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Exact analytic analysis of finite parabolic quantum wells with and without a static electric field
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Exact analytic solutions of finite parabolic quantum wells are derived for both the unperturbed and
the electric-field-applied cases. Several normalized parameters are defined so as to make our results
universal within the scope of the envelope function approximation with a constant effective mass as-
sumed. The Stark resonance position and the width in the electric-field-applied case can be obtained
simultaneously from the complex eigenvalue Eo —iI /2 of the system. By comparing the results calcu-
lated, respectively, by employing the exact solutions and the infinite-parabolic-well approximation, the
validity of the approximation is rigorously examined. It is shown that the infinite-parabolic-well approx-
imation is valid only under certain conditions as discussed in the text.

Recently, the parabolic quantum-well structures have
received increased interest because of their various appli-
cations. Such structures have been successfully fabricat-
ed by using molecular-beam epitaxy with the band struc-
ture produced by employing both the superlattice grading
technique' and the analog grading technique. Al-
though the former does in fact use superlattice structures
to simulate parabolic quantum wells, its validity has been
confirmed experimentally' and theoretically. The
photoluminescence and the electron-beam electro-
reAectance measurements of this system have been
presented' ' to study the partitioning of the energy-gap
discontinuities between the conduction and the valence
bands. The structure has also been used in resonant tun-
neling to study its potential application in high-speed cir-
cuits. Other applications include using it to design in-
frared detectors with low leakage currents and low
electric-field sensitivity and employing it as the graded
barrier part of the quantum-well laser to improve the op-
tical confinement factor and enhance the carrier collec-
tion into the thin quantum well so as to reduce the
threshold current density. '

Due to its importance, many theoretical studies have
been performed for it." ' In these works, the eigenen-
ergies are solved either numerically" ' or by assuming
an infinite-parabolic-well depth. ' When an electric field
is present, a rigid boundary condition is always as-
sumed" ' so that all states become bounded. Thus the
linewidth broadening effect due to the electric field can-
not be taken into account directly and the evaluation of a
local one-dimensional density of states is required. ' '
Furthermore, since the wave functions are forced to be
zero at the rigid boundaries, some inaccuracy must be
produced.

In this paper, we will give the exact analytic solutions
of a finite parabolic quantum well with a uniform electric
field present or not. The solutions are within the scope of
the envelope function approximation' and a constant
effective mass is assumed. When an electric field is ap-
plied, we can simultaneously obtain the Stark resonance
position and the width from the single complex eigenen-
ergy. We also define several normalized parameters and

express the analytic wave functions by these parameters
so that our results are universal. By comparing our re-
sults with those obtained by the infinite-parabolic-well
approximation, we have a clear picture about the validity
of the latter.

Consider an electron with charge —
~
e

~
and effective

mass m* in a finite parabolic quantum well of half-width
a and depth Vo in the presence of a uniform electric field
I' along z, as shown in Fig. 1. The time-independent
Schrodinger equation for such a system is given by
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FIG. 1. Potential-energy profiles of the finite parabolic
quantum-well structures investigated in this paper. The depth
and the width are Vo and 2a, respectively.

0163-1829/93/48(23)/17316(5)/$06. 00 48 17 316 1993 The American Physical Society



48 EXACT ANALYTIC ANALYSIS OF FINITE PARABOLIC. . . 17 317

d2

dZ
g(Z)+(U FZ ——V Z )g(Z)=0, IZI &1,

2

dz2 g(Z) +(U FZ ——V )g(z)=0, IZI )1,

where

(4)

U2 2m a E

2m 'a Vo
V =

g2

The eigenvalue E here should be a complex number ex-
pressed as

E=Eo—iI /2,
where Eo and I correspond to the energy level and the
resonance width of the quasibounded states, respectively.
If there is no applied field, then E=EO which is a real
number. Defining Z =z/a and substituting this relation
into the above equations, we get

The solutions to this equation are the conAuent hyper-
geometric functions M(a, P, g) and U(a, 13,(), with
a=(1—U /V)/4 and P= —,'. The solution that involves
only M(a, g, g) is that for the even states, and the one
that involves only U(a, P, g) is for the odd states. Now
we can write the solution in each region in the proper
form:

C&exp( —VZ /2)P(VZ ), IZI &1,
f(z)= ' (12)

