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Renormalization-group calculation for electrons in a half-filled Landau level

S. T. Chui
Bartol Research Institute, University ofDelaware, Newark, Delaware 19716

(Received 19 March 1993)

The major obstacle for analytic calculations for electrons in the lowest Landau level arises from the
degeneracy of the single-particle eigenstates. When the electron-electron interaction is included, the di-
agonal energy of different basis states is no longer the same and degenerate perturbation theory can be
carried out. The near degeneracy of the single-particle states is manifested as an infrared-divergent per-
turbation series which is similar to that of a collection of one-dimensional interacting spinless chains.
Thus a renormalization-group scheme can be developed. The range of the interparticle potential affects
the change in diagonal energy for particle-hole fluctuations. For the Coulomb potential we find that the
coupling constants remain unchanged over many length scales. The system remains gapless, consistent
with recent transport and surface-acoustic-wave measurements.

I. INTRODUCTION

The discovery of the integer and fractional quantized
Hall e6'ect (FQHE) has generated much excitement re-
cently. The FQHE is believed to come at odd-
denominator filling factors so that the ground state does
not possess long-range positional order and a gap exists
in its excitation spectrum. As of yet the study of the
physics of the ground state at other filling factors such as
those with even denominators or at low densities is still in
its infancy.

The first violation of the odd-denominator rule occurs
at v= —,

' and is interpreted as being due to a spin effect. '

Violations of the odd-denominator rule because of
different physics at half-filling for narrow channels were
predicted by Chui. ' This phenomenon was subsequent-
ly observed by Timp et al. For two-dimensional (2D)
samples at even-denominator filling factors such as one-
half, Jiang et al. found a dip in the longitudinal resistivi-
ty but no Hall plateau, a finding very different from that
of the conventional FQHE. This was interpreted in
terms of a quasisolid wave function with algebraic long-
range positional order previously considered by Chui,
Ma, and Hakim. This coherent state of intermediate
long-range order which we called a marginal solid
presents interesting features in its excitation spectrum.
The phonon excitations, which were the Goldstone
modes when the long-range order was completely broken,
are no longer gapless because the long-range order is only
algebraic. Gapless excitation s corresponding to the
Goldstone mode that consists of density Auctuations can
still be constructed from this wave function, however.
The possibility of a marginal solid phase at half-filling is
also suggested by variational and finite-size scaling cal-
culations.

Other possible ground states at half-filling have also
been proposed. Kuramoto and Gerhardts have studied a
charge-density wave (CDW) state with long-range order
at half-filling with mean-field theory and found that the
square lattice is more stable than the triangular (hexago-
nal) lattice. Fano, Ortolani, and Tosatti' have con-

sidered the triangular lattice with long-range order and
its coexistence with hexagonal lattices and the question of
particle-hole symmetry. Recently Halperin, Lee, and
Reed "conjectured that the half-filled state is a Quid also
with gapless excitations. They found logarithmic correc-
tions that suggest an infinite mass and argue that many
features of the fluidlike behavior remain. We do not
know at the moment whether this description implies the
same result as ours. After all, an infinite mass suggests a
very high density of states and a concomitant Fermi sur-
face instability, which may lead back to a solid. For ex-
ample, for an ordinary Fermi Quid with a Coulomb in-
teraction, a large mass implies a small Bohr radius and a
large r„ implying a Wigner instability in a solid. To
better understand the nature of the ground state, we have
carried out a systematic analytic renormalization-group
(RG) calculation in this paper.

