by the sum of the bare potential Vo, and
the potentials due to atoms positioned at points r. ,

N
V(r)= Vo(r)+ g U(r —r~) . (3.4)

j=1

III. MODELS FOR ATOMS
IN THE BARRIER REGION

Then, we solve the Schrodinger equation,

(A /2m )b g+ [E—V(r) ]/=0, (3.5)

We take into account the presence of the particles
(atoms), randomly distributed in the tunneling space, via
their contribution to the potential barrier between the tip
and the substrate (Fig. 1). The potential in a system with
no particles in the tunneling space can, itself, be compli-
cated enough. We ignore these complications, approxi-
mating the bare potential in the tunneling space by a bar-
rier with a rectangular cross section:

Vo(r)= Vo=const (between boundaries So and S),
(3.1)

Uob
U(r —r )=-

(~r —r~+b )
(3.2)

or by a Gaussian

where So and S stand for the surface of the tip and the
substrate, respectively, and assume the substrate surface
to be Hat. In Sec. VIII we discuss how to account for the
real shape of Vo(r) in the final formulas.

Each atom gives an extra contribution, a well or a
hump, on top of the bare potential barrier. We
parametrize the interaction of a tunneling electron with
an atom located at a point r either by a spherically sym-
metric potential with a "polarization tail"

to find the f function that describes the behavior of elec-
trons in the barrier region for the momentary value of the
barrier. That allows us to calculate the current J(t) for
the potential barrier (3.4), formed by atoms "fixed" at a
time moment t at positions rj.(t) To . find the mean
current and current correlation functions, we then apply
Eqs. (2.5) and (2.6) to the averaging over random realiza-
tions of atom coordinates rj(t).

IV. THEORY

1
$0(r) = exp( yr ), y= —[2m—( Vo —E)]' (4.1)

In this section we derive expressions for the average
current and current correlation functions through the
distribution function of particles moving in the tunneling
space. For the weak electron-atom interaction, Sec.
IV A, we solve the Schrodinger equation (3.5) by the
semiclassical perturbation theory. For the strong attrac-
tive electron-atom interaction, Sec. IVB, we use the ap-
proach based on the existence of most probable tunneling
paths.

Assume that an electron tunnels from the s state of the
tip with the energy E. Then, the asymptotics of its wave
function in the barrier region adjacent to the tip,

Uo(r —r )= —Uoexp( —~r —r ~J/b ), (3.3) could be used as the boundary condition for the solution
of the Schrodinger equation (3.5) in the barrier region.

where the range of interaction b is of the order of atomic
size.

Since the atoms move more slowly than electrons, we
ignore the nonadiabatic effects. " Thus, we first consider

A. Weak interaction between
tunneling electrons and moving atoms

In semiclassical perturbation theory, the case of a weak
interaction is defined by inequalities

N

g U(r —r~) && Vo E, — (4.2)

N
U(r —r~) &&y(VO E) . —

Br .
(4.3)

N8 gx

FIG. 1. Gas atoms moving and adatoms between the STM
tip and the substrate.

With use of the potentials (3.2) or (3.3), these inequalities
give two criteria,

(4 4)

(4.5)

For atoms, usually, yb —1, and these criteria coincide.
Upon the validity of these criteria, the continuation of

wave function (4.1) into the barrier region g(r) can be
found by the semiclassical perturbation theory,
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lij(r)= exp —yr — g f dr U(r —r )
r Q2y . ) 0

(4.6)

The integral in Eq. (4.6) is taken along the straight line
connecting the tip and point r. Integrating the Aux of the
wave function (4.6) over the substrate surface we find the
current between the tip and the substrate,

AA B N

J(r,(t), . . . , r~(t);r 0)
= e r' f dp f d8 6 exp —ya8 — g f dr UIr —r.(t)+ro]

m 0 0 j=1 J (4.7)

where r=(r sindcosy, r sin6 sing, r cos6), and ro is the coordinate of the tip. Note that we have used the free-electron
approximation in the bulk of the substrate. Constant B —1 comes from the continuation of the wave function (4.6)
across the substrate surface into the interior of the metal; its exact value depends on the form of the true potential near
the surface. It is also assumed that the main contribution to the integral over 8 in Eq. (4.7) is given by the small-angle
cone, i.e., the trajectories near the z axis give the dominating contribution to the tunneling current.

1. Average current

The form of Eq. (4.7) is suitable for averaging over the atom coordinates r due to their factorization. Assume, here-
after, that the distribution of atoms in the space where they are present is homogeneous. Then, the average current
takes the form

(J)=0 + f drif dr . f dr&J(r„. . . , r, , . . . , r~;ro)0 Q 0
N

A B
exp( 2ya—)f dqr f d88 0 ' f dr, exp —ya8' —,f 'dr U(r —ri+ro)

m 0 0 0 yA2
(4.8)

AA B
(J ) = exp( —2ya )

m

X f dy f d88exp( ya8 +na), —
0 0

(4.9)

dr exp
n f dr U(r —r, ) —1

yA 0
(4.10)

Due to the unlimited integration domain, the result no
longer depends on the lateral coordinate of the tip.

