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The Rayleigh-Fano approach is used to study the scattering of p-polarized light from the determin-
istically shaped rough surface of a semiconductor in the vicinity of an isolated excitonic transition.
Nonlocal effects are accounted by the Hopfield and Thomas dielectric function. A perturbative for-
malism is developed to calculate the amplitudes of the scattered fields up to second order on the
roughness height. Numerical results are presented for the A,—; excitonic transition of CdS using
different choices of additional boundary conditions. Comparisons are made with the local model cal-
culations and discussed in terms of resonant elastic scattering. The differential reflectance spectra
peaks are also shown and interpreted as surface-exciton-polariton coupling.

I. INTRODUCTION

The enhancement of electromagnetic fields near rough
surfaces has been an interesting subject in the past few
years. Since the resonant enhancement depends critically
on the surface shape, many experimental studies have
been performed on the detection of the scattered light
from metals! ™3 and excitonic semiconductors* with non-
flat surfaces. Local® ! and nonlocal*!2:13 theories have
been developed to calculate the amplitudes of scattered
fields near inhomogeneous boundaries.

The macroscopic dielectric response of a solid may be
frequency dependent, €(w), or wave-vector dependent as
well, €(w,q). The theory describing the former case is
said to be local, while in the latter case is termed non-
local. Here, we are concerned with the nonlocal theory
as we consider the polarizability of the medium due to
excitons. Nonlocal or spatial dispersion effects have been
introduced in the theory of optics for semiconductor ma-
terials by the Hopfield and Thomas'* excitonic dielectric
function €(w, q). This is a classical model of coupled har-
monic oscillators, which takes into account the center of
mass motion of the exciton. Using the excitonic dielectric
function €(w,q) in the electromagnetic dispersion rela-
tions of the longitudinal and transverse waves, one finds
three solutions'* for the wave vector q = (Q,0,q), of
which one is longitudinal and two are transverse. The ad-
ditional modes, to those appearing in local optics, prop-
agate in the semiconductor and are unaffected by each
other in the bulk, although they may couple at the sur-
face. Due to the multitude of scattered waves at the sur-
face, the Maxwell boundary conditions are insufficient to
determine all the amplitudes of the fields. Therefore, ad-
ditional boundary conditions!4 723 (ABC’s) are needed.

In recent years Sel’kin and co-workers®!® have mea-
sured the scattered light from randomly rough semi-
conductor surfaces. Their studies were focused on the
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exciton resonances and the problem of the ABC equa-
tions. The measured scattered cross sections were com-
pared with the theoretical calculations? using the Pekar!®
boundary conditions and a first order perturbation ap-
proach. Studies of flat surfaces have led these authors to
argue that the boundary conditions depend critically on
surface sample preparation and because of this fact, they
have reformulated'® the ABC equations. In the search of
the appropriate ABC equations, we believe that investi-
gations of the surface exciton polariton resonant scatter-
ing of light from deterministic rough surfaces and the
direct comparisons of the diffraction spectra with the
experimental measurements will determine the suitable
boundary conditions.

In this paper we study the ABC problem for the deter-
ministic rough surface of a semiconductor in the vicinity
of an isolated excitonic transition. We present a pertur-
bative theory for the scattering of light by a spatially
dispersive medium neglecting any effects of the exciton-
free dead layer. The scattered amplitudes of the elec-
tromagnetic fields are calculated up to second order on
the height of the surface roughness with generalized!”
ABC equations in the absence of surface currents. Our
formalism is general within the frame of the Rayleigh-
Fano!?® approach, and we exemplify its use by solving a
sinusoidal grating. We compare the results of the differ-
ential reflectance using two ABC’s with the local calcu-
lations and discuss them in terms of the surface-exciton-
polariton coupling. We also consider the attenuated total
reflectivity spectra of the surface modes excitation.

II. THEORY

We consider the plane of incidence to be the zz plane,
and the surface profile to be defined by

f(z,z) =z + hé(z) =0, (1)
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where h is the roughness height and £(z) is the surface
profile. The unit vector n(§) directed normally outward
from the surface is

n(é) = IVF — [(hé)2 +1]1/2° (2)

where §, = 9¢(z)/0z, and the outward normal derivative
of nis
0
— = —-n-V. 3
= n (3)
We assume that the excitonic semiconductor fills the
z > —h&(x) space and is characterized by the Hopfield
and Thomas!* dielectric response

w2

P
w = €9 + 4
E( 3 q) €9 %‘ 2 qu Z v 9 ( )

where € is the background dielectric constant, w, is
a measure of the oscillator strength, wz is the fre-
quency of the excitonic transition, v is a phenomeno-
logical damping parameter, q is the wave vector, and
D = hwr/(me + mp), where m, and my, are the electron
and hole masses, respectively. For the region z < —h&(z)
we consider vacuum.