The major obstacle for analytic calculations for elec-
trons in the lowest Landau level arises from the degenera-
cy of the single-particle eigenstates. When the electron-
electron interaction is included, the diagonal energy of
different basis states is no longer the same, however.
Thus degenerate perturbation theory can be carried out
by starting from the state with the lowest diagonal ener-
gy. This paper reports the result of such a calculation.
The state with the lowest diagonal energy consists of a
periodic array of clusters as is illustrated in Fig. 1. This
is similar to a collection of Fermi surfaces as in a collec-
tion of 1D chains. For particle-hole excitations with

FICs. 1. A schematic diagram showing the occupied quantum
numbers ("sites" or y momentum in the Landau gauge) (solid
line) and the unoccupied sites (dotted lines) for the state with
the lowest diagonal energy.
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A. "Unperturbed ground state"
and single-particle excitation energies

We first discuss the configuration with the lowest diag-
onal energy. One can use either the angular momentum
gauge or the Landau gauge in describing the single-
particle eigenstates. In this paper we use the Landau
gauge under rectangular boundary conditions with aspect
ratio a =L /L =2/&3; commensurate with the triangu-
lar Wigner lattice, the results for the angular momentum
gauge will be similar. Many particle states can be con-
structed from Slater determinants of the product of the
single-particle states. These many-particle states possess
different Coulomb energy. We pick the configuration of
the electrons that minimizes the diagonal part of the
Hamiltonian and investigate systematically the particle-
hole excitations away from it.

The Landau orbital is characterized by its y momen-
tum 2vrj /L~ and is given by (distances are expressed in
units of the cyclotron radius in this paper)

P (r)=exp[ix y —(x —x, ) /2]/(rr' L )'

x =bj, b=2~/Ly .

The Hamiltonian in second quantized form can be writ-
ten, except for trivial constants, as

H= QA(j„j2,j3,j4)C C C C
I:J1

(2)

The As are integrals of the Coulomb potential and the
Landau orbitals P s. It is given by

A(j,j, )= g U[(j /a+j a)' ]
J = oo

X exp [—(j, /a +jz3a )rr/N, ]

Xcos(2vrj j»/N, )Q~/2N, . (3)

U(q ) =e /2vrelq is the Fourier transform of the interpar-
ticle potential. When the momentum transfer jp3 is
small, 2 =1/j23. This divergence is due to the well-
known long-range nature of the Coulomb potential. In
this paper we shall also discuss the effect of a short-range
interaction. For a 5-function interaction its Fourier
transform U(q ) = Uo is a constant. In that case

momentum transfer q, the change in diagonal energy is
proportional to q lnq for the Coulomb potential and to q
for short-range potentials. The near degeneracy of the
single-particle states is manifested as an infrared diver-
gent perturbation series which is similar to that of a col-
lection of 1D interacting spinless chains. Thus a RG
scheme can be developed. We find that the coupling con-
stants remain unchanged over many length scales. Thus
the system behaves as if it is at "criticality" for all practi-
cal purposes.

Recent surface-acoustic-wave measurements' and
transport measurements near half-filling' suggest the ab-
sence of a gap but do not settle the issue of marginal solid
versus Auidlike behavior.

II. RG CALCULATION

A '( u, y ) = Uo f dx exp [ —(x /a +y a )vr ]

X cos(2vrxu )Qrr/2N,

= Uo exp[ —(u +y )a~]Qavr /2N, (4)

H, = g g ti(k) g C; iC;C;+i, C +k+i+c c. (6)
/=1 k=1

The t's are the hopping integrals.
The configuration that minimizes the diagonal energy

depends on the form of V(k ). At large k, V(k ) decreases
as k is increased because of the repulsive nature of the
Coulomb potential. However, it a~so possesses an attrac-
tive part as a result the exchange so that as k approaches
the origin V(k ) attains a maximum and then decreases. '

More precisely,

V(k)=2[2(j23=0,j» =k) —A (jz3=k, j» =0)],
where j,„=j,—jb', the first (second) is the direct (ex-
change) contribution. At small distances k, these two
terms are comparable in magnitude; the net value of V is
reduced. As k increases, the exchange contribution dies
off exponentially fast and only the first term remains. '