Equations (4.9) and (4.10) have a form similar to the
one obtained in Ref. 12 for the statistical sum of an ideal
gas in an external field; similar kinds of expressions can
also be found in Ref. 13. We apply these formulas to
atoms moving in the volume around the tip (Sec.
IV A 1 a) and atoms moving along the substrate surface
(Sec. IV A 1 b)

a. Atoms uniformly distributed between the tip and the
substrate. Let us consider a gas of atoms moving freely in
a volume near the tunneling region. Assume that the dis-
tance a between the tip and the substrate is large corn-
pared to the atomic size b, and, for simplicity, that the
electron atom potential is spherically symmetrical,

Here, Q denotes the space available for atoms. In the
case of adsorbed atoms, this is the substrate surface S.
For atoms moving in the space between the STM tip and
a substrate, Q has a meaning of the corresponding
volume V.

Using Eq. (4.8), it is easy to find the limiting value of
(J ) for N, O~ ~ at a constant value of atomic density
n =X/Q. Note that the integrand in Eq. (4.8) tends rap-
idly to unity for r away from r&. Rewriting the integrand
in the form exp( )=jexp( . )

—1]+1 we find for
&~ oo

U(r —rj ) = U, ( ~r
—rj ~

). In this case the expression (4.10)
for n can be simplified: a=ao. ,

o =2'f dyy exp — f dx U, I(x +y )' ]
0 y/2

(4.11)

i.e., a becomes proportional to the barrier width a with a
factor o. independent of y and 8.

Note that the value o. looks like the expression for the
total electron-atom scattering cross section found in the
eikonal approximation. ' The difference is that o. given
by Eq. (4.11) is found for the scattering in the underbar
rier region. Thus, instead of the imaginary exponent in
the conventional expression, ' we have the real one. Un-
like the usual cross section, o. can be either positive or
negative, for an attractive or repulsive potential U, re-
spectively; in a general case, the sign of o. is determined
by the sign of the exponent in Eq. (4.11).

Calculating the integrals in Eq. (4.9) one finds

(J ) = expI —(2y no )a ] . —mfzA B
yam

(4.12)

22rrb ~2r3 k dx
(

X 1)
3 0 5/

(4.13)

Thus, the presence of atoms gives rise to an effective bar-
rier wave number, y,s-=y nor/2. —Equation (4.12) holds
for no small compared with y. Attractive potential U(r)
gives positive o. and y,&& y. For the repulsive potential
U(r) we have cr (0 and y,z) y.

Substituting the model potential (3.2) into Eq. (4.11) we
obtain
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where we introduced, the dimensionless parameter

m.b

yA

For small ~g~ &&1,

2~ mbo= 2n—gb = Uo.
yf2

(4.14)

(4.15)

For the repulsive potential with large negative g( « —1),

o= —mb (4.16)

which shows the blocking effect of the cross section of
such an atom, nontransparent for tunneling electrons.

For the attractive potential with g » 1,

o-= e& .2~b
3

(4.17)

At first glance, we meet a striking effect here. The
value of o, given by Eq. (4.17), when substituted into Eq.
(4.12), predicts the double exponential-current depen-
dence on the potential strength U0. The nature of this
effect is similar to the double exponential enhancement of
the barrier permeability due to the tiine dependence of
potential, considered in Refs. 15. Note, however, that
conditions (4.4) and (4.5) do not allow us to consider the
case of g » 1, unless yb » 1. Since an upper estimate for
y is around 0.5 A ', even for atoms with very strong po-
larizability the value yb could hardly exceed 2 (it could
be greater only for molecules or atomic clusters). Consid-
ering formally the case yb ))1, we still have to deal with
the limitations on Eq. (4.11), valid under the condition
a ))b. The latter, together with condition y b ))1,
demands extremely large ya, i.e., very small barrier per-
meability. Thus, the considered effect could have been
met only in the regime of extremely low tunneling
currents. However, in order to obtain simple estimating
formulas we consider below both the cases of large and
small g.

Let us see what will happen if we use the potential (3.3)
instead of (3.2). Then, instead of Eq. (4.13), we get

( )
rrAA B

yam
exp[ —(2ya n, o—)] . (4.19)

There is no potential-barrier renormalization in this ex-
pression, unlike in Eq. (4.12). The case calculations of o
do not differ from those given in Sec. IV A 1 a.

2. Temporary correlation function

Dynamic properties of moving particles do not figure
in Eqs. (4.9) and (4.10) for the average current. The only
assumption of importance was the —on average—
uniform distribution of particles in space. The same ap-
plies to the calculation of the current mean-square dis-
placement. However, in order to find the current correla-
tion function, one must consider a particular dynamic
model of atomic motion.

Calculating the temporary current correlation function
(2.6), we again assume the uniform distribution function
of atoms in space. Let f (ro, r„t) be the density of a prob-
ability for the atom, which has the coordinate r0 at the
moment t =0, to appear in point r& at a moment t. This
function is normalized,

f dr, f(ro, r„t)=l . (4.20)

other hand, for large g Eq. (4.18) gives o exponentially
large compared to the one given by Eq. (4.17). However,
g is, usually, of the order of unity and the estimates given
by expressions (4.13) and (4.18) are of the same order of
magnitude.

b. Atoms uniformly distributed along the substrate sur-
face. In the case of adsorbates moving independently
along the plane surface S of the conducting substrate, the
0 volume in Eq. (4.10) is two-dimensional and the role of
n in Eq. (4.9) is played by the surface density of adsor-
bates n, . If we again assume that the size of the atom, b,
is small compared to the width of the barrier, a, then we
have a =cr with o. defined in Eq. (4.11}. Thus, the aver-
age current, instead of Eq. (4.12), is given by

