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The chemical potential and the capacitance of a model quantum dot have been computed, in-
cluding contributions of exchange and correlation in the limit of 0 K temperature. The Schrodinger
equation has been solved self-consistently, taking into account the electron-electron Coulomb in-
teraction and many-body effects within the framework of density-functional theory. We have also
studied the eKect of conducting backgates and of nearby electrodes using the method of images.
Depending on the size of the dot, we derive a prevalence of either the quantization energy or the
electrostatic energy: there is a smooth transition from predominant quantum eKects for small dots
to classical capacitance behavior for large dots. Our simulation reproduces characteristic eKects that
have been experimentally observed, such as the capacitance increase for increasing electron numbers
and irregularities in the chemical potential values when randomly distributed charged impurities are
present.

I. INTRODUCTION

Mesoscopic systems such as low-dimensional semicon-
ductor nanostructures have been the subject of many
recent theoretical and experimental investiga-
tions. Of particular interest has been the transport of
electrons on and off single or multiple quantum dots.
Quantum dots are regions of electron confinement whose
dimensions in all directions are smaller than the typical
length L@ of phase coherence. L~ depends on many fac-
tors, but is particularly large for a quasi-two-dimensional
electron gas generated by modulation doping at a semi-
conductor heterojunction. The extension of the wave
function perpendicular to the heterointerface is typically
much smaller than Ly and smaller than the other di-
mensions of the quantum dot. Therefore this dimension
can often be ignored and the electrons are regarded as
two-dimensional quasiparticles, an approach we are tak-
ing here to reduce the needed numerical resources. The
other dimensions of quantum dots as they are experi-
mentally investigated are often not well known and range
from hundreds to tens of nanometers.

A most characteristic result observed in quantum dot
electron transport experiments is the appearance of a
"periodic" oscillation of the conductance between two
leads loosely coupled through the dot as a function
of electron density (which is typically varied with gate
voltages). ' This effect is a consequence of the gener-
alized Coulomb blockade eKect, and has been given
theoretical foundations in a number of papers. ' A care-
ful inspection of the experimental data reveals that these
conductance oscillations are not exactly periodic. For
example, the period diminishes with increasing electron

density and irregularities of level spacing have been
reported. The magnitude of the period itself is often
not calculated from first principles, but attributed to a
dot-self, dot-gate, or dot-dot capacitance. We attempt
here to give a detailed numerical solution to a "model"
quantum dot which explains various important contribu-
tions to the period of the conductance oscillations. Our
approach is based on local-density-functional theory for
a two-dimensional electron gas. We have included the
eKect of gates and generally of neighboring conducting
structures that cause image force eKects. We also have
included the contribution of spin and many-body effects
within the given framework. Our major findings are that
the concept of a constant capacitance cannot be pushed
too far, particularly for small dot sizes and electron num-
bers. Then the form of the electron wave function and
the eBects of exchange and correlation cause changes of
the capacitance as electrons are added to a dot. There
are also straightforward e8'ects such as changes of dot size
with electron number and changes of dot shape due to
the proximity of charged impurities that contribute to de-
viations from strict periodicity. At smaller electron den-
sities and for small dot sizes, effects such as shell filling
and level pairing may also become important. Overall, a
picture that is considerably more involved than that of
a constant electrostatic capacitance emerges. We discuss
the implications of our results for the definition and con-
cept of capacitance on the nanoscale and compare the
magnitude of the various contributions to capacitance.
We conclude that quantum egects will become promi-
nent at dot sizes smaller than the ones currently investi-
gated or in materials with higher dielectric constant than
gallium arsenide.
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II. MODEL DEFINITION
AND NUMERICAL APPROACH

We have studied a model quantum dot with a quasi-
parabolic confining potential, including the Coulomb in-
teraction between electrons and exchange and correlation
effects within the framework of density-functional theory.

The choice of a two-dimensional model represents a
compromise between realistic simulation, accuracy, and
computational feasibility. Calculations including tens
of electrons in the dot require a rather fine discretiza-
tion grid, since wave functions with a significant number
of maxima (minima) have to be considered. A three-
dimensional approach leads to a prohibitively large eigen-
value problem and would probably not add significantly
new features to the trends of the calculation, because the
vertical dimension of the dot [the thickness of the quasi-
two-dimensional (2D) electron gas layer from which the
dot is obtained] is much smaller than the other two di-
mensions. In this situation the vertical degree of freedom
gives a substantially constant contribution to the total
energy of the system.

