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A fractional quantized Hall state with filling fraction v = p/(2mp + 1) can be modeled as an
integer quantized Hall state of transformed fermions, interacting with a Chem-Simons field. The
electromagnetic response function for these states at arbitrary frequency and wave vector can be
calculated using a semiclassical approximation or the random-phase approximation. However, such
calculations do not properly take into account the large efFective-mass renormalization which is
present in the Chem-Simons theory. VVe show how the mass renormalization can be incorporated
in a calculation of the response function within a Landau-Fermi-liquid theory approach such that
Kohn's theorem and the f-sum rules are properly satisfied. We present results of such calculations.

I. INTRODUCTION

Although the ground state for fractional quantized Hall
systems is reasonably well understood at the Laughlin
filling &actions v = 1/(2m + 1) where m is an integer,
we have only a qualitative understanding of the elemen-
tary excitations of the system. Furthermore, theories of
experimentally observed &actional quantized Hall states
at other filling &actions remain controversial. In order
to understand the more general series of states at fill-

ing fractions v = p/(2mp + 1) where m and p are in-
tegers, Jain has constructed trial wave functions based
on a picture of "composite fermions, " which may be de-
scribed loosely as electrons bound to an even number of
magnetic flux quanta. The fractional quantized states
correspond to integer quantized Hall states for the com-
posite fermions in Jain's description. Lopez and Fradkin
showed how one can formally transform the electron sys-
tem at v = p/(2mp + 1) into a system of fermions in-
teracting with a Chem-Simons gauge field, such that in
the mean-Geld approximation the ground state is indeed
a system of p filled Landau levels for the transformed
fermions, in accord with Jain s analysis. Moreover, Lopez
and Fradkin proposed that, going beyond mean-field the-
ory, one could employ the random-phase approximation
(RPA) or time-dependent Hartree approximation to cal-
culate the linear response functions to an external elec-
tromagnetic field at wave vector q and frequency ~. This
calculation was carried out to obtain an optical exci-
tation spectrum for these quantized Hall states in the
limit of q ~ 0. The fermion —Chem-Simons picture of
Lopez and Fradkin was further developed by Halperin,
Lee, and Read [henceforth referred to as HLR (Ref. 5)]
who used it to study even-denominator filling fractions
such as v = 1/2, where no quantized Hall effect is ob-
served. Their analysis also had implications for the exci-
tation spectra of Jain's quantized Hall states, especially
in the limit p ~ oo, where the value of v approaches an
even fraction.

An important correction to -both the mean-field theory
and the RPA, noted by HLR, is that fluctuations in the

Chem-Simons gauge field lead to a large correction to the
effective mass m* that describes low-energy excitations.
The RPA, in its standard form, as used by Lopez and
Fradkin, assumes an eAective mass which is equal to the
bare electron band mass mb. If one arbitrarily changes
the value of the mass in the RPA in order to get rea-
sonable energies for the lowest branch of the excitation
spectrum for the fractional quantized Hall states, then
one violates both the f-sum rule and Kohn's theorem,
which says that in the limit q —+ 0 a mode at the bare
cyclotron frequency tu, = ~eB~/(mbc) has all the weight
of the f-sum rule. In the present paper we propose a
modification of the RPA which we believe gives a good
representation of the low-energy branches of the spec-
trum, while at the same time preserving the f-sum rule
when m* g mb. Our modified RPA may be obtained as
a natural extension of Landau-Silin Fermi-liquid theory
if one includes, in addition to the direct Coulomb poten-
tial and the self-consistent Chem-Simons field, a nonzero
value of the Fermi-liquid coefIicient Ai, chosen to sat-

l

isfy the constraint imposed by Galilean invariance. We
present numerical results of this approximation for a wide
range of q values for three representative quantized Hall
states (v = s, 7, 2i ), comparing the results with those
of the unrenormalized RPA and a semiclassical approxi-
mation suggested by HLR.

Although the electromagnetic response of the quan-
tized Hall state is trivial in the absence of impurities at
zero wave vector (q = 0) because of Kohn's theorem,
the finite wave-vector excitation spectrum can display
a very rich structure. Theoretical calculations of such
excitation spectra have been accurately performed in a
controlled perturbation theory only for integer quantized
Hall states. The spectra for fractional quantized Hall
states have been much harder to calculate. To this end,
Girvin, MacDonald, and Platzman used a single-mode
approximation in analogy with the Feynman theory of
superfluid helium to determine the dispersion relation of
the lowest-energy branch of the excitation spectrum of
the Laughlin states v = 1/(2m + 1). In this approxi-
mation, it was shown that there is a gap at zero wave
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vector, and a minimum in the dispersion curve at finite
wave vector. This minimum was called the "magnetoro-
ton" in analogy with superfluid helium.

Excitation spectra have also been calculated exactly by
numerical diagonalization of small spherical systems re-
stricted to the Grst Landau level. ' The results obtained
in the present paper are in at least reasonable qualita-
tive agreement with available exact calculations of the
density response function for these finite systems. s (A
detailed comparison will be given elsewhere). A partic-
ularly interesting feature of our results is that for large p,
the lowest branch in the excitation spectrum acquires a
series of deep minima, similar to the magnetoroton min-
imum at v = 1/3, at wave vectors given approximately
by q

—k~(n+ 4)vr/(2~p~) where n is an integer, and kF
1

is related to the electron density n, by k~ = (4mn, ) 2.
It should also be possible to experimentally observe

the finite wave vector excitation spectrum via resonant
inelastic light scattering with an angle of incidence far
&om the normal. In fact, such measurements have been
performed recently on integer quantized Hall states. It
may also be possible to use a grating near the surface
of the quantized Hall system to measure the electromag-
netic response at the wave vector of the grating. Com-
parison of the results of these experiments to our present
calculations should provide an excellent test of our cur-
rent understanding of the &actional quantized Hall effect.

The outline of this paper is as follows. In Sec. II we re-
view the model used by HLR. We describe the RPA and
the semiclassical approximations. In these models, an
unperturbed response function is calculated and the in-
teractions as well as the gauge fluctuations are accounted
for in perturbation theory (essentially by summing bub-
ble diagrams). In the RPA, the unperturbed response
function is simply the response function for the mean-
Geld system, whereas for the semiclassical approximation
the unperturbed response function is determined from a
semiclassical approximation of the quasiparticle conduc-
tivity. These unperturbed response functions are calcu-
lated in Sec. III. The results of these calculations are
put in more usable form in Appendix A and Appendix
B. In Sec. IV we discuss the issue of the renormaliza-
tion of the quasiparticle mass. A Fermi-liquid theory
approach is used to account for the renormalized mass
in the calculation of the electromagnetic response. Using
this approach, we construct what we call the "modified
semiclassical" approximation and the "modified RPA."
A more general Fermi-liquid theory calculation that can
be generalized to include the effects of additional nonzero
Fermi-liquid coefBcients is performed in Appendix C and
agrees with the results of Sec. IV. In Sec. V we display
electromagnetic response spectra for the quantized Hall
states v = 3, 7, —calculated in the semiclassical ap-
proximation, the RPA, and the modified RPA. Finally,
we summarize our findings in Sec. VI.

perpendicular to the plane of the system (in the z direc-
tion). We will generally take the interaction potential to
be the physically interesting Coulomb interaction given
by

K = d r gt(r) i,V + —A—(r)
2mb C

- 2

—a r r

and V is the potential energy

V= — dr dr'vr —r':pr pr'
2

(4)

Here, the colons represent normal ordering of the cre-
ation and annihilation operators, A(r) is the vector po-
tential due to the magnetic field B such that V' x A = B,
and a(r) is the vector potential associated with the
Chem-Simons flux which can be written as

a(r) = P d r'g(r —r ')p(r '),
g(r) = (F, x r)/r

where z is the unit vector perpendicular to the plane
of the system and P = 2m is the even number of fiux
quanta bound to each electron. The point r = r ' should
be excluded &om the Green's function g(r —r').

If we use a mean-field description and average the ef-
fect of the fluctuating gauge field a, the Hamiltonian (2)
simply represents quasiparticle fermions in a magnetic
Geld

e

where n is the electron number density. With the idea
of perturbing around this mean-field description to ac-
count for gauge fluctuations and interactions, we write
the mean-field reference Hamiltonian as

Hp ——

2mb
d r @ (r) i,V + —AA(r) g(r), —(8)

C

where e is the background dielectric constant.
Following HLR, we make a singular gauge transfor-

mation to write the Hamiltonian for this system in terms
of the composite fermion quasiparticle creation opera-
tor @t(r) that creates an electron at point r bound to P
quanta of Chem-Simons flux. In terms of these quasipar-
ticle operators, the Hamiltonian for this system can be
written exactly as

(2)

where K is the kinetic energy given by

II. MODEL

We consider a two-dimensional system of spinless elec-
trons of band mass mb and charge —e, with interactions
given by a potential v(r), in a uniform magnetic field B

where the mean-field vector potential DA(r) satisfies
V x (AA) = AB.