2g/m ~
b2 x

0 X
(4.18) f (ro rt 0)=&(ro (4.21)

For small g' the value cr found from this equation is m'~

times smaller than the one given by Eq. (4.15). On the
Analogously to the derivation of Eqs. (4.9) and (4.10) we
obtain

K(t)= e ~r'f

deaf

dy' f d8 f d8'88'expI —pa[8 +(8') ]+np(r, r', t)] —(J)2,
m 0 0 0 0

(4.22)

r=(r sin6c syo, r si ansi yn, r cos8),

r'=(r sin8'c sy'o, r si 8n' i st', r cos8'},

with
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P(r, r', t) = f dr, f dr2f(r„r2, t) . exp — f dr[U(r —r, +ro)+ U(r' —rz+ro)] —1 .
yfi

= fdr, f dr2f (r, —r2, t) exp — f dr U(r —r, +ro) —1

qadi

a
X exp — dr U(r' —r2+ro) —1 +2a .

A%2
(4.23)

Consider, for instance, the case of small density n and weak electron-atom interaction U(r). Then, expanding the ex-
ponents in Eqs. (4.22) and (4.23) and Eqs. (4.9) and (4.10) one has

4A 8K(t)= "e r'f dg f dy' f "d8f di)'88'exp[ —ya[8 +(8') ]]
y 2/2 0 0 0 0

X f dr, fdr2f(r, rz, t) —f dr U(r —r, +ro)

X f dr U(r' —rz+ro)
0

(4.24)

It is seen from Eq. (4.24) that in this case the correlation
function is a quadratic functional of the electron-atom in-
teraction, hence it is independent of the sign of U(r).

Concluding Sec. IVA, we stress that the expressions
for the average current [(4.9) and (4.10)] and the tem-
porary current correlation function [(4.22) and (4.23)]
could be applied when the interaction U(r) between the
tunneling electrons and the moving atoms is su%ciently
weak and smooth.

B. STRONG INTERACTION BETWEEN
TUNNELING ELECTRONS AND MOVING ATOMS

In the case of a strong interaction between electrons
and atoms the above-developed semiclassical theory fails,
and we have to choose another approach. Let us assume
that the current Aows mostly along the narrow tubes in
the barrier region that connect the tip, the atoms, and the
substrate. Suppose that electron-atom interaction U(r) is
spherically symmetric in the vicinity of atoms and is
small at a distance away from them. We may then
neglect interaction of an electron with other atoms when
considering its interaction with a given atom. This is an
important simplification. Under this assumption, the
most probable tunneling trajectories between the tip, the
atoms, and the substrate are the straight segments. In or-
der to calculate the current carried through a series of k
atoms (see Fig. 2) we must connect them by the most
probable tunneling paths, s;, and continue the wave func-
tion (4.1) along them. Then, the wave function after pass-
ing kth atom takes the form

4k(r) = A, exp( —y lr, —rj, l )

II
exp( —y lr —r„l )

(4.25)

AB 0%'k
rk )=

m s az

" y f dsl+k(r)l, '=(.,.), (4.26)

where the integral is taken along the substrate surface S.
The approximate equality in Eq. (4.26) is valid under the
semiclassical assumption y l

a —zk l
))1. The quantity

B(—1) is a constant, analogous to the factor B in Eq.
(4.7). The region where yla —zk l

—1 has, usually, a size
comparable to the characteristic size of the atom, b.
Therefore, in this region expression (4.25) fails. However,
the contribution of this region to the net tunneling
current will be relatively small due to the large gap
a ))y

Under the assumption yla —zk l
»1, using the expan-

sion for la —rk l
similar to the Eq. (4.29), we find from

Eqs. (4.25) and (4.26)

where r and A are the coordinate and the scattering
J J

amplitude of atom j, respectively.
Let us introduce the partial current through a series of

k atoms:

lA l
exp( —2ylr —r (l) exp[ —2y(a —zk)]

II (4.27)

The dominant contribution to the net current is made
by atoms located near the z axis because they are
"linked" by the paths that have the shortest lengths
lrj —r, , l

with zj )z, , For such a series of atoms we

can replace lrj —
rz il by le

—
zz il in the denominator

of Eq. (4.27). Thus simplified, Eq. (4.27) could be used for
the cal "ulation of the average current and current corre-
lation function.
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k

FIG. 2. Illustration of the strong interaction model. s;J are
the most probable tunneling paths connecting atoms in the bar-
rier region.

As before, we assume that the distribution of atoms in
space is uniform.

1. Average current

r r-
&

—z z

+ iu —u, i /[2(z —z, )],
Inserting into the exponent of Eq. (4.27), gives

(4.29)

( J& = II"f,dz, . dz„(J„&„.. . „
77k+ ~ g 2g ~A ~2"

yk+1

k

X &
—2ya

z z i a z.

(4.30)

where we put A. =A, assuming that all the atomic parti-
cles are identical.