2$'( V) — 1 — P( V) =0 .
V

Solving this equation gives the eigenenergies.
If FWO, the independent solutions of the well part are

given by

c exp[ —w(lzl —1)], zl &1,
where P(VZ ) is M(a, P, VZ ) or U(a, P, VZ ) depending
on the parity of the state. By requiring that the wave
functions itself and its first derivative be continuous at
the boundaries, we have the following transcendental
equation:

2m *
I
e IFa

P, (g)=exp — M( —,'y+ —,', —,', —,'g ), (14)

The parameters U, V, and F are the normalized we11 pa-
rameter, the normalized structure parameter, and the
normalized field parameter, respectively. They are
defined similar to the normalized parameters of optical
waveguides. ' '

First, we consider the F=0 case, i.e., no applied elec-
tric field. The normalized equations become

where

g=&2V VZ+—
2

Pz(g)=/exp — M(2y+ —,', —3, —,'g ),

(16)

d2

dz2
y(z)+(U' —v'z')y(z)=0, Izl &1,

d2

dZ
q(z) —w'q(z) =0, Iz I », (10)

d2 1 U~dP, ~dP 1 U
4 v

where &is defined as [2m'a ( Vo —E)/i' ]' (barrier pa-
rameter). Solutions of the second equation are clearly the
exponential functions, so we focus on the first equation.
The form of this equation is the same as that of the TE
modes in a cladded-parabolic planar optical waveguide.
Solutions of the optical waveguide have been given in
Ref. 19. However, the final form in the reference is
wrong, so we would like to derive the exact solutions for
the quantum-well case again and give the correct final
form. Assuming that g( g ) =exp( —g/2) P( g), where
g= VZ, and substituting this form into the correspond-
ing equation, we obtain

1 -2 1 I'
U +-

2V 4 V

a, [Bi(il)+ i Ai(il )], Z ( —1,
q(z)= . a,y, (g)+b, y, (g), Izl &1,

azAi(i)), Z ) 1,
where ri=F' (Z+ W /F) and Ai, Bi are the indepen-
dent Airy functions. To get the eigenenergies, we re-
quire that both the wave function and its first derivative
be continuous at the boundaries between the well and the
barrier regions and solve the resultant secular equation.
The equation is given by

1 -2- 1 I'" 2

'Y= V E+— . (17)
2V 4 V

The normalized energy E is defined as E= U /V . Note
that the complex eigenenergy is included in the parame-
ter y, thus a subroutine capable of calculating complex
conAuent hypergeometric functions is required. For the
wave functions in the barrier region, we adopt the solu-
tions proposed in Ref. 17 to account for the tunneling
effect. The wave function of the system is then given by

p2(g+ ) —Ai(ri+ )

gz(g+ ) —Ai'(ii )

—[Bi(g )+i Ai(i) )]
—[Bi'(ri )+i Ai'(q ) ]

(19)
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where g
—and g

—+ are the values of g and rl evaluated at
z =a (Z = 1) and z = —a (Z = —1), respectively. Note
that the derivatives of the functions are calculated with
respect to z, thus some proper factors must be included to
give the correct results. Also note that with the normal-
ized parameters defined before ( U, V, W, E,F), all of the
solutions have been expressed by them, thus the results
obtained are universal for both electrons and holes in all
cases.

After obtaining the exact solutions, we can now see
some numerical examples. First, we investigate the valid-
ity of the infinite-parabolic-well approximation with no
applied electric field by comparing the exact results with
those predicted by the approximation. The results are
shown in Fig. 2. The x and y axes are the structure pa-
rameter V and the normalized energy E, respectively.
We find that the effect of the finite-parabolic-well depth is
to lower the energies of the states. At the "cutoff" region
of each state, the energy difference between the exact and
the approximate results of the state is quite large. How-
ever, for the states whose energies are lower than the
mentioned state, the energy differences are not so obvi-
ous. The largest error occurs at the cutoff'region of the
ground state. As the value of V increases, this error be-
comes smaller. The reason for this phenomenon is that
as V becomes larger the effect of the barrier becomes
more insignificant, thus the eigenenergies of the lower
states given by the approximation are closer to the exact
values. Consequently, if the infinite-parabolic-well ap-
proximation is adopted for its simplicity, the energies of
the several lowest states calculated by using the approxi-
mation will be acceptable only when V is su%ciently
large.