A typical lateral confinement structure which can
produce a quantum dot such as the one we have stud-
ied is shown in Fig. 1. The quasi-2D electron gas is
obtained by modulation doping and the dot is defined
by the top metal gate, characterized by a rectangular
aperture (the dashed lines indicate the geometry of the
gate actually used in the experiments, in which the dot
is connected to quantum wires via tunneling barriers, the
coupling by tunneling to neighboring leads is weak and
can be treated as a small perturbation). When a suit-
able negative potential is applied to the metal gate with
respect to the n+ GaAs substrate, the 2D electron gas
is depleted everywhere with the exception of the central
area under the aperture. The resulting shape of the po-
tential confining the electrons in the dot is known to be
approximately parabolic and our calculations have been
performed with a quasiparabolic potential produced by a
positive background charge (introduced for the purpose
of computational conveinence) uniformly distributed on

the surface of the box. For all our calculations the box
has a rectangular shape with an aspect ratio of 4:3 and
the total background charge generating the confining po-
tential has a value of 100q (q being the charge of the
electron), unless otherwise specified.

Along the perimeter of the box we enforce Dirichlet
boundary conditions, equivalent to hard walls. In almost
all the cases we are considering, however, the bound-
ary conditions act where the wave functions have already
vanished because of the action of the quasiparabolic po-
tential.

We assume the effective mass approximation to be
valid and use a value typical for gallium arsenide:
m* = 61.03 x 10 kg. For the discretization of the
Schrodinger equation we apply a standard five point for-
mula over a grid with a number of mesh points varying
between 60 x 45 and 120 x 90.

In the following, the term "box" will be used to denote
the region defined by the Dirichlet boundary conditions
and by the extension of the background charge defining
the potential for confinement, while the term "dot" will
refer to the area where the electron density is nonzero.

The Schrodinger equation is solved self-consistently
with the Hartree (Coulombic), exchange, and correlation
potentials. Self-consistency is reached through a fixed-
point iteration, which in the following will be termed
"outer iteration. " The "inner iteration, " a Ritz itera-
tion, solves for the eigenvalues and eigenvectors of the
banded matrix which is obtained from the discretization
of the Schrodinger equation. The eigenvectors resulting
from each outer iteration are used as initial guesses for
the eigenvalue computation in the following outer itera-
tion. This is useful to speed up the convergence of the
eigenvalue solver, since the potential (and therefore the
matrix elements) of each new outer iteration differs from
the previous iteration only by a small amount.

The Schrodinger equation we are solving is the follow-
ing:

h' .&'&'(r*) + [ V.(r*) + V-(r') + V--( *)

+V, (r, )]q, (r, ) = ~,q, (r;). (1)

Metallic gate Here 6 is the reduced Planck constant, m* is the effective
mass of the electron, @,(r, ) is the wave function for the
ith electron, and e, is its energy eigenvalue. V is the
Coulomb interaction term given by
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FIG. 1. Schematic representation of a typical heterostruc-
ture with electron confinement to a quantum dot.

where % is the total number of electrons in the dot and ~o
and e„are the absolute and relative dielectric constants,
respectively. The relative dielectric constant is the one
for gallium arsenide e„= 12.9. The exchange V„(r;) and
correlation V, „(r;) terms have received extensive atten-
tion in the recent literature. From the numerical view-
point, easiest to include are polynomial representations of
the theory of Tanatar and Ceperley. The theory is par-
ticularly simple if spin polarization is neglected and this
is the approach we have used in most of our simulations.
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We refer to it as the TC theory. We have also verified that
inclusion of spin polarization following the approach of
Perdew and Zunger leads to very slight modifications.
A different, in principle more rigorous, approach to the
determination of V,„(r,) has been described by Krieger,
I i, and Iafrate. This method requires considerable nu-
merical resources and its applications are currently being
tested.

The results for the exchange [V,„(r,)] and correlation
[V, „(r,)] terms of the TC theory are given in the Ap-
pendix with and without the inclusion of spin polariza-
tion. The term Vb(r, ) in the Schrodinger equation repre-
sents the background, confining potential.

We are interested in the limit of zero temperature. Due
to the stepwise shape of the Fermi function, standard
methods such as the Newton scheme are not successfully
applicable for this case. We have therefore used a simple
relaxation technique, with the total potential actually
used at each iteration given by V(i) = V(i —1)(1—n) +
V (i)n, where V(i —1) is the potential which has been
used for the previous iteration and VED(i) is the potential
directly obtained from the electron density resulting from
the previous iteration. o. is the relaxation parameter and
has, in general, to be adjusted "manually. "

Our convergence criterion consists in checking whether
the sum of the mean square differences between the nor-
malized eigenfunctions at two consecutive iterations has
become less than a given threshold, which is typically
set to a value between 10 and 10, in order to ob-
tain a reasonably precise result for the quantities of in-
terest (chemical potential and differential capacitance).
These quantities are obtained through successive differ-
entiations of the total electron energy and. therefore are
very sensitive to even extremely small errors in the eigen-
values. For dot sizes around 100 nm convergence is easily
achieved up to 10—12 electrons and, with a larger but still
acceptable residual, up to 25—30 electrons.

We have performed calculations for isolated quantum
dots, for dots in the presence of a conducting backgate
parallel to the plane which contains the 2D electron gas,
and for dots with a conducting plane orthogonal to the
2D gas, representing an upper limit for the effect of the
edge of a lead. The method of images has been used for
the computation of the electrostatic potentials.