The integrals over z in Eq. (4.30) have a logarithmic
divergence for z =z &. The simplest way to deal with
this difhculty is to cut this integral off at z —z- i =b, be-
cause the distance of closest approach of atoms to each
other cannot be considerably smaller than b. Of course,
in three dimensions that does not exclude the possibility
of the arbitrary small values of z —z, . However,
among different relative atom positions with small
z —z i, the largest contribution to the current is given
by the positions with small ~u~ ~

and ~ui, ~, i.e., by atoms
located near the z axis and hence having
1

~ r~ i = z~ z~

Note that the divergence comes from the approxima-
tion (4.29). We can avoid this approximation in the cal-
culation of the tunneling current (see below) and thereby
evaluate the precise value of the cutoff. However, we see
no way to avoid expansion (4.29) for obtaining analytical
expressions for correlation functions. Therefore, we con-

For a homogeneous distribution of atoms, the
definition of the average current passing through a series
of k atoms reads

(Jk) =0 "f dr, . f drkJk(r„. . . , rk) . (428)

Substituting Eq. (4.27) into Eq. (4.28) we can integrate
over the transversal components u of the coordinates of
atoms, r. =(u. ,z. ). An expansion

(J)=Jo 1+ 2mlA a Ãnln —,n, =—,
y b

' 0
MA 8Jo= exp( —2ya) .

mya

(4.32)

Compare this result with the one obtained for the weak
interaction case (Sec. IV A). For small n we can rewrite
Eq. (4.12) in the form (J)=Jo(1+ncra). Thus, for the
low-density n, the strong interaction model gives much
weaker dependence on the tunneling distance than the
weak interaction model. The next terms of expansion
(4.31) could be similarly calculated using Eq. (4.30) and
cutting integrals for z. —z. ] & b and for a —zk & b,
z, —zo&b.

Now let us calculate the average current (J ) up to the
first order in n, avoiding expansion (4.28). Using Eqs.
(4.25) and (4.26), we can find the value of ( J& ) from Eq.
(4.28) and thus obtain

(J ) =Jo 1+ n [ln(4ya )+0.5772. . . ] . (433)2~~A '
y

Since ya ))1 and usually yb —1, Eqs. (4.33) and (4.32)
give very similar answers for the average current. Thus,
the cutoff used in the derivation of Eq. (4.32) seems
reasonable.

2. Temporary correlation function
for the low density of atoms

For small n we again, as in Eq. (4.32), take into ac-
count the current Jo and the currents J, (rk) passing
through single atoms with coordinates rk. The net
current will be given by the sum

N
J(t)=JO+ g J, [r„(t)],

k=1
(4.34)

which leads to an expression for the correlation function

X(t)= fndr, f drzf(r„r2, t)J, (r, )J, (r2) . (4.35)

Below, calculating the noise for the strong electron-atom
interaction, we restrict the analysis by the case of small
density of atoms.

sider first an approximate and then the exact solution for
an average current in order to understand how reliable
this approximation could be.

Assume that the space Q contains N atoms. There are
C&k!=X!/(X—k)!=N" ways to choose from them a se-
quence of k «X atoms. The current through k atoms
averaged over their positions in ( Jk ), and the net aver-
age current is

(4.31)
k~O

For the small particle density, the principal contribution
to (J ) is made by the two first terms in Eq. (4.31). Then,
using Eq. (4.30) for (J, ) and using the suggested cutoff
procedure, we find, to the accuracy of a term linear in
particle density n,
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V. GAS OF ATOMS MOVING
IN THE TUNNELING SPACE

f (ro, r„t)=
3/2

2~kB Tt 2 exp
M~r, —ro

(5.1)
2kB Tt2

where M is the mass of an atom and kB is the Boltzmann
constant. In the derivation of analytical expressions for
the noise-characterizing functions we will use the approx-
imations corresponding to both the weak and strong
electron-atom interaction. However, there is a general
result which follows from the basic expressions of Sec. VI
and the distribution function (5.1). It is the universal,
T ', temperature dependence of the low-frequency
noise S, (0).

In this section we deal with an ideal equilibrium gas of
atoms moving between the tip and the substrate surface
and find the inhuence of the gas on the average current
and noise characteristics of the tunneling gap.

The Maxwell-Boltzmann distribution for a gas of free
atoms gives

4 1/2

S,(0)= g ln
b2

—1.29 (J)

(5.2)

1. Gas of low density

Assume that the particle density n in Eq. (4.22) is so
low that n13«1. Then one can use expression (4.24) for
the temporary correlation function. Calculating the in-
tegrals in Eq. (4.24) we distinguish between the small and
large g defined by Eq. (4.14).

a. The case of g(&1. Consider the situation of the
small interaction potential U(r) so that the correlation
function is defined by Eq. (4.24). We can obtain the
asymptotic expression for the zero-frequency Fourier
transform of this eleven-dimensional integral with model
potential (3.2) under a natural assumption yb /a «1.
Using polarization model potential (3.2), after long and
cumbersome calculations we obtain an extremely simple
result:

A. Current noise for the weak electron-atom interaction

Equations (4.22) and (4.24) will be the starting point for
the calculations in this section. We distinguish between
the cases of small and large g and of the low and high gas
density.

g«1, yb la «1, nabab (&1 .

We failed to find a transparent expression for the
correlation function K(t) using the model potential (3.2).
However, using the exponential potential (3.3) we obtain

a erf
g t

1/2
a g(t)

g (t)~~2

1/2

exp
Q

g(t)
—1, g(t)»a ly

(5.3)
ya

2g (t)
arctan

2a

yg (t)
g(t) (a

Q=4b g n(J), g(t)=2b [I+(ktiT/Mb )t j .