The distance $, at which V turns from repulsive to attrac-
tive is independent of the sample size X, . Because of this
attractive part of V, the particles have a tendency to form
clusters with N, contiguous occupied sites separated
from each other by N, empty sites. N, = [+vN, ], v is
the filling factor, N, is the total number of electrons. The
square bracket means the integer closest to N, . This is il-
lustrated in Fig. 1. For systems with less than 16 elec-
trons, we have enumerated all possible states and verified
that this is indeed the lowest energy configuration. As we
discuss in Appendix A, the ground state from small clus-
ter exact diagonalization is also dominated by this kind of
cluster configuration. Our RG calculation does not de-
pend on the precise value of the intercluster separation.
It only depends on the fact that the array of clusters is a
minimum of the diagonal part of the Hamiltonian.

We next investigate the fluctuations from the cluster
configuration due to the off-diagonal part of the Hamil-
tonian H, . Each of the clusters can be regarded as a 1D
Fermi sea with a Fermi momentum kF=+av/v'3. The
total system consists of an array of iV, such clusters la-
beled by cluster indices l. The diagonal part Hd provides
for a self-energy which acts as an effective kinetic energy
for the particle-hole excitations away from the cluster
configuration. These self-energy corrections render the
particle-hole excitations nondegenerate; thereby facilitat-
ing the perturbation calculation. This is the essential

is symmetric with respect to its two arguments. There is
a similarity between (2) and the Hubbard model. To
bring out this similarity and to gain more insight, we
decompose the Hamiltonian as a sum of a diagonal Hd
and an off-diagonal H, term as

H =Hd +H, ,

H„= g V(k)n~n +k,
k,j
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The details of its evaluation are discussed in Appendix B.
We find

b,E(q»)= f dq U(q„, q»)exp[ q /2 —
q /2—]+a/2qrN, .

The energy difference in (8) is proportional to 1/"t//N,
and thus to the momentum differences between site k and
site k —1, 2'/L =+2qra/N, . The net energy change
when a particle hops from site q to site q +p is ob-
tained recursively by summing over k. We get in the con-
tinuum approximation that

E(p )=[p lnp —p (1+0.5 ln8)]/2qr . (8a)

This large increase in the diagonal energy is the result of
the long-range nature of the Coulomb potential. For
short-range potentials, the increase in diagonal energy is
linearly proportional to the momentum change; the loga-
rithmic term is absent and the fluctuation then becomes
bigger.

The numerical results for E for system sizes N, =128,
512, and 2048 are shown in Fig. 2 for particle (hole) exci-
tations. The excitation is characterized by its distance (y
momentum) from the closest clusters; this distance con-
stitutes the x axis in the figures. The energies are all posi-
tive, proving that the configuration that we picked is
indeed a local minimum. At small distances, the linear
dependence is more prominent than the weaker logarith-
mic correction.

When the interparticle potential U is a 6 function,
from Eq. (4) A (j,i ) = A (i,j ). Hence V=O. The
effective kinetic energy becomes zero; the single-particle
states remain degenerate. Hence the case of the 6-

idea behind conventional degenerate perturbation theory.
We now describe the change of this diagonal energy.

The energy for particle-hole excitations is the sum of
the energies for particle excitation and hole excitation.
Because of particle-hole symmetry, the particle excitation
energy is the same as the hole excitation energy. When a
particle is taken from site k —1 to k the energy change is

n=N —1

bE(k)= g V(nN, +N, +k —1)—V(nN, +k —1) .
n=0

(8)

function potential seems to be qualitatively different from
the Coulomb potential. In that case our calculation is
not applicable.

For particle-hole excitations of total momentum
transfer q, the total change in energy is the sum
of the particle energy change of momentum q and
hole energy change of momentum q

—q, q ln
~ q

+(q —
qF ) ln~q —

qF ~. For small q, this is well approxi-
mated by q in~q~. This can be seen by writing q„=xq
with 0 & x & 1. Then the total energy is
q[ln~q ~+x ln~x ~+(1—x )ln~ 1 —x ~]. For small q, the first
term in the square bracket dominates and we obtain the
approximation claimed.