Since excitonic waves are allowed to propagate in the
semiconductor, for the p-polarized (the electric field E
is on the plane of incidence) light considered here, there
are a total of three modes with wave vector q = (Q, 0, g).
Two of them are transverse waves that satisfy the dis-
persion relations q2 = (w?/c?)e(w,q,), n = 1,2, and the
third one is a longitudinal wave with dispersion relation
€(w,q3) = 0. The amplitudes of the scattered light can
be calculated using the Maxwell boundary conditions to-
gether with the ABC equations at the surface profile.

The well-known Maxwell boundary conditions are the
continuity of the tangential projections of the electric
field E(r,t) and the magnetic field H(r,t) = B(r,t),
which can be cast into the forms
B— (n-B)n. (5)

E—(n-E)n and

In our work we use the Agranovich ABC equations!”

R(Q,2) = Y (Q) —Yll(Q) —Yzz(Q)
’ 0 lel(Q) bZXZ(Q)
0 D1(Q)01X1(Q) D2(Q)b2X2(Q)

T(Q, z) = diag (e*i(q+q1)20,ei(ql—qr)ZU,eﬂi(quqr)ZO,e—i(qa—qr)zo) ,

E.(Q)
Ei1(Q)
Ex(Q) |
E3(Q)

A(Q) =

and
ar
1Qr2) = | o7 | Ber(@),

0
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B,P+ —=0 6

=2 + 811 ’ ( )

where B, = diag(a, a), with a being a parameter, com-
plex in general.

The = component of E(r,t) for the incident, reflected
and transmitted waves has the following forms. The in-
cident field is given by

Eo1(r,t) = Epp(Qq)ei(Qretarz—wt) )
with Q% + ¢% = w?/c%.

Eo(r,t) = Z B, (Q)ei(@eaz—wt) (8)
Q

The reflected field is given by

with Q2 4¢% = wz/cz.
by

And the transmitted field is given

3

Ea:t(ryt) = Z ZEn(Q)ei(Qw-H}nz—wt), (9)

n=1 Q

where ¢,, are the components of the wave vector for the
transverse and longitudinal modes in the semiconductor.
The corresponding magnetic fields are calculated!'® from
the Maxwell equation V x E = —(1/¢)0B/8t. The exci-

tonic polarization vector is given by!®
2 3
_ Y i(Qe+gnz—wt)
P(r,t) = -2 ,; szXn(Q)En(Q)e ,
(10)

where we have defined X,,(Q) = 1/[¢2(Q)—T?] and I'? =
(w? — w2 — Dq? + iwv)/D.

Application of the Maxwell boundary conditions and
the = and z components of the ABC equations [Eq. (6)]
at the surface allows one to write the following matrix
equation for the scattered amplitudes:

D R(Q,2)T(Q,2)A(Q)e'?” = I(Qr,z)e' ', (11)
Q

where
as
0
b3 X3(Q) ’ (12)
D3(Q)b3X3(Q)
(13)
(14)

(15)



48 RESONANT SCATTERING OF LIGHT BY EXCITONIC ROUGH . ..

with Y(Q) = w/cq(Q), Yr = Y(Qr), Ya.(Q)
wen(Q)/cgn(Q); Dn(Q) = Q/¢n(Q), n=1,2, D3(Q)
_q3(Q)/Qa ar za(Q1)7 and

a=a(Q,z)=1~— (ni —nzn.Q/q), (16)

Il

an = an(Q,z) =1~ (n2 —nyn.Q/qn), n=1,2, (17)
as = a3(Q,z) =1 — (n2 + nan.q3/Q), (18)

i(hé.Q + gqn)

b, =bn(Q,z) = — L+ h2eay/z

n=1,2,3, (19)
where n;(n;) is the z(z) component of n.

We use a perturbative approach similar to that of Ref.
13 and apply the solution to a sinusoidal grating £(z) =
sin(gz). We find that the first order fields have only
nonspecular contributions with Q@ = Q; + g while the
second order has contributions of the specular dispersion
with Q = @ and nonspecular ones with Q@ = Qr £ 2g.