Since ay )) 1 and a/b ))1, Eq. (5.3) covers all values of
t. In particular, for 1«a /g(t)((ya the first and the
second lines in Eq. (5.3) give identical results. Usually
a ))yb, so that the second line of Eq. (5.3) gives the
correlation time,

t, =(aM/ykti T)'~, (a ) yb ) (5.4)

(5.5)

which is the time for an atom to pass the distance equal
I

independent of the size of the atom. This is the time re-
quired for an atom, moving with the thermal velocity
Uz =(2k&T/M)'~ to pass along the current tube cross
section with the radius of the order of (a/y)' . In the
opposite case of b large enough one finds from Eq. (5.3)
the correlation time

to its own size b Using Eq.. (5.3) we find for the low-
frequency noise

1/2

S (0)=2mb (J)7T
k TB

' 1/2 1/2

Xln + +1
b

(5.6)

For a ))yb this expression differs from Eq. (5.2) only by
a factor of m/2. This indicates at the usual proximity of
results given by the polarization model of electron-atom
interaction, Eq. (3.2), and by the Gaussian one, Eq. (3.3).

b. The case of g))1. Here, the exponent in Eq. (4.23)
is large for the values of r, and r2, which give the main
contribution to the integral. Applying the saddle-point
method in the integration over r, and r2 we find

orb "Me ~ ~ 3/M [8 +8' 286'cos(y &p'—)]z-
dz exp2'~ 3$(3gkiiTt +2b M) 0 2(3gkiiTt +2b M)

(5.7)
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3/2 4 a 22 ~naby z&( )zf d z kT 2 2b

1/2
7m(ay)' b [u (t)]'

2 (3g)1 /2 3 /2 e &arctg
3/a
yb2

3/k~ T
u(t)= 2+

Mb

g)) I, nab e~//&&1, u(t)-1 .

Calculating the integral (4.24) with the use of Eq. (5.7}we obtain

(5.8)

One finds from this equation the expression for the corre-
lation time:

24~' ygS,(0)=
2n 3/2(k T)1/2a 5/2

B
(aM/yk~ T)'/, ga & yb

(gM/k~ T)'/ b, ga & yb
(5.9) ~nab2e&

Xex (2 &—2) (J)
3

(5.12)

Usually the inequality ga & yb holds and Eq. (5.9) gives
the result coinciding with Eq. (5.4}.

Using Eq. (5.9) one finds for the low-frequency noise,

4 2g 1/2

S(0)= ~nb e yaM
1

6ag (J)36$2kg T yb

ga /(b'y)»1 .
(5.10)

2. High gas density

(J ) =Joexp
27Ta& fl

3

g))1, nab e~/g &)1, gal(b y))&1, u(t) —1,
where u (t) is defined in Eq. (5.8).

It follows from Eq. (5.11) that K(t) )) (J) at least for
ga /(b y ) —1. Then, with use of the saddle-point
method, we find for the low-frequency noise

The condition np))1 [see Eq. (4.22)] will define the
case of high gas density. Concerning free gas, we are not
allowed to deal with very high densities. This condition,
however, could be fulfilled for moderate densities, but for
the su%ciently large electron-atom interaction. There-
fore, we consider here only the strong-interaction case
g»1.

The integrals over angles in Eq. (4.22) are calculated as
follows. For large values of n, the main contribution to
this integral is given by the region near the maximum
value of P considered as a function of 8, 8', p, and y'.
This maximum corresponds to the zero value of the ex-
ponent of the integrand in Eq. (5.7). Expanding the in-
tegrand up to the linear term in the exponent we evaluate
the integrals over 8, 8', y, and q' and obtain

25/23 —2g

IC (t)=
dna [u(t)]

Xexp [2 ' e~u(t) —2] (J)Pl a& 8

3
(5.11)

The prefactor of (J ) has the exponential dependence
on the distance a and the universal (for the free gas)
T ' temperature dependence.

B. Current noise for the strong electron-atom interaction

The calculations presented in this section are based on
Eq. (4.35), which is valid for the strong electron-atom in-
teraction and low gas density. Substituting J&(r&) of Eq.
(4.27) into Eq. (4.35) and using the approximation similar
to the one employed in the derivation of Eq. (4.32), we
can reduce the six-dimensional integration in Eq. (4.34) to
a double integral:

1/2

e
—4@a

QO Mx
X dx exp

OO 2kB Tt2

X f-dz z(a —z)(z +x)(a —z —x)

2kB T
X 2z+x+ ytM

(5.13)

The integral over z is taken for the positive values of
the parentheses with an integration cutoff at a distance b
from the singularities where the denominator of the in-
tegrand turns to zero [cf. the derivation of Eq. (4.32) for
the average current; see the discussion after Eq. (4.30)].
Since we have assumed that a ))b, the main contribution
to the integral comes from the vicinity of z =0, and this
allows us to evaluate the a dependence of this integral as
-a . In order to proceed with an analytical evaluation
of the correlation-function dependence on other parame-
ters we adopt the semiclassical condition yb &) 1 (bearing
in mind, however, that yb is usually —1). Then
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on the current temporary correlation function and the
current noise. The result strongly depends on the dimen-
sion d of the space 0 in which the particles are moving.
The distribution function f (ro, r„t), introduced in Eqs.
(4.23) and (4.35), now has the form

Mb k~Ty t
ln 1+

k~ Tyt Mb
(5.14) f (ro, r„t ) =(4rtD t

~ )
d~ exp (6.1)

The characteristic correlation time found from this ex-
pression is

t, =(bM/yks T)'i (5.15)

To find the low-frequency noise, it is easier to use the first
equality of Eq. (5.14) and change the order of integration.
We then have

S,(0)=
1/2 4M n~A

ksT (yb)
(5.16)