B. Renormalization-group calculations

The configuration of the electrons with the lowest diag-
onal energy can be viewed as an array of 1D chains. The
self-energy correction due to the Coulomb potential pro-
vides for an effective 1D kinetic energy for the particle-
hole excitations away from this configuration. The kinet-
ic energy is now larger by a logarithmic factor than the
linear momentum dependence of a 1D electron gas. A
1D electron gas has well-known instabilities that occur at
momentum transfer 2kF =N, 2~/I. . The 2D density
operator p is given by

p(K», K ) = g exp( K'/2+iK„j —)C +K /2Cj —K /2 .
J

The 2D density response
K„)p(K»,K—) ) is equal to

g exp[ K /+iK, (—q, —
q2 ) ]

function (p( —K,

X ( Cq +K /2Cq K /2Cq2 K /2Cq&+K /2)

Thus the "2kF instability" corresponds to a density insta-
bility with a periodicity along the y direction.

To treat the intercluster scattering in a more systemat-
ic basis, we introduce the cluster momentum q and
define a basis set

~ q, q, ) = g exp(iq l ) ~ q„l ) .

/

J
VM

/

/.
X

Ns=128
------ Ns=512

p I I j
0 2

— ———Ns=2048

4 6 8 10
k (0.1/I)

FIG. 2. The self-energy for system sizes N, =128, 512, and
2048 for particle excitations. The excitation is characterized by
its distance (y momentum) from the closest clusters; this dis-
tance constitutes the x axis in the figures. The energy is mea-
sured in units of e /cl.

This kind of basis state has been used in the mean-field
CDW calculation' and discussed in the small sample cal-
culation. ' They are eigenstates of two commuting
discrete translation operators expi(aC ), expi(2qrC /a ).
C ~ are the center of gyration operators. The labels
q, q are the quantum numbers of the two translation
operators and correspond to the x and the y momenta.
The ground state we have picked corresponds to the q~
states filled from —kF to kF and all possible q filled for
each of the q s. The scattering matrix element can be ex-
pressed in this basis.

The usual treatment of the renorrnalization-group cal-
culation is described in terms of coupling constants g, z
at momentum transfers 2kF and 0. Neglecting the over-
lap between clusters, we get for momentum transfer
2kF(g, )
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k—F p q—. kF p'+q. IH1k~ p; k—F,p'& = g exp(i2~q. xIN, )& k—F, l, kF, l+xIH IkF, l; k—F, l+x &

= g exp(i 2vrq„x /N, ) 2 [ —kF, kF ( 1+2x /v), kz( —1+2x Iv), kz ]

=B[ —kF, kF(1+2x /v), kF( —1+2x Iv), k~;q, ] .

In the notation of Eq. (3), j23=2kz, ji3=2xkz/v. Performing the sum over x, we obtain j =q N, /2kF+mvN, /kF.
Only the m =0 term dominates and

B[—kF, kF(1+2x/v), k~( —1+2x Iv), kF;q, ]=U[(j, Ia+ jz3a)' ]exp[ —(j, /a+j 23a )vr/N, ]+~/2N, .

In a similar fashion for small momentum transfer q (g~ )

& qy+kF, p —q„; —qy kF,p—'+q ~H ~kF,p; —kF,p')
= g exp(i 2mq, x /N, ) & q +k~, 1; —q kF, l +

—x H
~ kF, l; kF, l +—x )

= +exp(i2rrq x/N, )A [q +k~, —
q +kF( —1+2x/v), kF( —1+2x/v), ky ] .

Hence j23=qy, j» = —qy+2k~(1 —x/v). Summing over
x, we obtain j„=q„N, /2kF +m vN, Ikz. The matrix ele-
ment thus becomes

U[(q +q )' ]exp[ —harv(q /2k+) /a —a /2]

X cos[2vrq„(2kF —
q )IN, ]+rrl2N, .