Since the mean-Geld Hamiltonian describes fermions
in a magnetic Geld LB', the energy levels are simply the
usual Landau levels, but they are now the energy levels
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of the quasiparticle wave functions. If we add a small
amount of disorder to the system, we expect to see the
integer quantized Hall effect for the quasiparticles where
the steps are centered around integer quasiparticle filing
fractions. Since the integer quantized Hall effect for elec-
trons occurs when the filling fraction v = n, 2ahc/(eB) is
an integer, we now have the integer quantized Hall effect
for quasiparti, cles when p = n, 2vrhc/(eAB) is an integer.
Substituting in the definition (7) of AB now yields stable
states at

B = B(i/2m}+
2mhcn,

2' hen, 2m+-
e p

which corresponds to the Jain states v = p/(2m@+ 1).
We now define the electromagnetic linear response

function K~„(q, u) where p and v take on the values

(0, x, y) by the relation

(12)

where K„„ is the response function for the non-
interacting system of quasiparticles governed by the
Hamiltonian Ho, and the interaction matrix U is given
by

where A'„"~ is an external perturbing scalar (v = 0) or
vector (v = x, y) potential with frequency cu and wave
vector q, and j~ is the induced change in the parti-
cle density (p = 0) or current (p = x, y). Following
HLR (Ref. 5) again, we choose q ~~x, and we work in the
Coulomb gauge so that the longitudinal part of A is zero
(i.e. , so that A = 0). With these choices, the longitu-
dinal part of j is simply (w/q) jo. Thus we can consider
K~ as a 2 x 2 matrix in which the indices take on the
values 0 and 1 where the index 1 indicates the transverse
or y direction.

The response function can be calculated within the
RPA or time-dependent Hartree approximation in anal-
ogy with recent work on anyon superconductivity.
In this work, the RPA equations are derived through
a Hamiltonian formalism. Alternatively one can de-
rive the same relations from a more field-theoretic La-
grangian approach. ' It should be noted that the RPA
formalism of the above mentioned works on anyon
superconductivity differs slightly from the formalism
of HLR (Ref. 5) that we have chosen to follow. In partic-
ular the HLR formalism is simplified because the diamag-
netic term is included in the bare response. Nonetheless,
both approaches give the same final results. It should
also be noted that the above mentioned formalisms of
Refs. 12—14, as well as that of Lopez and Fradkin, in-
volve the calculation of a 3 x 3 response matrix. , whereas
the HLR approach uses a convenient gauge to reduce the
problem to the calculation of a 2 x 2 matrix.

The RPA equation for the electromagnetic response
function is given by

U= U+C

where C is the Chem-Simons interaction, with

0 iq
27rhy ~q 0

v(q) 0
0 0

v(q) = 27t e
(16)

Note that the potential V couples the density of particles
to the scalar potential, whereas the Chem-Simons inter-
action t —like a magnetic field couples to the current
also.

It is sometimes more useful to think in terms of the
conductivity rather than the electromagnetic response.
The conductivity o. is defined as the response to the to-
tal electromagnetic Geld A„whereas the electromagnetic
response K is the response to the external electromag-
netic field A'„. The magnetic Geld generated by the
quantum Hall system is small, so there is essentially no
difference between A and A " . On the other hand, the
scalar potentials in Fourier space eAo(q) and eA&" (q) dif-
fer by the Coulomb potential v(q) jo(q) generated by the
density fluctuations. Thus, we will define a 2 x 2 matrix
II(q, w), which is more closely related to the conductivity,
to be the electromagnetic response without this Coulomb
contribution:

K =II +V.

Similarly, it is convenient to define a 2 x 2 matrix K(q, w)
to be the electromagnetic response without the Coulomb
contribution or the Chem-Simons contribution:

K =K +U.

In other words, II is the contribution from all Feynman
diagrams for K that are irreducible with respect to V
and K is the sum of all diagrams for K that are irre-
ducible with respect to U. Note that the RPA equation
(12) is obtained by simply approximating K as the mean-
Geld noninteracting quasiparticle response function K .
The perturbation U—which includes the Coulomb and
Chem-Simons interactions —is then incorporated in Eq.
(18) to give the full response function. Similarly, in our
semiclassical approximation we will directly try to ap-
proximate the unperturbed response function K for the
quasiparticles.

Maintaining our convention that q ~~x we can now
follow HLR (Ref. 5) to define the conductivity tensor
a-;, (q, ~) as

represents the interaction of the quasiparticles through
the potential v(q) which is just the Fourier transform of
the potential v(r). For the physically relevant case of the
Coulomb potential [Eq. (1)] we have
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ZQ
~**'(q ~) = . IIoo'(q ~) —lloo'(q, o)

2

o„„(q,cu) = [IIii(q, ~) —IIii(q, 0)], (20)

se
a' w(q ~) = —av (q ~) = 11»(q ~) .

q
(21)

Similarly, we can define the "quasiparticle conductivity
tensor" o;~. (q, w) as

unperturbed mean-field Hamiltonian Hp. In the RPA,
the mean-field. response K is used as an approxima-
tion for the U-irreducible diagrams K. Similarly, for our
semiclassical approximation, the semiclassical quasiparti-
cle conductivity 0. is used as an approximation for TKT.
For a noninteracting two-dimensional system of spinless
fermions of mass mb and charge —e at density n, in a
perpendicular magnetic field LB, the magnetic length
l~ is defined by

~»(q ~) =

2

~..'(q, ~) = „,, [Koo'(q ~) —Koo'(q o)l

2

[K„(q,cu) —K„(q,0)],

(22)
ch

e(b,B)

(23) and the cyclotron frequency Aw, is given by

(33)

2
0' y(q, ~) = —oy (q, cu) = Koi(q, ~). (24)

q

These definitions have been chosen so that the conduc-
tivities are finite in the u ~ 0 limit for any fixed value
of q. Although these are not necessarily the only such
definitions that are possible, we will not be overly con-
cerned with the low-frequency limit in this paper. In
fact the contributions &om the zero-frequency parts of
these relationships are suspected to be negligibly small
in all cases that we will consider. Thus, we can ap-
proximate these relationships by dropping the additive
zero-frequency pieces to write the results in a convenient
matrix form as

e(AB)
mbc

(34)

The number of "effective" quasiparticle Landau levels
filled is given by

2~n hc

(&B). (35)

X =qB~ ——2qp

kF
(36)

It is also convenient to define the dimensionless reduced
wave vector

o. = TIIT,
o =TKT,

(25)

(26)

where T is the conversion matrix

i ~i~
T=e

0 (27)

Now from these relations and the definitions of II, K,
and U we can derive

where
sky c

(37)

is the effective semiclassical cyclotron radius and k~ ——

(4mn, ) ~ is the Fermi momentum. We will find that X
is a very natural parameter in terms of which to express
our results. In particular, we will find that our results
approximately scale in terms of X in the semiclassical
(large p) limit. For simplicity of notation, we will assume
from now on that LB & 0, and hence p & 0.

K = TpT+V,
p = p+ pcs~

(2s)
(29)

A. K for the RPA

T—1~—1T—1 2mhg 0 1
—1 0 (3o)

—1p=0 )
- —1p=O

(31)
(32)

Note that if we approximate o. by the mean-field nonin-
teracting result TKoT, then Eqs. (2S) and (29) become
equivalent to the RPA prescription [Eq. (12)].

where pcs is the contribution from the Chem-Simons
interaction, and p and p are the associated resistivity
matrices defined as

K'=T '8T ',
where the conductivity matrix 8 is given by

(3s)

For the simple case where p is an integer, the unper-
turbed electromagnetic response function K has been
derived in connection with the theory of anyon super-
conductivity by Fetter, Hanna, and Laughlin for the
p = 2 case, and then for general p by Chen et al. (and
later by Dai et al. ) The calculation is performed by re-
alizing that the response function can be related to the
ground-state expectation value of the time-ordered prod-
uct of current operators. This quantity is then calculated
by inserting complete sets of states for free electrons in a
magnetic field. The final result in matrix form is

III. UNPERTURBED RESPONSE

In order to calculate the response function in the RPA
approximation we must first find the response K of the and

pe i ~ Zp
2~5 y '(:.) (Z, +1)

(39)
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—v' P ~
l~ ( l)Yrn l —1[—1~—i(Y)]2—j'„):).~

i o =p ' +" —(m —l)'+~c

(m —l —Y)IP '(Y) + 2Y
dl. , '(Y)

(40)

where I& is a Laguerre polynomial, and the expansion
parameter Y is given by

Y = —(q/~)2 = —x .
2 4

(4i)

It should be noted that the (t, m)th term in the sum
(40) represents a particle in the 1th Landau level making
a virtual transition up to the mth level and back. In
Appendix A we perform some of the above summations
explicitly such that each Z~ is written as a single sum.
This simplification has proven to be quite useful for both
analytic and numerical analyses.