When an electric field is applied, a parabolic quantum
well becomes leaky so that there are no true bound
states. For such a system, it is instructive to compare it
with the rectangular case' with the same parameters to

exact solutions
intinite —well a ppr oximation

see the effects of the different well shapes. The parame-
ters are a =18.5 A, m*=0.45mo, and VO=100 meV.
The complex eigenenergies of the ground state of both
systems are shown in Table I. It is clear that the energy
level of the finite parabolic well is substantially higher
than that of the rectangular well. Due to this higher-
energy level, the resonance width of the parabolic well is
much larger than that of the rectangular case. It should
be noticed that the energy-level shifts of the both cases
are about the same in contrast to their 1arge energy-level
difference. We also see that the infinite-parabolic-well ap-
proximation produces substantial errors for this case.
Furthermore, it cannot give the resonance width. There-
fore, for the electric-field applied case, the infinite-
parabolic-well approximation may have only limited use.

To see the electric-field dependence of the ground state
of a finite parabolic well, we calculate the variation of the
normalized energy level EO=Eo/Vo and the normalized
resonance width I =I /Vo with respect to the normal-
ized field magnitude I and show the results in Figs. 3 and
4, respectively. The energy level decreases with the in-
crease of the electric field as expected. For the well of
larger V, the unperturbed value of Eo is smaller than that
of a well with smaller V and the slope of the Eo curve is
smaller. The normalized resonance width I increases
rapidly with the electric field which means that the life-
time ~ defined as ~=A/I has a rapid decrease with the
electric field. As V increases, the increasing rate of I
with respect to Fbecomes smaller.

As the last example, we would like to investigate a case
where two states exist. The structure parameter V of this
case is 4. The variations of Eo and I with respect to I'
are shown in Fig. 5. It is shown that the Eo curves are
rather smooth compared with the corresponding curves
in the previous example. We also find that the I values

TABLE I. Comparison of the numerical results for
Eo —

I,
'I /2 of a rectangular and a parabolic quantum well. The

results for the parabolic quantum well are calculated by using
the exact solutions and the infinite-parabolic-well approxima-
tion, respectively. The results for the rectangular well are the
same as those presented in Ref. 1?.
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FIG. 2. Normalized energies E=E/Vo of an unperturbed
finite parabolic quantum well are plotted vs the structure pa-
rameter V. Solid; exact solutions. Dashed: infinite-parabolic-
well approximation.
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FIG. 3. The normalized energy level Ep =Ep/Vp for various
structure parameters V is plotted vs the normalized electric field
F.

FIG. 5. The normalized energy level Ep and the normalized
wellresonance width I of a two-state parabolic quantum w

( V=4) are plotted vs the normalized electric field F.

of the ground state are much smaller than those of the
first excited state. This is due to the fact that the effective
barrier width for the ground state is much thicker than
that for the first excited state. For such a multistate
quantum well, the infinite-parabolic-well approximation
predicts that the energy-level shifts are equal for all o t e

f 11.' To investigate the correctness of this
point, we calculate the normalized energy- eve s i s
AEO of the two states as functions of the normalizedlized field
strength F by using the exact solutions and the infinite-
parabolic-well approximation and show the results in Fig.
6. It clearly shows that the differences between the exact
and the approximate values are quite large especially for
the excited state or when the field is strong. Only when

the electric field is weak and for the ground state are the
approximate values acceptable. Based on the comparison
made here and that given in the first example, we may
conclude that the infinite-parabolic-well approximation is
valid only for the several lowest states of a given parabol-
ic quantum we . e numll The number of the several lowest states
depen s on e vad d the value of Vand the strength of the app ie
field F. In general, the larger the V is and the sma er e
F is, the more states the infinite-parabolic-wel1 approxi-
mation can accurately predict. Howeve,r the infinite-
parabolic-well approximation can never give the reso-
nance width.
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FIG. 4. The normalized resonance width r = r/Vp for van-
ous structure parameters V is plotted vs the normalized electric
field F.

FIG. 6. The normalized energy-level shifts AEp ==hE /V of
the two-state parabolic quantum well are plotted vs the normal-
ized electric field F. Solid: exact solutions. Dashed: infinite-
parabolic-well approximation.
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In this paper, we have derived exact analytic solutions
for the finite parabolic quantum well with and without
the electric field present. By comparing the exact results
with those calculated by the infinite-parabolic-well ap-
proximation, the validity of the approximation has been

rigorously examined. Since the finite parabolic
quantum-well structure has wide applications, the study
given here should be valuable for the understanding of
the designing for the cases where the structure is in-
volved.
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