The g's defined in the 1D problem are related to the
coefficients B defined above by g =L B. Since B =X, , g
remains constant as the system size is increased.

As we see from the above, for the present 2D problem,
these matrix elements also depend on the additional x
momentum. We capture this effect with an additional
subscript by focusing on coupling constants g; - with

j=1(2) corresponding to large (small) x momentum and
i = 1(2) corresponding to large (small) y momentum.

The infrared divergence is not expected to affect the
response function at small momentum transfers. A
zeroth-order approximation that deals with the long-
range nature of the Coulomb potential is the random-
phase approximation (RPA), from which we get
+=go/[1+v(q)go]. Displaying the real and imaginary
part explicitly we obtain g ' =v(q ) —i co/q oThus the. .
detail nature of yo is overwhelmed by the Coulomb in-
teraction. In the same vein the small momentum transfer
interaction g22, being proportional to 1/q, is divergent
and needs to be screened. In the RPA we get
g(p ) =g (p ) l[1+g (p )go], where g is the unscreened
coupling constant. To obtain more quantitatively reliable
results, the screening should be more carefully treated.
In this paper, we shall focus more on elucidating the
physics and shall settle for the RPA for the screening.
The contribution from the skeleton bubble yo is nonzero
only if the particle and the hole came from the same clus-
ter. It can be easily evaluated and is found to be
go=1/ln(q). Thus g2z=h21n(q) where hz is nondiver-
gent as q~0.

For short-range interactions, all the screening is not

necessary while the energy denominator remains linearly
proportional to the momentum change. Both the zero
momentum channel and the 2kF momentum channel are
logarithmically divergent.

We shall assume that the magnetic field is high enough
that all spins are aligned. In our problem g2 is much
larger than g& because the latter involves a much smaller
overlap. An estimate of the initial value of the 2kF ma-
trix element can be obtained from the Hamiltonian.
Within the same chain g, =0.38, and between the
nearest-neighbor chains g i ( Al = 1 ) =0.000 595. These
can be Fourier transformed to obtain the coefficients
g, (p ). Because g, (hl) dies off rapidly as a function of the
cluster separation hl, its Fourier transform g, (p ) is not a
strong function of p. Hence g]2=g». As we shall see,
because of the weak interchain backward scattering cou-
pling constant g&, the 2D CDW fixed point is never
reached for practical purposes.

The parquet diagrams for coupled 1D chains have been
discussed by Gor'kov and Dzyaloshinskii' and the RG
equations have been discussed by Lee, Rice, and
Klemm. ' For a 1D electron gas, because of the cancella-
tion between the Cooper and the zero-sound channel, a
CDW instability does not develop for a repulsive (posi-
tive) g, . For coupled chains g, (p) first scales toward
zero. Because of interchain coupling, the backward
scattering matrix element exhibits a momentum depen-
dence. Because of this eventually at certain momentum
p„gi(p, ) becomes negative and eventually an infinitely
sharp peak is developed such that g i (p, )~—~. It is not
difficult to modify their result for the present problem.

The diagrams for the vertex function to the lowest or-
der are essentially identical to those in the 1D calcula-
tjon' and are shown in Fig. 3. The lines in the Feynman
diagrams of Fig. 3 are propagators with the Hartree-Fock
self-energy corrections incorporated. We keep track of
the momentum dependence of the matrix elements with
the notation g(j23,j13,p). The scattering amplitudes
corresponding to Figs. 3(a)—3(h), are, respectively,
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f dq3dp'g(2kF+q3, q3,p')g(2kI;+q3, q~, p —p')8(q3 )0)/[2vrvq3 ln(q3)],

f dq3dp'g(2k~+q3, q„p'}g(q„q3+2kF,p —p')8(q3) 0)/[2vrvq, ln(q, )],

f dq3dp'g(q, , 2kF+q„p')g(q„2k~+q„p —p')8(q, )0)/[2mvq3 ln(q3)],

f dq3g (2k~, q3,p ) 8(q3 )0) /[2m vq3 ln(q3 )],
f dq3dp'g(2kF, q3,p )g(q3, q3+2k~, p')8(q3 )0)/[2mvq3 ln(q3)],

f dq3dp'g(q3, 2k+,p')g(q3, 2kF, p —p')8(q3 )0)/[2mvq3 ln(q3)] .