III. COMPUTATION OF THE CHEMICAL
POTENTIAL

One of the most important quantities in the study of
highly confined systems in semiconductors is the chem-
ical potential as a function of the number of electrons
contained. in the structure. The conductance peaks, ob-
served in several experiments between leads connected
to a quantum dot by tunneling barriers, ' correspond
to the alignment of the chemical potential of the quan-
tum dot with the chemical potential in the leads. The
chemical potential is defined as

p, (N) = E(N) —E(N —1),

where E indicates the total energy of the electrons in the
dot. Therefore, the chemical potential represents the en-

ergy necessary to add the Nth electron to a system of
N —1 electrons. In the noninteracting electron picture,
this energy corresponds to the state occupied by the %th
electron. The same would be true for a system obeying
Koopman's theorem24 (i.e. , the lower orbitals are not sig-
nificantly perturbed by the addition of one electron). For
the quantum dot model which we are considering this is
almost never precise, as we found by computing the to-
tal energies for a few values of ¹ Two approaches are
possible. One consists in the computation of E(N) and
of E(N —1) by summing the energy eigenvalues for all
the electrons and subtracting the Coulomb interaction
energy, which would otherwise be counted twice. A fur-
ther correction is to be included in order to take exchange
and correlation contributions into proper account:

1
E(N) = ) q2 n(r)n(p)

Avdp4~"e- lr —pl

+ n(') (E-[n(r)l + E--["(')1

—V-I (r)l —V--[ ( )1)d (4)

where N is the total number of electrons, ci are the en-
ergy eigenvalues for each electron, n(r) is the total elec-
tron density [normalized so that J n(r) dr = N], and
E, , E, „,V, V, „are the exchange and correlation en-
ergies and potentials, respectively.

Another possible approach is based on Slater's transi-
tion rule, which, with a good approximation, yields

p, (N) = E(N) —E(N —1) = E(N —0.5).
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I"IG. 2. Chemical potential vs electron number in a 180 x
135 nm box with hard walls and quasiparabolic confinement.
Conductance peaks which would be obtained between two
leads loosely coupled to the dot are plotted vs the dot poten-
tial in the inset.

We have followed this approach whenever applicable, be-
cause the chemical potential can then be calculated. with-
out the need for d.ifferentiation.

In Fig. 2 we show the results for the chemical potential
versus the number of electrons in a 180 x 135 nm box.
The inset shows the result of a hypothetical experiment in
which the conductance would be measured between
two lead. s weakly coupled to the dot. The conductance
peaks, represented by the vertical lines, are placed in
correspondence with the values of the electrostatic dot
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potential (controlled by means of an electrode or gate)
for which the chemical potentials of dot and leads are
aligned for each integer number of electrons. In this hy-
pothetical experiment the chemical potential in the dot
is not perturbed by the presence of the leads because the
coupling is assumed to be sufficiently weak. We stress
the fact that this graph is for representation purposes
only and the height of the conductance peaks in our fig-
ures has no physical meaning. The origin for the dot
potential scale is set to be coincident with the position
of the conductance peak for the third electron. Notice
that the average spacing between the conductance peaks
tends to decrease for an increasing number of electrons.
This is due to essentially two efFects: the increasing ef-
fective size of the dot and the variations in the electron
density. For few electrons the electron density is peaked
in the center of the box and the efFective size of the dot
(defined as the region over which the electron density dif-
fers appreciably from zero) is slightly smaller than in the
case of many electrons. In this latter case the potential
seen by each electron is shallow and the electron distri-
bution fairly smooth. This leads to a diAerential capac-
itance t g which increases with the number of electrons,
therefore decreasing the width of the intervals between
two consecutive values of the chemical potential, since
IJ, (N + 1) —y, (N) = q /Cg(N) (see Sec. V). The reduc-
tion of the spacing between the peaks is clearly present
in experimental results and was also previously numer-
ically simulated by Stopa. The concept of the efFective
size can be better understood from Fig. 3, where the elec-
tron density is shown for % = 9 for the same parameters
as used in Fig. 2. The density is significantly difFerent
from zero only over an area which is about 70% of the
total area of the box. Changes in the number of electrons
between one and a few tens cause variations between 60%
and 90% for most of the dots we have studied (depending
also on the shape of the con6ning potential).