III. RESULTS AND DISCUSSION

We present numerical results of the scattered am-
plitudes of the electromagnetic fields up to second or-
der on h for the grating of CdS in the vicinity of the
A,—1 excitonic transition. We report two limiting cases
of ABC equations: o = oo and a = 0, correspond-
ing to the Pekar!® (P = 0) and Ting, Frankel, and
Birman!® (8,P = 0) boundary conditions, respectively.
We focus our attention on the scattered fields with the
z component of the wave vector Q@ = Q for the zeroth
order, Q = Qg * g for the first order, and for Q@ = Q; for
the second order. The numerical values of the parame-
ters are hwy = 2.552 eV, v = 107 %wy, wp = 0.11517wr,
€0 =9.1,and D = 6.17 x 10752,

The enhancement factors are defined for the first order
terms by

1 RN " E
E ™ I PEKAR ABC ___ 7
E % TING ABC E
LOCAL CASE _._._. E

& 5
£ E
E w/w=1.0005
_if o=t ]
C Il 1 1 1 3

-2.5 -1.5 -0.5 0.5 1.5 2.5

In(eg/wr)
FIG. 1. First order enhancement factors R as function

of g, of the scattered fields from a CdS sinusoidal profile in
the vicinity of the A,—; excitonic transition with the Ting,
Frankel, and Birman (Ref. 19) ABC (8,P = 0), the Pekar
(Ref. 15) ABC (P = 0), and the local case. The angle of
incidence 6 is 10° and w/wz is 1.0005.
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Yg |Bua(Qr)
and for the second order term by
(2)

" 9% |E.1(Qr)]’

where we have introduced the expansion E = )" hEM),

We now describe the results. We start by discussing
the scattered fields when the frequency of the incident
light is fixed and the wave vector g = 2w/, of the pro-
file is varied. The scattered amplitudes to first order R;}
are shown in Fig. 1 for an angle of incidence of 8 = 10°
and a frequency of w/wr = 1.0005. We compare two
nonlocal cases, the Pekar and Ting, Frankel, and Birman
conditions, with the local one. The nonlocal calculations
as well as local spectrum have surface-exciton resonant
scattering, indicated by SM ™, at Q = Q; + g whenever
Ry has poles.!® (The corresponding expression R; for
scattering at @ = Qr — g will be denoted by SM™ in
the following figures.) It is seen that at this frequency
the Ting, Frankel, and Birman condition gives nearly the
same spectrum as the local one. On the other hand, the
Pekar condition spectrum shows a less prominent reso-
nant peak with a small shift in g.

The second order enhancement amplitudes R, are pre-
sented in Fig. 2 for § = 10° and w/wr = 1.0005. R, has
two nonspecular resonances at @ = Qg * g, indicated in
the figure by SM*, due to surface exciton polariton cou-
pling. It is apparent that the Ting, Frankel, and Birman
condition and the local curves have similar behavior with
sharp peaks, while the Pekar case exhibits less prominent
peaks.

We now turn to show the enhancement factors as func-
tions of the frequency w/wr for fixed values of cg/wr.
In Fig. 3 we present results of the first order fields for
cg/wr = 1.9 and § = 50°. The figure displays Ry
with the two ABC’s and the dispersionless case. We
indicate the surface mode resonance by SM™*. The
two curves with spatial dispersion effects exhibit a res-

4F T T r T
w/w=1.0005
sk 6=10"
~ 2F 3
o E E
E-N: ]
1E 3
oF PEKAR ABC ___ 3
F TING ABC ___._ %
E LOCAL CASE _._.. E
—1E L L ) s E
-2.5 -1.5 -0.5 0.5 1.5 2.5
In(cg/wr)
FIG. 2. Second order enhancement factors Rz as function

of g with the Ting, Frankel, and Birman (Ref. 19) ABC, the
Pekar (Ref. 15) ABC, and the local case, for # = 10° and
w/wr = 1.0005.
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FIG. 3. First order enhancement factors R as function

of w with the Ting, Frankel, and Birman (Ref. 19) ABC,
the Pekar (Ref. 15) ABC, and the local case, for cg/wr =
1.9 and § = 50°. In the inset we show the ATR spectra
from a flat CdS surface with the prism index of refraction
np = 3.47, the gap thickness d = 320 A, in order to compare
with the frequency location of the resonant surface exciton
coupling.