(10)

In the conventional 1D RG calculation, there is a can-
cellation of the scattering amplitudes between the Cooper
and the zero-sound channel. In the present case because
of the momentum dependence of the matrix elements the
cancellation between these two types of terms becomes
incomplete. However, the incomplete cancellation only
provides for nonlogarithmic correction in the second-
order diagram here.

Recall that g2z lnq, for scattering amplitudes involv-
ing g22, this logarithmic factor is canceled out by the ad-
ditional logarithmic factor in the energy denominator
and one ends with the same logarithmic amplitudes as in
the conventional 1D problem. The large momentum (x
or y) transfer scattering matrix elements g„,g2, are not
divergent and are not strongly affected by screening.
Thus scattering involving these is more suppressed by the
energy cost, the corresponding scattering amplitude is
proportional to ln[ln(q, }] rather than ln(q, ) (q, is the
cutoff) as in the conventional 1D problem.

We obtain the first-order RG equations:

~ 21 11 12 ~~++ (1 lc)

where the prime denotes differentiation with respect to
x =in[min(q, co)]/Ez. As co approaches zero, x ap-
proaches —~. The lowest-order perturbation series for
the small momentum transfer scattering is given by

g2$ ~2x + (g jl +g 12 )»lx
l

The divergence due to higher-order scattering is weaker
than the bare divergence due to the long-range nature of
the potential. In addition g& is small, thus it is a good
approximation to assume that g22 remains unchanged.

We have solved Eq. (11) numerically with a sixth-order
Runge-Kutta algorithm in double precision. The scaling
trajectories are shown in Fig. 4. We find that the cou-
pling constants remain basically unchanged. This is con-
sistent with the fixed point at g» =g, 2

=g&& /(1+g&& 1n~x ~/2mv). A stability analysis about
this fixed point shows that the difference 5g=g» —g, z
changes according to the equation

g»(p)= —[g»+g2i(gi] —gi2)]/2@vx,

g )2 (p }= —[g (2
—g„(g„—g „)] /2m vx,

(1 la)

(1 lb) Thus

(5g)'=2(g2, —g„)5g/2~vx .

5g =5g (x /x )

The difference can increase in principle. However, for
practical purposes the initial difference is small enough
and the power small enough that this does not seem to
happen over large length scales. This is consistent with
the result of Chui, Ma, and Hakim who studied a series
of variational wave functions with different amounts of

b

03
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gia g11 g81

cl h o
0 2 4 6 8 10

FIG. 3. Second-order vertex diagrams for the Cooper chan-
nels (a) —(d) and the zero-sound channels (e) —(h). An electron
near +kF ( —kF) is denoted by a solid (dashed) line.

FIG. 4. The scaling trajectory of some typical g's as a func-
tion of the scaling variable x.
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fluctuations and found that the wave function with the
largest fluctuation is the lowest in energy. They found
that the highly fluctuating wave function is stabilized by
the exchange energy. Structure factors computed from
exact diagonalization of small clusters of 4, 8, and 16 par-
ticles increase as the system size is increased, also con-
sistent with this interpretation. In the present diagram-
matic language, it is the exchange diagrams that cancel
out the CDW instability and generate the large Auctua-
tions.

For the half-filled case, there are additional diagrams
that come from scattering from one cluster to the next.
These correspond to the umklapp scattering in the half-
filled Hubbard model. These diagrams provide also for
corrections that are also of the order of {In[In(q )]]"and
thus are not expected to change the coupling constants
much.