Except for the efFects of this phenomenon, the chem-
ical potential grows almost linearly with the number of
electrons, which implies that the spacing between the
peaks is almost even for this box size and background

charge. This is a clear indication that the behavior of
the dot is close to the one of a classical capacitor, i.e. ,
that the Coulomb energy associated with the addition of
an electron is much larger than the spacing between the
energy levels originating from the energy quantization in
the dot. We therefore expect much less regular spacing of
the peaks for smaller dots, since the energy quantization
scales with the reciprocal of the square of the box size,
while the Coulomb interaction energy scales with the re-
ciprocal of the box size. The transition is actually fairly
smooth, as can be seen from Fig. 4, where results for the
chemical potential for various box sizes are reported in
the same conductance peak format as the one of the inset
of Fig. 2. The sizes are expressed in nanometers and the
potential reference for each box is scaled multiplying it
by a factor proportional to the linear dimension of the
box itself (the aspect ratio, i.e. , the ratio of the length to
the width of the box, is constant). If the total energy of
the electron system were due only to the Coulomb inter-
action (classical limit), then the graphs would be all iden-
tical after the scaling procedure. This is clearly not the
case, and significant kinetic energy contributions appear
for smaller dots, which give rise to irregularities in the
spacings and to an increase in the value of the chemical
potential. The increase is larger for smaller dots because
the kinetic energy term scales, as mentioned before, with
the square of the reciprocal dot size. The behavior be-
comes almost classical for dot sizes larger than 160 nm.

It is important to notice that for the smallest dots the
peaks appear grouped in pairs. There is a simple expla-
nation for this: for decreasing box size, the Coulomb con-
tribution becomes less dominant and each of the chemi-
cal potential peaks corresponding to odd occupancy ap-
proaches the value for even occupancy. In the limit of
kinetic contribution only, the chemical potential for each
level of an even-odd pair is the same, since the energy
needed to add each of the two electrons is the same and
depends only on the energy of the corresponding orbital.
A splitting appears as soon as the Coulomb interaction
becomes significant, and for large dots it becomes so im-
portant that the effects of energy quantization disappear,
which results in evenly spaced peaks. This trend can be
examined quantitatively in the results shown in Fig. 5,
which shows R—:[p(5) —p(4)]/[p(6) —p(5)] versus the
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FIG. 3. Electron density in a 180 x 135 nm box with hard
walls and quasiparabolic confinement for a total of nine elec-
trons present in the box.

FIG. 4. Conductance peaks vs scaled potential for boxes
of difFerent sizes (expressed in nanometers) with 4:3 aspect
ratio. The potential is scaled by multiplying its value in volts
by the length of the longer side of the box in nanometers.
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piG. 5. Ratjo of [p(5) —p(4)] to [p(6) —p(5)] vs the length
of the longer side for a box with quasiparabolic confining po-
tential and a 4:3 aspect ratio.

length of the box. The aspect ratio of the box is constant
and again equal to 4:3. The confinement is obtained with
hard walls and with a uniform charge distribution cho-
sen for the different box sizes in such a way that the
total positive charge in the dot is constant and equal to
1.602 x 10 " C. As expected, B approaches 1 for dots
of large size.

We remark that the results presented in Figs. 4 and
5 are rigorous for all dot sizes for our model, but that
the data for the smallest dots (below 30 nm) represent
the behavior of real dots only qualitatively. For very
high confinement the third dimension of quantization
may start playing a role, and energies high enough to
populate higher valleys are involved.

The transition between the two limiting cases can be
observed not only as a function of the dot size, but also
as a function of the electron charge: for zero charge, and
therefore no Coulomb interaction, the energy levels will
be the single-electron levels and the peaks will merge in
pairs. This is shown in Fig. 6, where the conductance
peaks for a box identical to the one of Fig. 2 are re-
ported for three values of a scaling factor P by which the
electron charge is assumed to be multiplied. The hypo-
thetical reduction of the electron charge is equivalent to
a real situation: an increase, by a factor IjP, of the di-
electric constant. This is a consequence of the fact that
the Coulomb interaction is proportional to the square of
the electron charge and to the reciprocal of the dielectric
constant.

We have also investigated the effect of changes in the
shape of the con6ning potential. In the limit of large dot
size, only the Huctuations of the spacing between peaks,
but not its average value, are influenced significantly as
long as the dot area is kept constant. This, of course,
is to be taken as a rule of thumb only. Complex effects
of dot shape related to chaos theory have recently been
discussed by Stone and Bruus. Figure 7 shows results
for the chemical potential (a) for a 60 x 45 nm box with
flat potential and hard walls, (b) for a 60 x 45 nm hard
wall box with additional quasiparabolic confinement, and
(c) for a 42 x 31.5 nm flat potential and hard wall box.
When the potential within the box is Oat, the effective
size of the dot coincides with the physical size of the box,
since the wave functions are confined only by the hard
walls. The effective sizes (areas where the electron den-
sity is significantly difFerent from zero) of dots (b) and
(c) are very close to each other and therefore the aver-
age spacing between peaks is almost the same, consistent
with the fact that the average Coulomb energy depends
on the average mutual distance between charges. The
relative spacing between peaks still depends on the ac-
tual shape of the potential, which is different for cases
(b) and (c).

Another important effect which may in part be caused
by the specific shape of the potential has recently been
reported by Ashoori et al. The spacing between peaks
corresponding to the values of the chemical potential is
uneven for the first few electrons and becomes uniform
only for higher electron numbers. This may be due to
the smaller effective dot size for small electron numbers;
it also may be due to the inBuence of impurities as the
following model calculation shows.