For noninteger values of p one can interpolate to find
the residues of a given pole in K at nonzero frequency.
In terms of the imaginary part of the response function,
we can write

B. Sem. iclassical 8

The other approach we will use is to semiclassically ap-
proximate the quasiparticle conductivity o. and hence K.
The semiclassical regime is the region where the energy
levels are closely spaced with respect to the other energy
scales of the problem. This regime occurs at low effective
fields (large p) and long wavelength (small q) and when~ is much less than the Fermi energy. If we are in this
semiclassical regime we can consider the quasiparticles as
localized wave packets moving under the inHuence of the
magnetic field AB and (as described in Appendix C) we
can approximate the quasiparticle conductivity o as '

22n cc
aa

V(n) e V(n)
2

4P i—n+—
T

(43)

where r is the quasiparticle scattering time, and the ve-

locity coefFicients V,.( ), whose meaning is further eluci-
dated in Appendix C, are defined as

Im [K„(~g 0) = ([p] + 1 —p) Im[K(„t(~)]

+(p —[p]) Iml~~', )+i(~)]

where [p] is the greatest integer less than or equal to p.
To find the weight of the pole in the response function at
zero frequency, one must use an f-sum rule (see also Sec.
IV). We will, however, limit our attention to the integer
values of p.

significance to integer values of p.
In this semiclassical approximation the quasiparticle

scattering time 7 is left as a free parameter whereas the
above quantum-mechanical calculation of K is inher-
ently in the no-scattering (w —+ oo) limit since no mech-
anism has been included to account for scattering. Al-
though we have the freedom to perform our semiclassical
calculations for finite 7, it is actually more useful to think
of the no-scattering limit. In this limit poles will appear
in the density-density response function Moo at exactly
the &equencies corresponding to the collective modes of
the system. Furthermore, by taking the w —+ oo limit
we can compare our results with the RPA. Making this
simplification we can sum the series of Bessel functions
exactly to yield a closed form expression for the quasi-
particle conductivity o. This sum is performed explicitly
in Appendix B.

IV. EFFECTIVE-MASS RENORMALIZATION

A. General considerations

Within the theory considered so far, the quasiparticle
effective mass m* is just the bare band mass mb. In this
theory we perturb around a reference Hamiltonian Ho
that describes particles of this unrenormalized mass [Eq.
(8)]. We expect, however, that the effective mass should
be renormalized by interactions. In order to estimate the
importance of this mass renormalization, we follow HLR
(Ref. 5) to make a crude estimate of the value of the
effective mass. Assuming that the electron interaction
energy is much less than the spacing between Landau
levels, the Landau-level mixing can be neglected and all
energies of interaction must then be proportional to the
electron-electron interaction energy scale e (47m, ) ~ /e.
Thus, dimensional analysis tells us that the effective mass
should have the form (if it is in fact finite)

5 (47m )'~ e

~2/ (46)

where C is a dimensionless constant. HLR (Ref. 5) use
results from the exact diagonalization of small spherical
systems restricted to the lowest Landau level to estimate
that C = 0.3. Using the experimentally relevant dielec-
tric constant e = 12.6 appropriate for GaAs, a field of
B = 10 T and a filling fraction of v =

2 yields the result

v.(") = —"z„(x), m* = 4m'. (47)

(„) . dJ„(x)
g (45)

where J is the nth Bessel function. Note that unlike the
RPA, the semiclassical approximation gives no special

Using a self-consistent analysis of a selected set of di-
agrams for the self-energy of the transformed fermions
which describes the interaction with long-wavelength
fIuctuations in the Chem-Simons vector potential, HLR
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p -
2

.' + 0(& /(u). (48)

If the resistivity of our system indeed has this high-
frequency, long-wavelength limit, then Kohn's theorem
and the f-sum rules are satisfied. We now want to turn
this condition on the resistivity (or equivalently the re-
sponse function) into a condition on the properties of the
quasiparticle system. Consider the resistivity p for quasi-
particles with the band mass mb in the efFective field
LB'. The analogous free quasiparticle high-frequency,
long-wavelength limit is

mb
p e2n + 0(q'/~),

where Ew, = eAB/(mbc) is the cyclotron frequency as-
sociated with the effective magnetic Geld and the band
mass. Now if we convert this into the associated resis-

(Ref. 5) conclude that for the case of the Coulomb in-
teraction between the electrons, the effective mass m*
should actually exhibit a logarithmic divergence for en-
ergies near the Fermi energy, and for p -+ oo (i.e., for
v ~ 2). The coefEcient in front of the logarithm ob-
tained by HLR is relatively small, however, and the re-
sulting values of the effective mass, in practice, will not
be very different from those given by Eq. (46).

The important thing to note here is that the mass is
renormalized considerably. Thus, perturbing around an
unrenormalized Hamiltonian is likely to give very poor
results. The first naive thing one could do to try to
correct this problem is simply to use this renormalized
efFective mass in the reference Hamiltonian Ho. In fact,
in Sec. V we will see that this approach can sometimes
give reasonable results for the dispersion relation of the
lowest excitation mode. However, this approach will give
an incorrect value for the cyclotron frequency, thereby vi-
olating Kohn's theorem and the f-sum rule. The focus of
this section is the construction of a method of repairing
our naive approach so that these rules are satisfied.

First we stop to think about the properties we want our
result to have. To begin with, we recall Kohn's theorem
(a result of Galilean invariance) requires that the q ~ 0
behavior of our system be determined by the band mass
mb rather than any renormalized mass. One can imagine
all of the electrons in the system oscillating in unison so
that electron-electron interactions have no effect. Simi-
larly the f-sum rule simply says that the behavior of our
system in the ~ + oo limit is also determined by the band
mass mb. This is easily imagined since at high frequency
one can think of the electrons oscillating very quickly
with very small magnitude so that these oscillations do
not appreciably change the positions of the electrons or
couple to the electron-electron interaction. Often this
rule is stated in terms of the conductivity such that by
using a Kramers-Kronig relation it can be written as an
integral over frequency (an f sum).

In the long-wavelength or high-frequency limit the free
electron result is written most easily in terms of the re-
sistivity

tivity for the original electron system using Eq. (29) we
find that

mb
p e2n,

mb

e n~2

—ZM

c

—ZM

27rhp 0 ]
—1 0 (50)

where we have made use of the fact [Eq. (7)] that AB =
B —2vrhcgn, /e. We conclude that if our quasiparticle
system satisfies Kohn's theorem and the f-sum rules with
respect to the effective magnetic field LB' and the band
mass mb, then our original electron system satisfies the
same rules with respect to the full Geld B.

We must now arrange for our quasi@article system to
satisfy Kohn's theorem and the f-sum rule when we
renormalize the quasiparticle mass (which we have so far
taken to be equal to the bare band mass mb) to some
new value m*. If we naively try to calculate p with the
new renormalized mass, by simply replacing the band
mass mb by the (phenomenological) effective mass m*
everywhere it occurs, we must clearly end up with the
high-frequency, long-wavelength behavior

e2n +0(& ), (52)

where the effective-mass renormalized cyclotron fre-
quency is defined as

eAB
m*c (53)

This limiting behavior [Eq. (52)] is clearly different from
the desired limit given in Eq. (49). Note that the off-
diagonal terms are independent of the value of m*, so
only the diagonal terms are in violation of the sum rules.
We must now Gnd a way to "Bx" this result so that the
resistance takes the proper form. In other words, we
must Gnd a way to calculate the quasiparticle conduc-
tivity that more properly incorporates the effective mass
and corrects for the fact that the effective mass is in gen-
eral not equal to the band mass.

This problem is now almost exactly the same as the
well-studied problem of Fermi-liquid effects on magne-
toplasma modes in metals where one considers the
excitation modes of electrons in a strong magnetic Beld.
Theoretically, one can use an approach similar to our
semiclassical calculation of the quasiparticle conductiv-
ity to predict the spectrum of such a system. Once
again the electron mass is renormalized due to interac-
tions, and a naive semiclassical approach will either not
account for this mass renormalization or will violate the
sum rules. One solution that has been used is to account
for the mass renormalization within a formal Landau-
Silin Fermi-liquid theory. Such a Fermi-liquid approach
should be valid at long wavelengths and when ~ and Ru
are much less than the Fermi energy. Even more anal-
ogous to our problem, Lee and Quinn have used such
a theory to study two-dimensional electron systems.
They show within this approach that (within the semi-
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classical regime where the cyclotron energy as well as ~
are much less than the Fermi energy) in the q ~ 0 limit
the frequency of the nth excitation mode is given by

(u = (1+A„)n~,*+O(q'),

where A is the nth Fermi-liquid coefFicient. Note that
since the effective mass is controlled by the first Fermi-
liquid coeKcient (a result of Galilean invariance of Fermi-
liquid theory) via

tion, in particular, is well satisfied for large p, but only
marginally satisfied for small p such as at v = —.