onant peak at the same frequency, but have different
strength. The dispersionless curve shows a resonant peak
at nearly the same frequency but is shifted to lower fre-
quencies, a small spike at the longitudinal exciton fre-
quency wr = (w# + w?2/€p)*/? = 1.000 73wz and a shoul-
der at the excitonic transition wr. In the inset we present
results of the attenuated total reflectivity?* (ATR) of a
flat CdS surface using the Pekar and Ting, Frankel, and
Birman ABC'’s. For this, we consider the peak frequency
of the scattered fields and choose the parameters in such
a way that the parallel component of the wave vector of
the surface wave is equal to the Q of Fig. 3. To achieve
this, we consider an angle of incidence of § = 50° and a
coupling prism of index of refraction n, = 3.47. The air
gap thickness is d = 320 A. By looking at the position of
the peak of the scattered light (SM™) and the reflectiv-
ity minima, it is noticed that they take place at the same

T T T T

, E PEKAR ABC ___ , E
E TING ABC .__._ Hi ) E
E /1 SM
£ LOCAL CASE ___. =
1E ' =|
SN t
E '
—1E
ok

0.9980 0.9990 1.0000 1.0010

/@

FIG. 4. Second order enhancement factors R as function
of w with the Ting, Frankel, and Birman (Ref. 19) ABC, the
Pekar (Ref. 15) ABC, and the local case, for cg/wr = 1.9 and
6 = 50°.
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G. H. COCOLETZI AND S. WANG 48
1 O T T T :“I T
sl PEKAR ABC i ]

(1/9)4R/R

0.9990 0.9994 0.9998 1.0002
w/w:

1.0006

1.0010

FIG. 5. Differential reflectance of p-polarized light inci-
dent at an angle § = 50° and cg/wr = 1.9. Two ABC’s are
considered and compared with the local model calculations.

frequency. Since the calculations show well-defined scat-
tering peaks, the surface exciton polariton excitation can
be achieved experimentally by suitable periodic surface
profile preparation.

The effects of different choices of ABC equations on
the second order fields are displayed in Fig. 4, where we
plot R, as functions of the frequency for § = 50° and
cg/wr = 1.9. The spectrum for the Ting, Frankel, and
Birman ABC shows two well-defined peaks between wr
and wy, which correspond to the coupling of light with
the surface exciton modes and are indicated by SM~
and SM ™. The local case shows similar structure as the
Ting, Frankel, and Birman case. On the other hand, the
Pekar case exhibits a maximum at SM~ and a very small
shoulder at SM ™.

The changes in the normalized reflectance AR/R =
2Re(E® /E©) for p-polarized light as functions of the
frequency w/wy are shown in Fig. 5 for a rough surface
with gc/wr = 1.9 and 6 = 50°. We compare the re-
sults using two ABC’s with the local model calculations.
The structures in this figure are closely correlated to the
second order calculations shown in Fig. 4. The resonant
peaks are indicated by SM*. The Ting, Frankel, and
Birman condition and the local case show the two peaks
of the surface excitons, while the Pekar case exhibits only
a maximum at the frequency of SM ™~ and a shoulder at
the frequency of SM™*. From this figure we see that
the direct comparisons with experimental measurements
could determine a better choice of additional boundary
conditions for excitonic systems.

IV. CONCLUSIONS

We have developed a perturbative formalism, up to
second order, to study light scattering from a determin-
istically shaped rough surface of a semiconductor in the
vicinity of an isolated excitonic transition, taking into ac-
count spatial dispersion effects. Numerical results have
been presented for the exciton A, _; of CdS using the
Rayleigh-Fano approach and two choices of boundary
conditions, namely, the Pekar and Ting, Frankel, and
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Birman ABC equations. In the case of the variation of
Ag, the fact that the second order peaks are at Q = Qr=+g
where the first order peaks appear, and are nearly at the
same @ value for the local case, allows one to interpret the
structure as surface mode resonances. As functions of fre-
quency, the spectra exhibit rich structure, which is inter-
preted as surface exciton resonances between wr and wy,.
We have also reported the attenuated total reflectivity
minima of surface modes coupling. Since the roughness of
deterministic shaped surface contributes additional wave
vector g to the incident light providing well-defined scat-
tering peaks, an alternative experimental method is sug-
gested for surface exciton polariton studies. Using two
ABC'’s, we also show that the differential reflectance ex-
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hibits peaks of the surface exciton coupling with the in-
cident light. We anticipate that the future comparisons
with the experimental data will allow one to choose the
best suited boundary equations to include the nonlocal
excitonic effects.
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