VI. NOISE INTRODUCED BY DIFFUSION

In this section we study the inAuence of atomic parti-
cles diffusively moving between the tip and the substrate

with (J)=Jo.
Compare this result with the one obtained for the case

of the weak electron-atom interaction in Sec. VA, i.e.,
Eqs. (5.2) and (5.10). The most important difference is
that the prefactor of (J ) in Eq. (5.16) is independent of
a, while in Eqs. (5.2) and (5.10) the prefactor is propor-
tional to a' . Let us take into account the expressions
for the scattering cross section cr, obtained in Section
IV A la for g«1 and g»1, and the meaning of A as a
scattering amplitude (i.e., o —~A ). Then one obtains
that for y b —1 and g- 1 the intensity of the low-

frequency noise given by Eq. (5.16) is —(ya)' times
smaller than the noise described by Eqs. (5.2) and (5.10).
Since the value of (ya)'~ usually does not exceed 5, the
order of magnitude of the low-frequency noise, predicted
by all the three equations, is the same.

where D is the diffusion coeKcient.
The temperature dependence enters through D. Note,

that we need no detailed calculations to evaluate the
dependence of spectral density S, (co) on D and co for
small co. For a three-dimensional motion d =3, we have
S,(0)-D ', for the in-plane motion d =2,
S, (co)— OD 'In(co); for the one-dimensional motion
d = 1, S, ( co ) — o (coD )

Below, we derive complete analytical expressions for
the temporary correlation function and noise spectral
density separately for the cases of d =3 and d =2. The
latter corresponds to isotropic diffusion along the surface
of the substrate.

A. Three-dimensional atom diff'usion in the tunneling gap

Consider atomic particles independently moving in the
space betwee~ the STM tip and the substrate with the
three-dimensional (d =3) distribution function (6.1). In
this section we apply the weak-interaction model for a
calculation of temporary current correlation function and
the low-frequency noise introduced by these particles.
We again distinguish between the cases of low and high
particle densities.

1. Lour particle density

Assume, first, that g « 1. The temporary current
correlation function could be obtained without a new cal-
culation, if we make use of the fact that the distribution
function (6.1) can be obtained from the distribution func-
tion (5.1) by the substitution (k&T/M)t ~D t~. Then,
for the Gaussian model of electron-atom interaction (3.3)
we obtain

a erf
q t

J (t)= '

a q(t)
(t)1/2

/2 T

1/2

1/2

0
exp — —1, q(t) »a /y,q(t)

(6.2)
PQ

2q (t)
arctan

2Q

yq(t)
q(t) «a',

Q =4b g n (J), q ( t ) =2b [ 1 +( D /b)
l
t

l ] .

The principal difference between this expression from
Eq. (5.8) found for the free-atom gas is that in order to
find the low-frequency noise, one should use not only the
first but also the second line in Eq. (6.2). Indeed,
Eq. (5.3) gave g ( t) —t for t ~ ~ and the integral
of [g(t)] '~ arctanI[2a/yg(t)]'~ I was converg-
ing. Now q ( t ) —

~
t

~
for t ~ ~ and the integral

of [q(t)] '~ arctanI [2a/yq(t)]'~2] logarithmically
diverges. Eq. (6.2) gives the correlation time

t, =a/(yD) (a &yb ) . (6.3)

After integrating Eq. (6.2) over time, we obtain a simple
expression for the low-frequency noise:
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bS,(0)=4na g Jo ln +C

—25' arctan(5 '
) (6.4)

4 1/2 g4 2g

S,(0)= J ln(a(' /b) .
9Dg

(6.6)

Comparing Eqs. (6.4)—(6.6) with Eq. (4.17), which deter-
mines the electron-atom scattering cross section o., we
find that the low-frequency noise S,(0) is proportional to
0. for both the weak and relatively strong interactions.

5=yb /a, C=0.5772. . . .

Usually, 5«1 and it is only In(ya) that remains in
square brackets in Eq. (6.43).

We have not succeeded in analytically calculating the
temporary correlation function for the polarization mod-
el of the electron-atom interaction potential (3.2). How-
ever, after cumbersome calculations, we have found the
corresponding expression for the low-frequency noise un-
der the condition 5 «1:

g4
S,(0)=2'~ dna g Join(ya) . (6.5)

Results (6.4) and (6.5) differ only by the constant factor
~/2 =1.1. It is, thus, natural to suggest that other re-
sults of this section would not be sensitive to a particular
form of the interaction potential, either.

In the case of g)&1, treated with the help of polariza-
tion potential, we find

B. Surface diffusion of adatoms

Let us consider now the surface diffusion of adsorbed
atoms. ' We will use the spherically symmetric model of
electron-atom interaction that can serve only as an ap-
proximation to the real asymmetric interaction between
the electron and adsorbed atom. However, it can be
shown' that the functional form of the temporary
current correlation function [Eq. (7.7)] holds for the
asymmetric electron-adatom interaction as well, with a
proper value of the cross section o..

1. Temporary correlation function
for the weak electron atom i-nteraction

Applying the saddle-point method to the calculation of
the integral for p, Eq. (4.23), with distribution function
(6.1), d =2, and polarization potential (3.2), we find for
g»1

mb

3$( 1+3' I
t

I
b ')

X exp 2
3c u —u'I'

4b'(I+3(DItlb ')
(6.10)

u=a sin8(cosy, siny), u'=a sin8'(cosy', siny') .