With these assumptions we follow the usual Fermi-
liquid approach and write the energy functional for a
two-dimensional system of spinless quasiparticles of eKec-
tive mass m* at density n„ in an electromagnetic field
defined by the vector potential A, as

E[n(p, r)] = Eo [n(p, r)]

m* = (1+Ai)mb (55) + ) (p+ eA) (p'+ eA)
A+m

P)P
the location of the first (n = 1) excitation mode the cy-
clotron &equency —is unchanged when the mass is renor-
malized. This is exactly the type of result we want. Un-
fortunately, we will need to know the full conductivity,
not just the frequency of the excitation modes, so we will
be unable to use the results of I ee and Quinn directly.
Nonetheless, we will be able to use this type of theory to
calculate the conductivity for quasiparticles with renor-
malized. mass. One add. itional advantage of using this
type of Landau-Fermi-liquid theory is that we do not
need to know exactly how or even why the electron mass
is renormalized, since all of the relevant details of the
electron-electron interaction are included within the sin-
gle mass renormalization coeKcient Ai.

B. Modi6ed semiclassical approximation for p

x n(p, r) n(p ', r), (56)

where

Ep[n(p, r)] = ) n(p, r)
.(p+ eA)

(57)

and n(p, r) is the phase-space density at momentum p
and position r. More generally, as discussed in Appendix
C the energy functional will have additional interaction
terms with other nonzero Fermi-liquid coefEcients. Note
that in this section we have set c = 1 for simplicity. Equa-
tion (56) assumes implicitly that n(p, r) is a slowly vary-
ing function of r. We also assume in this section that we
have chosen a gauge where the scalar potential is zero.

We can now calculate the local current by difFerentiat-
ing E with respect to the vector potential

We begin by discussing the Fermi-liquid corrections to
the quasiparticle resistivity tensor p in the semiclassi-
cal approximation. To do this, we first ignore the direct
Chem-Simons and Coulomb interactions, and consider
the current induced in the Fermi liquid by a specified
electromagnetic vector potential A(r, t). Eventually we
shall use the result for p in Eq. (29), which will be equiv-
alent to replacing the electromagnetic field by the sum
of the self-consistent Chem-Simons and electromagnetic
fields.

In performing this Fermi-liquid theory calculation we
make several simplifying assumptions. To begin with,
as explained above, we consider only the low scattering

oo limit. (The effects of impurity scattering are
considered as the more general case in Ref. 17). We also
assume that higher Fermi-liquid coeKcients (Ai for I ) 1)
are progressively less important and we can set Ap = 0
since we can include the effects of the density-density
interaction in the RPA treatment by modifying the in-
teraction v(r) at short distances. Thus, we assume that
all of the Fermi-liquid coeKcients are zero except for the
coeFicient Ai that controls the mass renormalization via
Eq. (55). In Appendix C it is shown how to include the
eKects of other nonzero Fermi-liquid coeKcients. Finally,
in order to use a Fermi-liquid theory, we must assume
that we are in the semiclassical regime where the quasi-
particles can be treated as localized wave packets. In
other words, we should have the wave vector q much less
than the Fermi wave vector k~ while ~ and the spac-
ing between effective Landau levels Mu* must both be
much less than the Fermi energy E~. The last condi-

—8E[n(p, r)] —e(p + eA) 1+Ai n p, r

(58)

where we have used the fact that

) n(p, r) = n(r) (59)

) —e(p + eA)
mb

By equating these two expressions for the current we eas-
ily derive the relation (55) between bare mass mb and
efFective mass m*.

We are now faced with actually trying to self-
consistently compute the time dependence of the phase-
space density n(p, r) when we apply a perturbing elec-
tromagnetic field. In order to do this, we begin by con-
structing an effective single-particle Hamiltonian

8E[n(p, r)]
(61)

we then have Hamilton's equations of motion

is the local particle density which to lowest order we have
taken to be equal to the average particle density n . On
the other hand, by Galilean invariance, we expect that
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dp
dt
dr
dt
—=VUGH@.

= —V,H,g,

These then are used to construct the Boltzman (Fokker-
Plank) equation of motion for n(p, r)

The general self-consistent solution to this equation is
nontrivial, and is outlined in Appendix C. However, we
know the solution of this equation for the simple case
where all of the Fermi-liquid interaction terms are set to
zero (i.e. , there is no mass renormalization m, * = mb). In
this case, the trivial effective Hamiltonian is just

Bn(p, r) dp dr
Bt dt dt

= [(V,H. ) . V —(V II,ir) V,]n(p, r). (65)

(m* —mb)
n, e2

We then solve for the self-consistent current

(mb —m*)
n e2 (74)

(mb —m*)
nee 2 (75)

In terms of the resistivity p (which is the inverse of a)
this can be written simply as

and thus extract the conductivity 0 for the system of
quasiparticles of effective mass m* in a magnetic Geld
AB,

bEO

Sn(p, r)
[p + eA(r)]2

2mb
(66)

z& mb —mP=P 1
n e2 (76)

and yields the conductivity a as given in Eq. (43) in
the w ~ oo limit as usual. Now, if we try to naively ac-
count for the mass renormalization by replacing the band
mass mb by the effective mass m* everywhere (as well
as replacing Au, by Aw,*), we call the result the naive
semiclassical conductivity o". As mentioned before, this
naive approach violates the f-sum rule and Kohn's theo-
rem. Nonetheless the naive conductivity will provide the
starting point for our modified semiclassical calculation.

We now calculate the effective Hamiltonian (61) from
our energy functional [Eq. (56)]. We find

[p + eA(r) — „' ' J(r)]2
H,g —— + o(J') (67)

which to lowest order in the perturbing electromagnetic
Beld is exactly the above trivial Hamiltonian [Eq. (66)]
but with a renormalized mass m* and a renormalized
vector potential

i~(mb —m*) 1 0 2~hp+ 0 1-10

where 1 is the identity matrix and p" = (a") . It should
be noted that as long as p" satisfies the sum rule (52) then
p satisfies the desired sum rule (49).

The full prescription for calculating the resistivity (and
hence the response) of the fractional quantized Hall state
in this modified semiclassical formalism is to calculate
the naive quasiparticle conductivity a" using Eq. (43)
in the r ~ oo limit, where we replace all occurrences
of the cyclotron frequency Au by the mass renormal-
ized cyclotron frequency Aw, . (The infinite sum in this
equation is performed explicitly in Appendix B.) Next
we invert to get the associated resistivity p" = (a")
We then add the diagonal effective-mass correction term
[Eq. (76)] to get the quasiparticle resistivity and the off-
diagonal Chem-Simons correction term [Eq. (29)] to get
the true resistivity p. Altogether

ee

(m* —mb)
nee 2

(68)

(69)

The resistivity p can then be converted to an electromag-
netic response K using Eq. (28).

C. Modified RPA
Equation (68) is equivalent to using a renormalized elec-
tric Geld

E —E+ (m* —mb) M
n e2 (70)

(m* —mb)= E —zen
nee 2 (71)

We can neglect the associated magnetic field renormal-
ization to first order.

Since the effective Hamiltonian H,g looks like the triv-
ial Hamiltonian H, &, we can calculate the current by us-
ing the naive conductivity and the renormalized electric
field

The above semiclassical prescription (76), which ac-
counts for mass renormalization by adding a constant re-
sistivity, looks very much like the RPA prescription (29)
for taking into account the effect of the Chem-Simons
field by simply adding a constant to the resistivity ten-
sor. This encourages us to try to account for the mass
renormalization in the RPA calculation by the following
analogous method. We write a quantum-mechanical en-
ergy functional Eq. (56) where we now think of the phase
space distribution n(r, p) as its quantum-mechanical ana-
log, the Wigner function. As above, we can differ-
entiate to get the effective single-particle Hamiltonian
(61) except now we should think of this as a quantum-
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mechanical operator. As above in Eq. (66), if we neglect
the mass renormalization by setting the Fermi-liquid co-
efIicient Ag to zero, our efFective Hamiltonian is the same
trivial flee particle Hamiltonian except that now p and r
must be treated as quantum-mechanical operators. Using
this as a single-particle Hamiltonian, we know how to cal-
culate the electromagnetic response K given in Eq. (38)
which we write in terms of the quantum-mechanical con-
ductivity matrix s in Eq. (39). Again, if we naively sub-
stitute the effective mass m* and the mass-renormalized
cyclotron frequency A~ for the band mass mb and the
cyclotron frequency Aw, in Eqs. (39) and (40) we obtain
the naive quantum-mechanical conductivity 8". Once
again, we know that this expression violates the f-sum
rule and Kohn's theorem.