A model dot with quasiparabolic confinement and a
180 x 135 nm hard wall perimeter has been considered, to
which two randomly placed impurity clusters have been
added, with four and six positive charges, respectively.
The additional charges create "holes" in the potential,
which cause peaks in the wave functions of the first few
electrons. The charge of the electrons in the lowest states
screens the impurities and the potential appears more
uniform to the electrons in higher states. In Fig. 8 we
show results for the chemical potential of this dot for the
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FIG. 6. Conductance peaks vs dot potential for a 180 x
135 nm box with hard walls and quasiparabolic confinement.
The different curves are obtained reducing the electron charge
by a factor P.
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FIG. 7. Conductance peaks vs dot potential (a) for a
60 x 45 nm box with hard walls and flat potential, (b) for
a 60 x 45 nm box with hard walls and quasiparabolic confine-
ment, and (c) for a 42 x 31.5 nm box with hard walls and Ilat
potential. The efFective sizes of the dots for (b) and (c) are
approximately equal.
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FIG. 8. Conductance peaks vs dot potential for a 180 x
135 nm box with hard walls and quasiparabolic confinement.
The upper curve has been obtained with two randomly placed
clusters of impurities, with four and six positive charges, re-
spectively. The lower curve is for the same box without im-
purities. The reference level for the potential is assumed to
be the one corresponding to the conductance peak for three
electrons.

first few electrons: the upper graph is for the case just
described, the lower one for the same dot without ran-
domly distributed positive charges. The reference level
for the dot potential is set to the position of the conduc-
tance peak for the third electron, as in the previous plots
in this format. There are clear irregularities introduced
in the upper plot by the presence of the impurities, irreg-
ularities similar to the ones observed in the experimental
results of Ref. 17.

IV. EXCHANGE AND CORRELATION EFFECTS

As mentioned, we have included in our calculations the
contributions of exchange and correlation effects within
density-functional theory using the results of the TC the-
ory with and without spin polarization. We now dis-
cuss the relative importance of these contributions to the
chemical potential.

We perform a comparison between the results of a com-
putation with the TC exchange and correlation potentials
without spin polarization, which we have used for all the
calculations described so far because of the numerical
simplicity, and the results obtained from the Hartree ap-
proximation, in which the electron-electron interaction
is restricted to the average Coulomb potential of all the
other electrons. The pure Hartree approach is computa-
tionally more expensive, even though it is less accurate.
A different Schrodinger equation needs to be solved for
each orbital, since the Coulomb term reads

476

GPSS&

jgi
where j is the index of the electron whose wave function
we are calculating.

In Fig. 9 we compare the results for the chemical poten-
tial obtained by including exchange and correlation con-
tributions as given by the TC theory (upper curve) and
by the Hartree approximation (lower curve). These re-
sults are for a box with a 60 x 45 nm hard wall perimeter,

FIG. 9. Conductance peaks vs dot potential for a 60 x
45 nm box with hard walls and quasiparabolic confinement.
The upper curve has been obtained by the TC local density
functional (LDA) approximation, the lower one is the result
with a purely Hartree approximation. The reference level for
the potential is assumed to be the one corresponding to the
conductance peak for three electrons.

in the presence of a quasiparabolic confining potential.
The overall effect of the exchange and correlation contri-
butions appears to be a uniform reduction in the values
of the chemical potential with the ratios of the interpeak
spacings substantially unaltered. Thus the TC correc-
tions "subtract" from the total potential slightly more
than what is subtracted by the removal of the electron
self-interaction term in the Hartree approximation. This
is consistent with the fact that the sign of the correlation
term is negative and that the exchange term coincides,
in the proximity of the electron, with the Coulomb self-
interaction. Numerical convergence is slightly improved
by the presence of the exchange and correlation terms,
because the overall potential term is reduced compared
to the kinetic term.

A further improvement in the accuracy of our approach
can be obtained from considerations of the effects of spin
polarization. Even in the absence of magnetic fields, a
slight spin polarization is present if the number of elec-
trons on the dot is odd: the spin of the electron in the
highest occupied orbital is not balanced. The importance
of the unpaired electron becomes clearly smaller as the
total number of electrons increases. We have used the
spin polarized version of the Tanatar-Ceperley exchange
potential (for the correlation potential we have included
the nonpolarized expression because data are available
only for no or full polarization). The spin polarized ex-
change term has been derived following a procedure anal-
ogous to the one described by Perdew and Zunger for
the 3D Ceperley exchange.

Applying the expressions given in the Appendix has re-
sulted in extremely small perturbations of the values for
the chemical potential, smaller than a few percent for all
previously reported dot sizes, even for just two or three
electrons. Such effects would be important in the pres-
ence of magnetic fields, when significant spin polarization
appears.