The expression (4.22) for the correlation function in
this case reads

a4a2t2K(t)= f du J du'exp —4ya — [u +(u') ]a4m~ s s a

2. High particle density +n, P +(J)'.
Let us consider the case of high particle density n and

g&) 1. Then the integrals in Eqs. (4.22), (4.23) can be cal-
culated by the saddle-point method, formally regarding n

as a large parameter. Using the polarization potential,
we find the temporary correlation function in the form

a. Limits of low and high adsorbate density. In the
case of low adsorbate density n, b e «/g «1, the ex-
ponential function in Eq. (6.11) can be expanded up to
the first order of n, P, giving

K (t) =Joexp
1/2 ab 2 2

77' naDe «Itl— (6.7)
2~n, yb4e2«

K(t)= J
9g' (a+2yDltl)

(6.12)
which gives the correlation time

t, =(naDe «) (6.g)

2

(J) J MA B
mra

'
Unlike the correlation time (6.3) this result depends
strongly on the electron-atom interaction through the pa-
rameter g. The low-frequency noise obtained from Eq.
(6.7) is given by

2eS,(0)=, Joexp
naD

1/2 ab 2 2

3g
(6.9)

Equations (6.7)—(6.9) are valid only when nab ~e2«/g)) 1.
Note that the assumption of independent atomic particles
made in this paper imposes a strong limitation on the
value of density n. Evidently, for the large atomic densi-
ty n the movement of particles will strongly depend on
their mutual interaction.

The correlation time

t, =a/(yD), (6.13)

found from Eq. (6.12), does not depend on the detail form
of the electron-atom interaction. Using Eq. (6.12) we find
the noise spectral density

2nqb e4 2g isa i cubaS (co)=
2 exp E, (J)

9g'D 2yD ' 2yD
(6.14)

where E& (x) is the integral exponential function.
Consider the case of large adsorbate density

nb e «/g))1. Then'
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G(t)= 3g'D ft1

b2

~b2e&n,
X exp —2/+

e&

1+3gDltlb '

The main contribution to this integral comes from a
small area of the substrate surface near the point (0,0,a).
Making the expansion similar to (4.29), we keep in the ex-
ponent of Eq. (6.19) only the terms quadratic in 1r, —a1,
and r2 —a1, where a=(a, 0,0), and calculate the arising
Gaussian integral to obtain

t, =b~/(gD) . (6.16)

This is a characteristic time for an atom to diffuse along
the distance equal to its own size. It is much less than t,
for the low adsorbate density case.

b Low f. requency noise An . analytical expression for
the low-frequency noise can be obtained from the general
expressions for the correlation function independently of
the detailed form of the electron-atom interaction and the
limiting case under study. This is possible due to the log-
arithmic divergence of the low-frequency noise for the
two-dimensional diffusive processes.

From Eqs. (4.22) and (6.1) we find that for large 1t1,

(6.17)

where a is defined by Eq. (4.10). Thus,

& J &'a'n,
S, (co) = dt

co 0 g~ D —co t1+t

& J&'a'n,
ln(cot, ),4' D

MA B
& J &

= exp( —2ya +n, a),
yam

(6.18)

where, according to Sec. IV B 1 a, the order of magnitude
of t, lies between a/(yD) and b /(jD).

2. Strong electron-atom interaction

The correlation function for the model of strong
electron-atom interaction is calculated with the help of
Eq. (4.25) for the electron wave function ql&. We find

D1t1 m'K(t)=

1r, —r, 1'
X f dr, f dr2exps ' s ' 4D1t1

(6.15)
2~b n,

exp —2ya+ '
e&

mya 3g

Equation (6.15) is valid for gD1t1b ))1, then
K (t) ))& J & . The correlation time in this case is

2~n, y1AI'& J &'
K(t)=

(a+2yD1t )

This result coincides with Eq. (6.12) if we put 1A1 equal
to b e~/(3g).

(6.20)

VII. MAIN RESULTS

Let us summarize the principal results of the paper and
estimate the role of the effects studied.

A. Average current

For the atomic particles independently moving and
uniformly distributed in the tunneling gap, the average
STM current is

&J& J enaa (7.1)

& J&=J,e "s (7.2)

where n, is the adsorbate surface density. Even for sur-
0

face densities as high as n, =0.01 A, the exponent n, o.

cannot exceed 0.1. Therefore, in estimates for the corre-
lation functions we can replace, as a rule, Jo by an ob-
servable quantity & J &.

B. Low-frequency current noise and correlation time
for gas atoms moving in the tunneling gap

The low-frequency noise introduced by gas atoms is'
1/2

S, (0) —n cr &J&
B

(7.3)

The characteristic time of the current temporary corre-
lation function (2.6) in this case,

1/2
aM

kB Ty
(7.4)

where Jo is the STM current for the "bare" gap (without
moving atoms), a is the tip-substrate distance, n is the
density of atoms, and o. is the scattering cross section of
tunneling electrons on an atom. Usually o. —1 —10 A .
For a typical gas density n —10' cm the exponent
nao —10 . Thus, the presence of the gas atoms does not
affect the average current

For the adsorbates independently moving and uniform-
ly distributed along the substrate surface, the average
current is

2y( I r, —ro I

+1r2 —ro1) (6.19)

is the time during which the gas atom crosses the tube of
tunneling electrons of radius (a/y)'~ . For room tem-
perature, t, —10 ' sec. This time is too short to study
experimentally the temporary current correlation func-
tion in the gas environment.
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For a gas of density n —10' cm at room tempera-
ture and for an average current (J ) —10 A, typical for
STM, one finds S,(0) to be 10 times smaller than the
shot or thermal-electron noise, So(0)—e (J ). It is, there-
fore, hopeless to distinguish the low-frequency current
noise due to gas atoms on the background of the funda-
mental electron noise.