Now if we add in the interaction term in the energy
functional, we get the eff'ective Hamiltonian Eq. (67)
except that now p and r are operators, and J is a cur-
rent expectation value. Again, this Hamiltonian is just
the trivial Hamiltonian with a renormalized mass and a
renormalized vector potential. We can thus follow the
rest of the modified semiclassical prescription exactly.

Thus„ the complete prescription for the modified RPA
is to first calculate the naive quantum-mechanical con-
ductivity s" using Eqs. (39) and (40) where we sub-
stitute the mass-renormalized cyclotron frequency Aw*
for the cyclotron frequency Aw . The sums that oc-
cur in this equation are simplified in Appendix A. We
then invert this conductivity matrix to get the naive
resistivity p~ = (s") . Finally we include the mass-
renormalization and Chem-Simons terms exactly as we
did for the modified semiclassical case by using Eq. (77)
to get the resistivity p. Again the resistivity can be con-
verted to an electromagnetic response using Eq. (28).

Although this Fermi-liquid approach is certainly ap-
propriate in the semiclassical regime, it is not as clear
that it is appropriate for correcting our RPA calculation.
Formally one should probably use a diagrammatic ex-
pansion in the electron-electron interaction to calculate
both the value of the effective mass m* and the correc-
tion to the conductivity. The problem with this approach
is that, as shown by HLR, these types of calculations
are plagued with divergences (although the coefficients
of the diverging terms may be small so that they are eas-
ier to ignore in practice). Furthermore, since the mass is
so greatly renormalized, such a perturbative calculation
might converge only very slowly. Nonetheless, we believe
that our approach is at least reasonably accurate as well
as being the simplest approach that still satisfies all of
the sum rules. Furthermore, it should be noted that the
form of our approximation (76) for the quasiparticle re-
sistivity p coincides with an approximation proposed by
Ando in 1976 for the total resistivity of a two-dimensional
electron system. Ando derived this approximation us-
ing a particular short-range form of the electron-electron
interaction which he treated in lowest-order perturbation
theory, corresponding to a Hartree-Fock approximation
for the electron self-energy and a ladder approximation
for the vertex correction to the polarization bubble. Al-
though Ando also considers the possible efFects of im-
purity scattering, his analysis is restricted to the q = 0

limit, and of course he does not include a Chem-Simons
contribution in his model.

V. NUMERICAL RESULTS

We begin by limiting our attention to the series of
quantum Hall states given by v = p/(2p + 1). This is
the most stable experimentally observed series of states,
and is thus the most interesting. We focus on these states
by setting the fIux attached to each quasiparticle to be
exactly two quanta (P = 2m = 2). The results we would
find for the more general case v = p/(2mp+ 1) are quan-
titatively very similar to the results for v = p/(2p + 1)
except the poles in the density-density response function
have much smaller weight in general ~

A. Semiclassical

We first examine the case where there is no mass renor-
malization (m* = mb) and where we turn off the direct
Coulomb interaction by taking the limit of large dielectric
constant (c m oo), or by setting V = 0 in Eq. (28).
the semiclassical approximation, we have used Eq. (43)
in the low scattering (r ~ oo) limit to calculate the
quasiparticle conductivity o.. An equivalent, but more
convenient form of this equation is given in Appendix
B. We then convert this quasiparticle conductivity to a
response function K by using Eqs. (28)—(32).

We are most interested in the poles in the density-
density response function Koo. A pole in Koo with re-
spect to frequency indicates the existence of a collective
mode, and the weight of the pole indicates the strength of
the coupling of this mode to a fIuctuation in density. In
Fig. 1 we show the location (heavy solid) of these poles
in Koo as a function of reduced frequency (w/Aw, ) and
reduced wave vector (X = qR~ ——2qp/k~). The width
of the striped bands around the lines of poles indicates
q times the relative weight of the poles. In accordance
with Kohn's theorem, we see that the cyclotron mode
[the mode at cu = (2p+ 1)Bur, = ur, ] has all of the weight
at long wavelength and moreover that this weight scales
as q . It appears as though some of the lines of poles get
very thin and disappear at certain wave vectors. What
is actually happening here is just that the residue of the
line of poles has become too small to see on the scale of
the graph shown.

We have shown results for filling fractions v =
and zz, corresponding to efFective Landau-level fillings
of p = 1, 3, and 10 where m = 1. By examining the
p = 10 case we see that the semiclassical approximation
has a very simple large p, large X/R limit (where B =
cu/Ate as usual). In this limit we see the series of crossing
straight lines with equal slopes but with opposite signs.
More precisely, we have

(78)

where n is an integer. This behavior can be derived most
easily by using the analytic form for o. described in Ap-
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exp(iq . [r(t) —r(t')]) oscillates very quickly when the
particle is moving in the x. direction, and stays constant
when the particle is moving in the y direction (see Fig.
2). Thus, when we integrate to obtain the low-frequency
conductivity, we expect that o» will, in general, be the
largest component of the conductivity tensor. This as-
sertion is verified by examining Eqs. (B15), (B17), and
(B19) of Appendix B where we see that o» is of high-
est order in q, and thus dominates in the large q limit.
We conclude that the zero eigenvalue of the quasiparticle
conductivity tensor (and hence the pole in the electro-
magnetic response) must occur very close to the point
where 0yy: 0

We now set t' to be the time when the quasiparti-
cle is at the extreme right of its orbit such that v„(t')
is large and negative. Clearly the exponential factor
exp1iq [r(t) —r(t )]j is unity whenever the quasiparticle
returns to the extreme right of the orbit. Furthermore,
if the diameter of the orbit is approximately an integer
number of wavelengths, then the exponential factor is
approximately unity when the quasiparticle is at the ex-
treme left of the orbit also. Now since v„(t) oscillates
(with frequency Aw ) and is a maximum at the far left
and a minimum at the far right, we see that these two
pieces will approximately cancel in the integral in Eq.
(79). Thus if the diameter of the orbit is approximately
an integer number of wavelengths, o» will be zero, and
hence there will be a pole in the response function. More
careful analysis shows that the condition for having a
pole in the response function at zero frequency is

2~
2B~ —(n+ -')A = —(n+ -')

4
q

4 (80)

which is exactly the cu ~ 0 limit of Eq. (78). The "+4" is
included because the average separation of the two trans-
verse parts of the orbit is somewhat less than the the full
diameter of the orbit (see Fig. 2). These poles at zero
frequency were first predicted by HLR, and are some-
what analogous to the "geometric resonances" found in
the propagation of acoustic waves in a direction perpen-
dicular to an applied magnetic field in three-dimensional
metals. ~5

Now we consider the effect of nonzero frequency. When
the wave is in motion, we want to arrange that the phase
of the wave when the quasiparticle is at one transverse
part of the orbit is the same as the phase of the wave
when the quasiparticle reaches the other transverse part
of the orbit such that exp(iq. [r(t) —r(t')] —isn't) is equal
at the extreme left and extreme right of the orbit. This is
most easily visualized by considering only the coordinate
of the quasiparticle which is parallel to the wave vector
(the x coordinate in our previous convention). Now con-
sider the linear world lines of the crests of the wave and
the sinusoidal world line of the quasiparticle as shown in
Fig. 3. There are two possible ways to have exactly no
net contibution to the integral (79). The first possibility
is that every time the particle moves to the right it be-
gins and ends at the same phase of the wave (case I in
Fig. 3). Alternately, the particle can begin and end at
the same phase of the wave every time it moves to the
left (case II in Fig. 3). Note that these two cases are not

time
Case I Case II
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FIG. 3. Semiclassical orbiting modes of a quasiparticle in
an electromagnetic wave at nonzero frequency. Here we show
the world lines of oscillating particles (sinusoidal) and the
world lines (parallel lines) of the wave crests. As described
in the text, in order to have a zero in the quasiparticle con-
ductivity and hence a pole in the electromagnetic response,
we must arrange so that the phase of the wave is the same
on the extreme left as it is on the extreme right so that the
largest contributions to the integral (79) cancel. In case I,
each time the quasiparticle moves to the right it begins and
ends at the same phase of the wave. In case II, each time the
quasiparticle moves left it begins and ends at the same phase
of the wave. These two cases are not, in general, equivalent
since the phase of the wave is not the same at the beginning
and the end of an orbit.

equivalent since the phase of the wave is different at the
beginning of each orbit. It is not too hard to see that
these two possible conditions are exactly the conditions
written above in Eq. (78). If either of these conditions
are met, then the corresponding contributions to the in-
tegral (79) f'rom the extreme left and extreme right of the
orbit cancel, and we should have a zero of oyy and hence
a pole in the response.