V. THE CAPACITANCE OF QUANTUM DOTS

The theoretical explanations of the periodic conduc-
tance oscillations of quantum dots have invariably in-



17 360 M. MACUCCI, KARL HESS, AND G. J. IAFRATE

volved a capacitance of the dot which gives rise to an en-
ergy change e /2C for the addition of one electron to the
dot. The value of the capacitance C is usually estimated
from simple approximations such as the self-capacitance
of a conducting disk or the parallel plate capacitor
formula. It is clear from the preceding sections that
there exists a considerable self-capacitance of the dot,
i.e. , a finite change in chemical potential per electron ad-
dition even without the presence of the gate. Our inves-
tigations show that this indeed represents frequently the
largest capacitance. It is then also clear that the capaci-
tance is not constant, as the period in chemical potential
shows both fluctuations and trends of decrease with in-
creasing electron number. A prominent efI'ect comes from
changes in dot size due to the self-consistency of charge
redistribution. When electrons are added, the dot size
often increases as also found by Stopa. The fluctuations
arise from various efI'ects, including the form of the wave
functions (size quantization), the proximity of impurities
and corresponding changes in dot shape, and possible
exchange and correlation contributions. The presence of
gates and metallic objects (contacts) further modifies all
these eKects. As a consequence, the use of a constant
capacitance and even the concept of capacitance need to
be augmented as described below.

It is natural to associate a capacitance or, more ap-
propriately, a difI'erential capacitance to a quantum dot,
since each increment of the charge stored in the dot
causes an increment of the chemical potential. The diKer-
ential capacitance C = AQ/AV can immediately be ob-
tained from the results for the chemical potential. For a
single charge we have q = AQ and [p(N+ 1) —p(N)]/q =
AV. Thus Cg = q /[p(N + 1) —p(N)]. In Sec. III we
have seen that for relatively large box sizes the sepa-
ration between conductance peaks (i.e. , the increment
in the chemical potential) does not fluctuate much, but
shows a clear trend of a decrease with increasing electrons
number.

In Fig. 10 we report dot capacitance vs electron num-
ber for a 160 x 120 nm box with hard walls and quasi-
parabolic con6.nement potential. The inset contains a
3D representation of the self-consistent potential for ten
electrons. The capacitance tends to increase with the
number of electrons, mainly because of the expansion of
the dot. There is a clear trend towards a saturation:

for many electrons the capacitance should approach the
one for a 2D metal disk having an area corresponding to
the area of significant electron density. From the self-
consistent wave functions, this area can be determined
to be approximately circular, with a radius B = 60 nm.
A metal disk of this size would have a self-capacitance of
8606 B = 55 x 10 ' F,' in agreement with the results.
As the number of electrons increases, it becomes very
difIicult to reach convergence of the self-consistent itera-
tion procedure, in particular in our case of zero tempera-
ture, when Newton-type schemes cannot advantageously
be used. The particular sensitivity to numerical errors
arrives from the fact that the capacitance is obtained
through a differentiation of the chemical potential p(N),
of the system, therefore a small numerical noise in p, (N)
leads to very large relative errors in C(N).

The self-capacitance scales almost linearly with the ef-
fective radius of the dot, as in the case of a metal disk. In
Fig. 11 we report the capacitance values for four boxes of
difFerent sizes vs the electron number. The solid squares
represent the results for a 60 x 45 nm box, the solid. circles
for an 84 x 63 nm box, the empty circles for a 120 x 90 nm
box, and the empty squares for a 160 x 120 nm box.
The boxes have perimetral hard walls and there is fur-
ther confinement provided by a quasiparabolic potential
resulting from a uniformly distributed 1.602 x 10 C
positive background charge.

Up to this point, we have considered only the self-
capacitance of the d.ot, as if it were isolated in space,
without other electrodes in its proximity. In the ac-
tual experimental situation, however, a conducting back-
gate and the electrodes (generating the confinement)
contribute to the capacitance. An exact solution for
a complex structure such as the ones experimentally
investigated ' ' is beyond the scope of the present
paper as we only wish to determine the relative impor-
tance of the various contributions and to give a quali-
tative understanding of the eKects of external electrodes
on the dot spectrum. Complete self-consistent solutions
have been reported for particular cases as mentioned.
Our approach to the inclusion of gates/contacts is based
on the application of the method of images, which pro-
vides a good estimate of the capacitance between the dot
and a conducting backgate and an upper limit for the
capacitance between the dot and a lateral lead.
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FIG. 10. Capacitance vs number of electrons for a 160 x
120 nm box with hard walls and quasiparabolic confinement.
The self-consistent potential for ten electrons is shown in the
inset.