The general conclusion from the estimates of Sec.
VII B and VII C is that the gas in the tunneling gap has a
negligible in+uence on both the STM current and the
current noise.

C. Low-frequency current noise and correlation time
for atoms dift'usively moving in the tunneling gap

For particles diffusively moving in the tunneling gap
between the STM tip and the substrate (which could be
the case of solute molecules in diluted solutions) the low-
frequency noise introduced by the solute molecules has
the form

2

S,(0)— (J) (7.5)

where D is the diffusion coefficient of solute particles.
The temporary correlation function in this case is given
by Eq. (6.2) and the correlation time is

t, =a/(yD) . (7.6)

We may try to use Eq. (7.5) to estimating the noise
coming from the solution as a whole. Having put
D —10 cm /sec, (J ) —1 nA and n —10 cm, we
find that the low-frequency noise S,(0) has the same or-
der of magnitude as the electron noise So. The time t, in
this case has the order of 10 ' sec.

D. Correlation function and noise for surface di8'usion

K(t)= (J)2,
2'(a+2yD, Itl )

(7.7)

where D, is the surface diffusion coefficient. The correla-
tion time that follows from this equation is again given by
Eq. (7.6), but with D, standing for D

This result could be used for a treatment of experimen-

The movement of adsorbate atoms diffusing along the
substrate surface is usually much slower than the
diffusion in liquid, which makes possible to observe the
process of individual atom diffusion near the STM tip. '

The appearance of atoms near the tip results in a peak of
the tunneling current. The shape of the peak depends on
the random adsorbate trajectory along the substrate sur-
face under the tip. Of course, each particular trajectory
is unknown and it is more rewarding to extract from the
experimental data the temporary current correlation
function K(t), found by averaging the value J(t+r)J(t)
over time t at a fixed position of the tip.

We have calculated the corresponding correlation
function by averaging over the atom configurations with
the distribution function of adsorbates, taken uniform
and isotropic. The result for small adsorbate density,
n, b «1, is

tal data, since it establishes a new relationship between
parameters of the tunneling gap and surface diffusion
coefficient.

The low-frequency noise, as follows from Eq. (7.7),

n, o.
S, (co ) = — ln( cot, ) (J )

4m D,
(7.8)

can be much greater than the one defined by Eq. (7.5) for
a diffusion in liquid due to much smaller values of D,
compared to D, and, therefore, greater than the thermal
and shot electron noise. More general expressions for
S, (co), valid also for cot, —1, are given in Sec. VI B.

VIII. CONCLUSION AND OUTLOOK

We considered the inhuence on the STM current noise
of the gas atoms and atoms adsorbed on the surface of
substrate separately. Generally speaking, there is no such
situation in reality because the bulk and surface concen-
trations of atoms are related by an adsorption isotherm.
However, we have shown that the effect of the gas on the
STM current noise is negligible, so that one could safely
consider the scattering of the tunneling electrons on ad-
sorbates only.

We did not consider the noise effects due to jumps of
atoms to the apex of the tip. This important effect' must
be excluded to provide the pure investigation of diffusion
on the substrate.

The main assumptions used in the theory developed
are the homogeneity and the isotropy of the substrate
surface and the distribution function of the moving parti-
cles. However, the homogeneity area must be large in
comparison with the cross section of a tunneling current

0

tube, -3 A in radius only. Therefore only the local
homogeneity is required. In order to use our theory, ex-
perimental results should be averaged over the position of
the tip in each homogeneous domain. The averaging is of
principal importance because the noise depends, in reali-
ty, on the precise position of the tip above the crystal lat-
tice, the structure of which was ignored. As a result we
may hope to get the mean diffusion coefficients in each
homogeneity domain and, thereby, draw a map of
diffusion properties of the substrate.

The nonspherical models of electron-particle interac-
tion and surface anisotropy could be incorporated into
the developed theory by substitution of a nonspherical
potential and an anisotropic distribution function in our
basic equations. ' Also, the suggested formalism can be
extended to include the case of rotating asymmetric parti-
cles by introducing the orientational degrees of freedom
and the subsequent averaging with a corresponding dis-
tribution function.

The profile of the barrier without intervening particles
was assumed to have a rectangular shape. We also as-
sumed the monoenergetic spectrum of tunneling elec-
trons, which is true for small applied voltage. In the re-
sulting expressions, however, the exponential dependence
of the barrier parameters and the energy distribution
function of the tunneling electrons was "hidden" in the
value of the mean current which can be experimentally
measured. We may, therefore, hope that these results
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will be valid under more general assumptions with use of
an effective wave number y.

Note added in proof. We have recently become aware
of the work by R. Gomer, Appl. Phys. A 39, 1 (1986),
where the noise in the STM current due to surface
diffusion was theoretically studied. The case of weak
electron-adatom interaction was considered there, treated
by first-order perturbation theory. The form of the time
dependence of the current temporary correlation function
in this particular case coincides with that obtained by
Gomer; the difference in the adopted models of the tun-
neling barrier and electron-adatom interaction change
only the coefticients in this dependence. The principal
difference of our paper from the work of Gomer is that

we have considered the case of strong interaction between
adatoms and tunneling electrons which is, presumably,
closer to experimental situation (see Ref. 2).
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