Finally we consider the special case when u = nA~ .
Since u and L~ are commensurate, we can have en-
ergy absorbed and reemitted at the applied flequency,
and hence a pole in the quasiparticle conductivity. It
is easy to see that in this conditon (u = nAu ) both
above cases I and II [both signs of Eq. (78)] are satisfied
simultaneously. This would correspond to the "cross-
ing" of the lines of poles in the above spectrum (Fig. 1)
at multiples of the effective cyclotron frequency A~ as
predicted by Eq. (78). Note, however, that the lines of
poles in Fig. 1 do not actually cross at these points. The
fact that the quasiparticle conductivity has a pole rather
than a zero at these special &equencies creates a "level-
repulsion" keeping the lines of poles kom crossing. In
terms of the integral (79), the pole in the conductivity
occurs because the phase of exp(iq [r(t) —r(t')] —i~t) is
the same at the beginning of each orbit. Thus, any small
noncancellation of the contributions to the integral will
occur identically for each orbit, and thus these terms will
add and cause a diverging conductivity.

Although the effects of this semiclassical orbiting be-
havior are most obvious in the large X and large p lim-
its, the same general behavior is seen even for p = 1
(although the validity of the semiclassical approximation
at low p and low frequency is questionable). One notes
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sion of the direct Coulomb interaction causes a significant
change in the shape of the lowest magnetoexciton curve.
In particular the magnetoexciton minima are much less
pronounced. The Coulomb interaction has a much larger
effect in the modified RPA than it did in the simple RPA
primarily because the overall energy scale is smaller.

In the case of p = 1 (v = s), these results may
be compared directly with results of the single mode
approximation which is believed to be quite accurate
near the magnetoroton minimum. One finds that the ac-
tual minimum is significantly deeper than that found in
either the RPA, the modified RPA, or the semiclassical
approximation. A relatively deep magnetoroton mini-
mum has also been found in numerical work on finite
systems ' and in the analytic approach of Zhang, Han-
son, and Kivelson.

We speculate that the inclusion of Coulomb ladder di-
agrams (i.e. , the attraction between the quasihole and
quasiparticle of the exciton) would enhance the size of
the magnetoroton minimum relative to that found in
the RPA or modified RPA, and would perhaps bring the
perturbative Chem-Simons calculation into better agree-
ment with the other calculations in this regime. We also
speculate that the Coulomb ladder diagrams may be rel-
atively less important in the case of large p, where the
charges of the quasiparticle and quasihole are small, so
that the modified RPA may give an accurate description
of the dispersion of the lowest excitation mode in this
case. We find that for very large p, the dispersion curves
show a series of deep minima which are respresented in
the RPA, modified RPA, or semiclassical approximation.
However, at p = 10 (v = 10/21) there are still significant
differences in the depths of the exciton minima according
to Figures 1, 4, and 5. Again we note that the depths of
the magnetoexciton minima are somewhat suppressed by
the Coulomb interaction in the modified RPA. The other
main contribution of the Coulomb interaction is simply to
push the weight of the poles to higher-frequency modes.

VI. SVMMARY

the low-energy excitation spectrum approximately cor-
rect. In the semiclassical regime (v approaching an even
denominator fraction and large wavelength compared to
the magnetic length) we clearly see the orbiting behavior
that results in geometric resonances including a series of
magnetoexciton minima at increasing wave vector. At
v = 3, the magnetoroton minimum is not as deep in our
approximation as previous works predict. (We speculate
that Coulomb ladder diagrams which have not been in-
cluded within the RPA may increase the depth. ) Finally,
we note that within the RPA the main effect of the di-
rect interquasiparticle Coulomb interaction is to slightly
reduce the depth of the magnetoexciton minima and to
push some of the weight of the poles of the response func-
tion up to modes of higher frequencies.

All of the approximations discussed in this paper omit
the possible effects of quasiparticle scattering. When
such efFects are taken into account, we expect that, in
general, the higher excitation modes will acquire a finite
energy width, as they can generally decay into two or
more modes of lower energy, while conserving momen-
tum and energy. If the decay rate becomes larger than
the spacing between modes for some regions of the k, w

plane, then the energy spectra indicated in Fig. 5 will
cease to be meaningful in that region. By contrast, we ex-
pect that the lowest-energy branch will remain perfectly
sharp, in the absence of impurity scattering, at least near
the magnetoexciton minima because there are no lower-
lying excitations to decay to with conservation of energy
and momentum.
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In this paper we have reviewed the Chem-Simons con-
struction that allows us to think of certain fractional
quantized Hall states as integer quantized Hall states of
fermionic quasiparticles bound to an even number of Aux
quanta. The electromagnetic response function was first
calculated in a semiclassical approximation and within
the RPA. If one uses the bare electron band mass mg
in these calculations, one obtains an incorrect frequency
scale for the low-energy excitations; if one simply re-
places mp by an efFective mass m* which is chosen to
give the correct scale for the low-energy excitations, then
one obtains an incorrect value for the cyclotron energy,
in violation of Kohn s theorem, and one obtains intensi-
ties that fail to satisfy the f-sum rule. A modified RPA
was then constructed that accounts for the effective-mass
renormalization by using a Fermi-liquid theory approach.
The results of the modified RPA calculation properly sat-
isfy the f-sum rule and Kohn's theorem and also have

APPENDIX A: QUANTUM-MECHANICAL SUM

(Al)

S~.(n, Y) =
p —1

) G,. (n, I, Y),
/=max(o, p —n)

(A2)

where

To reduce the sums in the definition of the E~ [Eq.
(40)] to single sums, we start by reparametrizing our
dummy variables using n = m —l such that
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f

G, (n, l, Y)=,[Li (Y)]

x (n —Y)LP(Y) + 2Y dLP(Y)
(A3)

A
f

V„(Y) = ) dL (Y)
dY (A8)

These can be calculated by first considering the
ChristoAel-Darboux formula

and Li (Y) is the associated Laguerre polynomial. In the
calculation of 8 to get K for the RPA in Sec. IIIA, we
use R = u/Aw, whereas in the calculation of s" for the
mo'dified RPA we use R = w/Aw, *. In this notation, the
(n,, l)th term in the S~ sum represents a particle making
a virtual transition from the lth Landau-level up n levels
and back. This form for Z~ is also quite appealing phys-
ically since it groups terms of the sum in terms of which
pole they contribute to. It will be convenient to think
of the sum over / as the difFerence of two sums both of
whose lower limit is zero. In other words,

p—1

S, (n, Y) .= ) G~(n, l, Y)
JL=O

p —n —1

A),L=(~)L=(&)
m=O

„) L.(*)L. .(~) —L. (*)L:(~)] .

(A9)

dL. (Y) L.+i(Y)
dY (A10)

By setting x = Y+ 6 and y = Y and difFerentiating with
respect to b at b = 0, and then using the identity

—O(& n) ) —G, (n, i, Y)
I,=O

(A4)
where a Laguerre polynomial of negative lower index is
defined here to be zero, one easily derives

where 0 is the step function

O(z) = 0, x&0
x&0. (A5)

T:(Y)= ("");)L:(Y)L:+(Y) L:",(Y)L:., (Y)].

(All)
The point of this appendix is to perform the sums over /

to yield closed form expressions for S~(n, Y).
To perform our sums it will be necessary to evaluate

the three quantities

Di8'erentiating this result yields

2(+ )'
7L

T:(Y)=). ,
IL (Y))',

m=O
7l

U'(Y) = ). L=(Y) L (Y)
m=O

(A6) —L.(Y)L.+i(Y) j (A12)

The easiest way to find V (Y) without running into di-
visions by zero is to write the derivatives as limits

V„(Y) = lim
p...s~o (m. + o.)!

L (Y + p+ b) —I (Y+p) L (Y+ e) —L (Y)
b (A13)

such that we end up with four terms in the ChristoÃel-
Darboux form. The sums are then performed using Eq.
(A9). At this point one must be very careful in taking
the limits. The easiest way to do this is to expand each
resulting Laguerre polynomial in a Taylor series around
Y to third order such that the parameters p, e, and b
no longer occur inside the arguments of the polynomials.
(At the end of the calculation it is easy to see that higher-
order terms are irrelevant since we will take the small
parameters p, e, and 8 to zero anyway. ) Finally one can
take the limits and And that the erst- and second-order
terms of the expansion vanish leaving the result

V:(Y) = '„",+.",i-.«:',(Y)L™(Y)

—L: s(Y)L:+i(Y))
+ —,'(L.+;(Y)L.+'(Y)
—L.+2(Y)L.+'(Y))j (A14)

where we have used the above Laguerre polynomial iden-
tity (A10) several times.