FIG. 11. Capacitance vs number of electrons for boxes
with quasiparabolic confinement of different sizes: 60 x 45 nm
(solid squares), 84 x 63 nm (solid circles), 120 x 90 nm (empty
circles), and 160 x 120 nm (empty squares).
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The backgate is usually much larger than the dot size,
and we approximate it by an infinite conducting plane.
The efI'ect of this plane of constant potential is then
equivalent to the introduction of an image dot placed
at twice the distance. The image dot contains opposite
charges and interacts with the real dot via the Coulomb
force. Prom the analogy with the classical case we ex-
pect the capacitance to increase from the self-capacitance
value with increasing gate proximity. We must remark
that for a gate at a very short distance from the dot (rel-
ative to the dot size) and, therefore, for strong interac-
tion with the image charges, the exchange and correlation
terms in the Appendix are not valid anymore. For such
cases we have used a simple Hartree approximation, and
Lp has been obtained through a double differentiation
of the total energy E(K) of the electron system, which
is given by

1
E(%) = ) q2 n(r) n(p)

dFdp
4vrepe„ (r —

p~

q n(r) n*(p)
dFdp,

4vrepe, [r —p(

where the second term on the right hand side corrects for
the double counting of the electron-electron interaction,
as in Eq. (4), and the third term for the double counting
of the interaction between the electrons and their images,
whose density is indicated with n*(r).

In Fig. 12 we report the results for the capacitance vs
the number of electrons for a 120 x 90 nm box with hard
walls and quasiparabolic confinement. The squares indi-
cate the self-capacitance of the dot and the circles rep-
resent the capacitance values with a backgate at 60 nm
(solid circles) or at 30 nm (empty circles). Overall, the
expected increase occurs for all electron numbers. Mov-
ing the gate even closer to the dot causes a further in-
crease of capacitance and an interesting additional efI'ect
appears, as shown in Pig. 13. Here the values of the chem-
ical potential are shown (for a 160 x 120 nm box) in the
usual conductance peak format. The dot to gate distance
is now (a) 6 nm, (b) 8 nrn, (c) 16 nm, and (d) infinity.
For infinite distance the spacing between conductance
peaks is almost even. However, for the very short gate
distances, pairing between peaks becomes apparent as it
does in Fig. 6 for reduced Coulomb interaction. This is,

a)

8
cd

U

Q

b)

c)

I

10
I I

2p 3p 40

Dot potential (mV)

I

50 60

FIG. 13. Conductance peaks vs dot potential for a 160 x
120 nm box with hard walls and quasiparabolic confinement.
The different curves are for a backgate at a distance of (a)
6 nm, (b) 8 nm, (c) 16 nm, and (d) for no backgate. The
reference level for the potential is assumed to be the one cor-
responding to the conductance peak for three electrons.

of course, the consequence of the reduction of the relative
importance of the Coulomb energy compared to the ki-
netic component, due to the presence of the image charge
in close proximity of each electron. If the image charge,
which has opposite sign, is at a distance from the cor-
responding electron comparable to the average interelec-
tronic separation in the dot, the electrostatic interaction
will be reduced and, in the limit of zero dot-gate distance,
totally suppressed. Therefore, for extremely close back-
gates, significant quantum efI'ects would be noticeable
even in large dots. This case is not completely hypothet-
ical; something analogous should be realized in quantum
wells containing large and equal numbers of electrons and
holes as they are present in semiconductor lasers.

It is interesting to see how the capacitance for a given
number of electrons varies as a function of the dot size in
the absence and in the presence of a conducting gate. In
Fig. 14 we show the capacitance at N = 4 vs the length
of the longer side of a quantum box. The lowest curve
is for an isolated dot, without any gate: the capacitance
growth is almost exactly linear with the size, as in the
classical case. The second lowest curve is for a gate at
a distance d of 60 nm. The capacitance increase is still
linear in this case. A superlinear behavior appears in the
third curve and becomes more pronounced for the shorter
distance of 5 nm, approaching a well known limit: the
parallel plates capacitor, in which the capacitance is pro-
portional to the surface area of the electrodes and thus
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FIG. 12. Capacitance vs number of electrons for a 120 x
90 nm box with hard walls and quasiparabolic confinement
with no gate (solid squares), with a backgate at 60 nm (solid
circles), and with a backgate at 30 nm (empty circles).
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FIG. 14. Capacitance vs box length for a backgate placed
at various distances. The con6ning potential is quasi-
parabolic and the number of electrons in the box is constant
(N =4).
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FIG. 15. Capacitance vs number of electrons for a 160 x
120 nm box with hard walls and quasiparabolic con6nement
with no lateral wall (solid circles) and with a conducting lat-
eral wall at 80 nm (empty circles) and at 5 nm (solid squares).

to the square of the dot size (efFective radius). This limit,
however, is never reached in the known experimental sit-
uations, which deal with gate-to-dot distances that are of
the same order of magnitude as the dot size, and there-
fore much larger than what would be needed to validate
the parallel plate capacitor approximation.

Even though data have been reported for dot sizes
down to zero, it is to be noted that they are exact for
our model dot, but the assumptions behind the ability
of our model to represent real quantum dots may break
down for sizes below 20—30 nm.