IV. CONCLUSION

In this paper a first-order renormalization-group calcu-
lation is carried out for the coupling constants character-
izing the two-particle vertex function. We find that the
coupling constants remain unchanged as the system size
is increased, consistent with the interpretation of a mar-
ginal solid.

One obvious experimental test for the present picture
would be a divergent structure factor. Because the cou-
pling coefficient remains fairly constant, the single-
particle excitation energy will remain close to its bare
value in Eq. (8a), p Inp. This is similar to the single-
particle energy found by Halperin, Lee, and Reed" start-
ing from the fluid. Thus the small momentum transfer
response functions such as the conductivity will be simi-
lar in the two cases. In particular, in the small frequency
limit in the random-phase approximation, the inverse
response function is given by v(q) iu/q o ,

—the bare"
response function is overwhelmed by the Coulomb poten-
tial v(q). This is the same in both their state and ours.
Thus this function, which may be related to the surface-
acoustic-wave measurement, would not be a sensitive
enough test to distinguish between the two scenarios.
Measurements such as the magnetoresistance oscillation
that Halperin, Lee, and Reed suggested may distinguish
between the two pictures. We iterate our point made in
the Introduction, that if the mass at the Fermi surface
found by Halperin, Lee, and Reed is infinite, the total en-
ergy can be lowered by arranging the system in a periodic
structure at little cost to the kinetic energy. Thus the
Quid phase they discuss should be unstable towards some
kind of charge-density-wave formation.

In this paper we have employed the Landau gauge.
Our results are not really gauge dependent. As we have
discussed, one can employ the circular gauge and a sirni-
lar discussion can be carried out. For example, the un-
perturbed ground state will be clusters of states with con-
tiguous angular momenta I instead of clusters of con-
tiguous y momenta j.

The calculation presented here does not work at low
densities. We have calculated the eff'ective self-energy for
a lower density at v= —,'. The result for N, =1792 is
shown in Fig. 5. The energy is shown up to be a distance

0 ~~l
0

Ns=1792, 1/7 filled

Ns=512, 1/2 filled

20 30
k (0.1/I)

I

10

FIG. 5. The effective self-energy for filling factors v= 7,
N, =1792 and v=-3, N, =768. The maximum distance is half

the length of the empty space between the clusters.

of half the empty space between the clusters. For com-
parison, we have reproduced the results at —,

' filled in the
same diagram. Whereas at short distances the energy
dependence is very close for the two filling factors, at
large distances they are very diff'erent. For the lower den-
sity case an additional minimum in the particular-hole
excitation spectrum is developed at half the distance in
between the clusters. This suggests that a perturbation
expansion from the cluster configurations is not appropri-
ate at very low densities and is consistent with our expec-
tation that a solid phase with true long-range positional
order will form at very low densities.

APPENDIX A

In this paper we pick our "ground state"
i
G ) to be

composed of clusters of N, contiguous sites occupied
with each cluster surrounded by N, (1/v —I)/2 empty
sites on both its left- and right-hand side. These units are
then joined together to form the total system. For exam-
ple, at —,

' filled, the particles tend to form clusters of ap-
proximately 2 for the 12-site case and clusters of 4 in the
48-site case. This is approximately seen in the small sam-
ple diagonalizations of the Hamiltonian. This we discuss
below.