We can now use the three derived sums (T, U, and V)
to perform the l sums in S~(n, Y) Using Eq. (All) and
the definition of T (Y) we have immediately
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(A15)So (n, Y) = T„" i (Y) —8 (p —n) T„ i (Y)

and similarly we use the sums (All) and (A12) to yield

Si(n, Y) = [(n —X)T„ i(Y) + 2YU„ i(Y)]
—8(p —n) [(n —Y)T,"-.-i (Y)
+2YU„ i (Y)] . (A16)

Now by using the Laguerre polynomial identities 8.97.4

and 8.97.5 from Ref. 21 this can be reduced to

p —n!
p n i

And finally we have

(A17)

S2(n, Y) = [(n —Y) T (iY) + 4Y(n —Y)U„ i(Y) + 4Y V„ i(Y)
-O(p-n) [(n- Y)'T.". .(Y)+4Y(n- Y)U.". (Y)+4Y'&,". .(Y)I (Alg)

Although these results look somewhat messy, they
eliminate one infinite sum which is beneficial for both
analytic and numerical work.

APPENDIX B: SEMICLASSICAL SUM

4 "- (-1)"w. = —) dt'cos(2X cos t cos t')

x cos(2nt)cos(2nt') .
(B6)

When we take the w ~ 0 limit we can rewrite the
quasiparticle conductivity given in Eq. (43) as

The sum is then performed by using sum 1.445.8 from
Ref. 21 leaving us with

(n) ~(n)*
zpc

R —n
(Bl)

where

W =Q+I (B7)

where p is the number of effective Landau-levels filled
which need not be an integer. We use R = w/Ace, for the
semiclassical calculation and R = w/Aw, * for the modi-
fied semiclassical approximation (which then yields 0" as
a result).

Using symmetry relations of the Bessel functions (Eq.
9.1.5 from Ref. 22) the quasiparticle conductivity matrix
can be rewritten as

P 2

~R sin(Rir)

m/2

dt
m/2

dt'F [t, t, X],

~/2 ~/2
dt dt'F [t, t', X]cos(2Rt'),

ipe n J(X) 2R
vrh X2 R2 —n2 ' (B2)

and

F [t, t', X] = cos(2X cost cost')cos(2nt). (Blo)

pe ) n J„(X)J„'(X)
zh X B2 —n2 '

For both of these terms the integral over t can be per-
formed using 3.715.19 from Ref. 21, and the integral over
t' can then be performed using 6.681.1 from Ref. 21. The
end result is the desired quantity

W =(-1)-
2A/2

vrJ +R(X)J R(X)
2R sin(R7r)

(811)

In order to evaluate these sums, we first consider the
general quantity

Using this partial result we can calculate the more rel-
evant quantity

~. J„+ (X)J„(X)
R2 —n2

n=l
(B5)

OO

W = ) J„+ (X)J„(X)
n=l

(B12)

Using the integral identities 3.715.19 and 6.681.1 from
Ref. 21 we can rewrite TV as a sum over a double integral
of cosines, n=l

B2—1+ J„+ (X)J„(X') . (B13)
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The first term can be evaluated using the orthogonality
relation of Bessel functions (Eq. 9.1.75 of Ref. 22) and
the second term is just R R . Thus we have

1 mR
W = ——8 p + (—1) . J +R(X)J R(X) .

(B14)

Now using the o. = 0 case of this result immediately
allows us to perform one of the desired sums giving us
the result

e2 2R
JR(X)J R(X)

(B15)

APPENDIX C: FERMI-LIQUID THEORY

In this appendix we use the Landau-Silin Fermi-liquid
theory ' to determine the effect of mass renormal-
ization on the conductivity of a system in a magnetic
field. We assume here a two-dimensional system of spin-
less Fermions in a magnetic field B. (Note that in the text
we consider a system in a field LB. We have dropped the
delta for simplicity of notation. ) For this system, the lin-
earized semiclassical transport equation (which should be
accurate in the semiclassical regime as discussed in Sec.
III) is written asi 'is

Bbn e Bnp+ vg . V~ ——(vi, x 8) Vi, bn+ Hei
Bt c BE()

Furthermore, by differentiating W with respect to X,
we can derive

(B16)

By using the Bessel function identities 9.1.27 from Ref.
22 as well as the Wronskian identity 9.1.15 from Ref. 22
we can rewrite the ofF-diagonal conductance as

pe 2 Rvro.~y ———so~~ — . JR+i(X)J R(X) . (B17)
7l 6 I slIl R'7t

= —eE- vk + I, (Cl)
8'np

Bcp

where k = p + —A is the kinetic momentum,
k2/(2m*) is the kinetic energy of a noninteracting quasi-
particle, m* is the effective mass of a quasiparticle at
the Fermi surface, hn(k, r) is the local deviation from
the equilibrium distribution np(k), the local quasiparti-
cle velocity is given by vk = V'i, (ep + Hei), the efFects of
scattering are included in the collision integral I(np+8n),
and the local change in quasiparticle energy hei due to
interaction is given by

The evaluation of o.» is achieved by using the same
Bessel function identities 9.1.27 from Ref. 22 to derive

1
8e, (k, r) =

27r 2
d k'4(k, k')bn(k', r), (C2)

n2
[J„'(X)] = —J„ i(X)J„+,(X) + J„(X). (Big)

The sum over the first term is just IVAN whereas the sum
over the second term is X Wp. The result is easily
simplified to

ipe vroy„——o +, , Ji+R(X)Ji R(X).
vrh, sinjRvrj

We can evaluate some of the limits of this expression
for the conductivity by expanding the Bessel functions in
their defining series (Eq. 9.1.10 of Ref. 22). The condi-
tion for this series expansion to be a good approximation
is that X2/R be much less than one. If we insert this ex-
pansion into the above expressions (and using Eq. 6.1.17
of Ref. 22) to simplify the result, we find the expected
result

2

+ O(X /R) .
C

(B20)

The important thing to realize here is that within the
semiclassical approximation, a low q expansion and a
large w expansion are equivalent. This is not obvious
from the original expression for the conductivity [Eq.
(43)], but becomes clear once we have this closed form
expression.

where C (k, k ') is the (unknown) Landau interaction
function. The above transport equation (Cl) is derived
(as described loosely in Sec. IVB) by using a single-
particle effective Hamiltonian derived from a local en-
ergy functional and then using Hamilton's equations of
motion for this effective Hamiltonian. ' The equations
of motion must be expanded to linear order in the effects
of the perturbing electromagnetic field to yield Eq. (Cl).

Although the inclusion of a nonzero scattering integral
is straightforward, i7 we will assume that I —i 0 (r ~ oo)
for simplicity. Keeping with our convention that q~~x,
we apply an electromagnetic perturbation proportional
to e'i * . Following Lee and Quinn we rewrite the
linearized transport equation (Cl) as

f(4) +
I v-(0) + .*& I

'[f(@)+ ~ (&)]
. 01
'0 )

= —eE v(P), (C3)

8n(k) = f (P) (C4)

with P the angle defining the direction of the kinetic mo-
mentum k, and the velocity vector is given by

v = vy' sin )
—cos

where cu' = eB/(m*c) is the mass renormalized cyclotron
frequency, f(P) is defined by
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with v~ = kp/m . Since f is periodic in P we can expand
it in a Fourier series,

i~Fl + iL~,*[Fl + el] = eE vl,

where we have used the fact that

(C18)

(C7)

~ —jq g.(@) ~ —iq R(P)d-
zgv e (d e (C19)

4(k k') = ) Aem*
l

(C8)

Similarly, 4(k, k ') is periodic in P —P' so we can write

in our evaluation of the integral.
We now want to express the current in terms of the

motion of quasiparticles. This can be done using the
standard result of Fermi-liquid theory

Furthermore, since 4 is symmetric and real, we have A~ ——

A ~ and A~ is real.
We can de6ne a displacement vector for the quasipar-

ticles on the Fermi surface

(C9)

d A: Lin(k)

1
x v(k) +

27r 2

(' —Bno lxv(k')
I 8 (k'

d O'C (k, k')

(C20)

so that

iq R(Q) . ix cos p g .n J rX) in)
nl, (Clo)

where the second term represents the backflow current
due to interactions. By interchanging the order of inte-
gration we can rewrite this as

for X = qB,* = qv~/w* and J is the Bessel function.
We now expand the following periodic functions of P into
Fourier series

(2vr)
d kv(k)

~ ~ [f(k) + hei(k)], (C21)

which can be expressed in terms of our new variables as

—iq R(P)

(p) e iq R(—P)

—iq R(P)

) i lPF—
l

) —v. l g

l

) e
—"~vi .

(C11)

(C12)

(C13)

2' ) v, (Fl + e, ).