Regarding the dot-to-lead capacitance, we have com-
puted an upper limit corresponding to the capacitance
between the dot and a vertical conducting wall located
next to (and perpendicular to) the dot. Again we use the
method of images, placing now an image box in the same
plane as the original box, mirror symmetric with respect
to the conducting plane. The overall efI'ect of this co-
planar image box is not very large, even for very short
distances between dot and lead. Results are presented in
Fig. 15, where the capacitance of a 160x 120 nm quantum
box is plotted vs the number of electrons for no lateral
wall (solid circles), for a lateral wall at 80 nm (empty cir-
cles), and at 5 nm (solid squares). Even for the case with
the wall at the shortest distance, the relative increase of
the capacitance is not large, about 30%%uo at most. We con-
clude that in most experimental situations the main con-
tribution to capacitance comes from the self-capacitance,
which grows almost linearly with the dot size (efFective
radius), just as the self-capacitance of a 2D metal plate.
Additional contributions to capacitance are mainly due
to the backgate and also to the leads. These additions
are typically not prevalent and the usage of the parallel
plate capacitor formula to compute total dot capacitance
is not even qualitatively justified.

VI. CONCLUSIONS

The electronic structure of a Inodel 2D quantum dot
has been investigated, taking into account the electron-
electron interaction and many-body efI'ects based on den-
sity functional theory. We have been mainly interested in
the numerical computation of the chemical potential and
of the diff'erential capacitance of the dot as a function of
its size and of the number of electrons.

Our results show a gradual transition from a behavior

dominated by quantum efI'ects in small dots to an almost
classical, capacitorlike behavior of large dots. Quantum
eff'ects become important when the quantization energy
is of significance compared to the Coulomb energy. This
happens in very small dots, since the quantization energy
scales with the reciprocal square of the dot size I, while
the Coulomb energy is linear in l./L. The predominance
of quantum efI'ects also should occur in materials with
high dielectric constant, because of electrostatic screen-
lIlg.

We have investigated the various contributions to the
dot capacitance from nearby electrodes and concluded
that they give only corrections to the self-capacitance
which represents the dominant term in the geometries
usually used in experiments. The parallel plate capaci-
tor formula represents an inadequate approximation for
these structures.

Our model dot reproduces typical features observed in
the experiments, such as the capacitance increase associ-
ated with the addition of more electrons on the dot and
the irregularities in the spacings between the values of the
chemical potential when randomly distributed impurities
are present.

Many-body efI'ects, included by means of the exchange
and correlation terms, acct the capacitance values and
may play a more prominent role in more complex and
smaller structures.

Overall, a rich variety of quantum eKects emerges,
which prompts further theoretical and experimental in-
vestigations. In particular, quantum dots with sizes be-
low 30 nm or dots of materials with higher dielectric con-
stant than the one of gallium arsenide may provide ex-
tremely interesting opportunities of testing the validity
of the approach to the many-body problem.

Note added in proof. It has come to our attention that
extensive work on mesoscopic capacitors has been per-
formed by M. Buttiker and co-workers and will be pub-
lished in Phys. Lett. A.
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APPENDIX

This appendix deals with the derivation of the ex-
change and correlation potential terms to be used in the
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Schrodinger equation from the polynomial expressions of
the exchange and correlation energies obtained for a two-
dimensional electron gas by Tanatar and Ceperley. En-
ergies and potentials are expressed in scaled rydbergs,
therefore the MKS value can be obtained multiplying by
the conversion factor 2.17989 x 10 m* j(me„), where
m is the mass of the free electron. The expression given
in Ref. 21 for the exchange energy in the absence of spin
polarization is

1+dg~+ d2m + d3u) + d4m

(1 + Cyrus + C2rLt + Cstos)2

dg ——2.26) d2 ——2.635)

d3 ——2.007, d4 ——0.705 97. (A5)

When the topmost orbital is occupied by an unpaired
electron, a further refinement in the calculation can be
obtained considering the spin polarized version of the TC
exchange energy:

8~2 1 . aE, = — —with r, = —,a=
3~ r. ao

1

err p
(A1) (A6)

d(pE, „)
ex

dp

Therefore we have

d (p@corr )
corr

dp

where ao is the Bohr radius and p is the local electron
density.

For the correlation energy we have

1+Cpm

1+C +C ro2+C
Co ———0.3578,
Cg ——1.13, C2 ——0.9052, Cs = 0.4165. (A2)

V,„and V, „are obtained by taking the functional
derivatives

V, g ——— ~DIv'~~+P~ (~+&)"+ (~ —E)"

+(p1+ p&)'I'
(pt + pt)'—

(A7)

(v n~D+ci '('+r.)"+ i~ —()"

where ( represents the degree of polarization, i.e. , ( =
(p1 —pt)/(p1 + pt), with p1 and p~ being the electron
densities for spin up and spin down, respectively. By
taking the proper functional derivatives we obtain the
expressions for the spin-polarized exchange potential

and

V,
4~2 1

(pi+~~)" —', &v+6 —v & —( )(pt + ps)
(A8)
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