For N, = 12 and as aspect ratio of 1.1547,
the ground state, which include all fIuctuations, is
dominated by configurations of 1 cluster of 2
and 2 clusters of 1 with a probability density
of 0.473 [0.344(i1,4, 8, 9)+ i1,5, 6, 10)+ ~2, 3, 7, 10)—i4, 7, 11,12))], of clusters of 2 with a probability
density 0.306 [0.391(i5,6, 11,12)—i2, 3, 8, 9) )], of
4 clusters of 1 equally spaced at distance 2 apart with
a probability density 0.149 [ —0.386i1,4, 7, 10) ], and
4 clusters of 1 but spaced at distances 3,3,1, 1

with a probability density 0.047 [
—0. 108(

~
1,5, 7, 9 )

+ i2, 4, 6, 10)—i4, 8, 10, 12) —i1, 3, 7, 11))]. The total
sum of these probability densities adds up to 0.975. For
an aspect ratio of 1, the effective cluster size is reduced.
The ground state is dominated by configurations of 1

cluster of 2 and 2 clusters of 1 with a probability density
of 0.568 [0.377(~1,4, 8, 9)+~1,5, 6, 10) +i2, 3,7, 10)—

i 4, 7, 11,12 ) ) ], of 2 clusters of 2 with a probability den-
sity of 0.191 [0.3088(i5, 6, 11,12) —i2, 3, 8, 9) )], of 4 clus-
ters of 1 equally spaced at distance 2 apart with a proba-
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bility density 0.09 [ —0.302~ 1,4, 7, 10) ], and 4 clusters of
1 but spaced at distances 3,3, 1,1 with a proba-
bility density 0.13 [ —0. 182(

~ 1,5, 7,9) + ~2, 4, 6, 10)—~4, 8, 10, 12) —~1,37, 11))]. The total sum of these
probability densities adds up to 0.979. The probability
density for the configuration with 2 clusters of 2 is re-
duced in magnitude.

APPENDIX B

In this appendix we derive the effective kinetic energy
for particle excitations. This can be done by substituting

I

Eqs. (7) and (3) into Eq. (8). As we see from Eq. (7) there
is a direct contribution Ed with j23 =0 and an exchange
contribution E, with j&3 0.

EE(k)=Ed E, —.

For the direct contribution, performing the sum over n,
we obtain j„=mX, for integer m. Since j23 and j can-
not both be zero (neutral background), the m =0 term is
not allowed. %"e obtain

Ed =4N, g U[mN, /a 'r ]exp[ —(mN, ) nlaN, ][cos[2nmN, (N, +k —1)IN, ]—cos[2nmN, (k —1)/N, ]I+n/2N, .
m =1

There is a factor of 2 from contributions with m (0. The other factor of 2 comes from Eq. (7). Because of the exponen-
tial factor, this is dominated by the m = 1 term and

Ed =4N, U[N, /a 'r ]e'xp[ —0.5nla ][—2cos[n(k —1)/N, ] I+n/2N,

=4a 'r exp[ —0.5n/1]cos[n(k —1)IN, ]/+1/2N, n .

The exchange contribution comes from terms with j&3 0.
n=N —1

E, =2 g g (U[[j„la+(nN, +N, +k —1) a]'r Iexp[ —[j„la+(nN;+N, +k —1) a]n/N, ]
n=0

—U[[j la+(nN, +k —1) a]'r ]exp[ —[j la+(nN;+k —1) a]n/N, ])+n/2N, .

In the exchange contribution, because of the exponential cutoff, only the term with n =0 needs to be kept. We thus get

E, =2 g (U[[j„/a+(N, +k) a]' ]exp[ —[j la+(N, +k) a]nIN, ]
J = oo

—U[[j /a+(k —1) a]'r ]exp[ —[j„/a+(k —1) a]n/N, ] )Qn/2N, .

The dominant contribution comes from the second term.
In the continuum limit, it is approximately equal to'

b,E(q ) = f dq„(q„+q )

X exp[ q /2 q /2]+—a l2n—N,

=0.5 exp(q»/4)Eo(q /4)+a/2nN, .

The net energy change when a particle hops from site q
to site q +p is obtained recursively by summing over k.
We get in the continuum approximation that

E(p»)=0. 5 f dq» ln(q /8)/27r

=[p» lnp —p (1+0.51n8)]/2n .
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