Combining this with Eq. (C18) yields the result

—em eE . V~ —'LCdFII
VL

27t Z l QJ

(C22)

(C23)

el =) A f i 'Jl (X), (C14)

fl = ) i 'J~ i(X)F~, (C15)

By inverting these Fourier series and inserting into above
definitions we derive the following relations:

eE v~l-
zcai + elhi*

so that the noninteracting current is given by

(C24)

At this point let us consider what happens in a non-
interacting system. In this case, all the Fermi-liquid co-
eKcients A~ and hence e~ are zero. The kinetic equation
(C18) is solved by

l ( LJi(X)/X
—i J'(X)l

(C16) ~ nJ
—e m* 1

v) v) E
27r ZCd + 1LCd

(C25)

F = ) i' J l(X)fl. (C17)

Now multiplying our kinetic equation (C3) by
(2x) exp[iLP —iq . R(P)] and integrating over P yields
the kinetic equation in terms of our new variables (pre-
viously derived by Lee and Quinn )

where the Bessel function identities 9.1.27 from Ref. 22
have been used to derive v~. Note that the coeKcients
vl are the velocity coeKcients used in Eq. (43) to cal-
culate the quasiparticle conductivity up to multiplicative
constants. By using the Bessel function orthogonality re-
lation 9.1.75 &om Ref. 22 we can also derive the inverse
relation

and thus the conductivity is

—e m*
(C26)

which is exactly the semiclassical expression ' for the
conductivity of a system of noninteracting quasiparticles
in the 7 ~ oo limit given in Eq. (43).

We now want to analyze this system when the inter-
action coeKcients are nonzero. To do this, we must be
able to solve the kinetic equation (C18). We express
the kinetic equation in terms of the unknown variables
fl by using Eqs. (C14) and (C15) to yield the matrix
equation
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c„=) (a„—h„)f (C27) Once fi and f i are determined, all of the f are then
given by the Eq. (C27) which now takes the form

where f„=a„'fi+ a„ f i —c„. (C32)

m .n —m,6 —2 Amn
—b„

& &&Jl—mJl —n

zoo + zl&

leE. vl Jl
~n = z"

~ ~ )a~ + zlw*
l C

(C28)

(C29)

Using this result in Eq. (C17), inserting the definition of
c, and simplifying by using the Bessel function orthog-
onality equation (Eq. 9.1.75 Ref. 22) yields

eE . vl Apt lw+, .[f,J,—f,J,] (C.33)

(a', —1)fi + a, 'f i,
c-i = (a i —1)f—i+a'ifi (C3O)

Solving this system yields the result

fi D' [(a i —1——)ci —a, c i],
f i = D '[(a', —1)c i —a', cj],
D = (a ,' —l)(a,'—1) —a, 'a', .

(C31)

where the Bessel functions and the velocity coeKcients
vl are evaluated at X. Although this system of equa-
tions is infinite dimensional, if we assume that A; is zero
for i greater than some number im, then we have a'-

also zero for i & i . In this case the equations with
—i & n & i „ form a closed system of equations
with variables (f(; )

~ f(; ) j where fo is real and
all other f„are complex. Once this smaller system is
solved, the remaining f are defined trivially since they
only depend on the already determined values. Then one
can solve for the E using Eq. (C17) and then find the
current using Eq. (C23) and hence extract the conduc-
tivity.

As an illustrative example we consider the case where
Ai is the only nonzero Fermi-liquid coeKcient and using
this approximation (whose validity is discussed in Sec.
IV B) we derive the same result [Eq. (76)] as in Sec.
IVB. Note that in Sec. IVB we use a trick to perform
this same calculation that cannot be generalized to ac-
count for an arbitrary number of nonzero Fermi-liquid co-
eKcients. The method shown below is more diFicult, but
more generalizable (in principal one could also generalize
this method to include the eKects of impurity scattering
also).

With the simplification that Az is the only nonzero
Fermi-liquid coefficient, we now have the decoupled sys-
tem of two equations

Notice that the first term is just the noninteracting result
given in Eq. (C24), whereas the second term is clearly
an interaction term. Substituting this expression into
Eq. (C18) and using Bessel function identities (9.1.27
from Ref. 22) yields the current

j =j"+~j, (C34)

where j" is the previous noninteracting current defined
in Eq. (C25) and

—wem*Ai i'vP f'l Jt
27I 'Elo + ZCd* ( X

(C35)

By using the definition of vl in terms of Bessel functions
as given in Eq. (C16), we can put this in the simple form

Bj = [f irr"r —fio "r+],
v~e (C36)

where r+ ——r"* = w+ iy and u" is the previous noninter-
acting conductivity defined in Eq. (C26). It should be
noted that the coefficients f, are linear in the c, 's which
in turn are linear in K as can be seen from Eqs. (C31)
and (C28). Hence bj and j will be linear in the field E
such that a linear conductivity can be defined properly.

At this point a great deal of very tedious algebra (along
with clever use of the definition of 0" in terms of Bessel
functions) can be used to simplify the result into the form
given in Eq. (76).

For a basic review of the fractional quantized Hall e8ect, see
The Quantum Hall Effect, 2nd ed. , edited by R. E. Prange
and S. M. Girvin (Springer-Verlag, New York, 1990).
J. K. Jain, Phys. Rev. Lett. 63, 199 (1989); Phys. Rev.
B 40, 8079 (1989); 41, 7653 (1990); Adv. Phys. 41, 105
(1992).
A. Lopez and E. Fradkin, Phys. Rev. B 44 5246 (1991);
see also E. Fradkin, Field Theories of Condensed Matter
Systems (Addison Wesley, Reading, MA, 1991), pp. 324—
338. It should be noted that Lopez and Pradkin call the
RPA a "semiclassical" approximation.
A. Lopez and E. Fradkin, Phys. Rev. B 47, 7080 (1993).

B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 4'F,
7312 (1993).
C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984);
A. Pinczuk et al. , Phys. Rev. Lett. . 68, 3623 (1992); Y. A.
Bychkov, S. V. Iordanskii, and G. M. Eliashberg, Pis'ma
Zh. Eksp. Tear. Fiz. 33, 152 (1981) [JETP Lett. 33, 143
(1981)]." S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys.
Rev. Lett. 54, 581 (1985); Phys. Rev. B 33, 2481 (1986).
Song He (unpublished).
See, for example, N. d'Ambrumenil and R. Morf, Phys.
Rev. B 40, 6108 (1989), and references therein.



FINITE-W'AVE-VECTOR ELECTROMAGNETIC RESPONSE OF. . . 17 387

S. He, S. H. Simon, and B. I. Halperin (unpublished).
A. Pinczuk, J. P. Valladares, D. Heiman, A. C. Gossard, J.
H. English, C. W. Tu, L. Pfeiffer, and K. West, Phys. Rev.
Lett. 61, 2701 (1988); see also B. B. Golderg, D. Heiman,
A. Pinczuk, L. P6effer, and K. West, Surf. Sci. 263, 9
(1992); A. Pinczuk, M. G. Lamont, and A. C. Gossard,
Phys. Rev. Lett. 56, 2092 (1986).
A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Phys. Rev.
B $9, 9679 (1989).
Y. H. Chen, B. I. Halperin, F. Wilczek and E. Witten, Int.
J. Mod. Phys. 8, 1001 (1989).
Q. Dai, J. L . Levy, A. L. Fetter, C. B. Hanna, and R. B.
Laughlin, Phys. Rev. B 46, 5642 (1992).
M. H. Cohen, M. J. Harrison, and W. J. Harrison, Phys.
Rev. 117, 937 (1960).
S. C. Ying and J. J. Quinn, Phys. Rev. 17$, 473 (1968);
180, 193 (1969); P. M. Platzman, W. M. Walsh, Jr. , and E.
N. Foo, ibid 173, 68. 9 (1968); P. M. Platzman and W. M.

Walsh, Jr. , Phys. Rev. Lett. 19, 514 (1967); Y. C. Cheng,
J. S. Clark, and N. D. Mermin, ibid. 20, 1486 (1968); see
also Electron Liquid Theory of Normal Metals, Proceedings

of the Lebedev Physics Institute, edited by V. P. Silin (Nova
Science, Commack, NY, 1988), Vol. 174, Suppl. 2, for more
recent references.

T. K. Lee and J. J. Quinn, Phys. Rev. Lett. 11, 2144
(1975).
T. Ando, Phys. Rev. Lett. 86, 1383 (1976).
D. Pines and P. Nozieres, Theory of Quantum Liquids (Ben-
jamin, New York, 1966), Vol. I; P. Nozieres, Theory of In
teracting Fermi Systems (Benjamin, New York, 1964).
S. C. Zhang, T. H. Hanson, and S. Kivelson, Phys. Rev.
Lett. 62, 82 (1988); Int. J. Mod. Phys. 6, 25 (1992).
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Se
ries, and Products (Academic Press, San Diego, 1980).
M. Abramowitz and I. A. Stegun, Handbook of Mathemat-
ical Functions (Dover, New York, 1972).


