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A semiempirical tight-binding theory of energy bands in rhombohedral A7-structure crystals is

developed and applied to three group-V semimetals: arsenic, antimony, and bismuth. A general descrip-

tion of the method is explicitly given, including the matrix elements of the tight-binding Hamiltonian,

and the treatment of the spin-orbit interaction which is noticeable in Bi. For each of these materials the

theory uses 15 parameters, obtained in accord with a third-neighbor model which includes the spin-orbit

coupling, to reproduce the major features of the band structures. The determination of these parameters

is made by fitting the existing pseudopotential and ab initio data for the band structures at some high-

symmetry points of the Brillouin zone. Comparison with first-principle calculations and experiments

gives very good agreement throughout.

I. INTRODUCTION

Recent experiments have demonstrated that an an-
timony layer can be grown on a GaSb substrate along the
(111) direction by the molecular-beam epitaxy (MBE)
technique. ' The Bi/CdTe (111) heterostructures have
been also successfully fabricated. Bulk Sb and Bi are
group-V semimetals with equal numbers of electrons and
holes. Their conduction-band minima (at the L point) lie
at a lower energy than the valence-band maxima (at the
H point in Sb, at the T point in Bi). The overlap of the
two bands is =180 meV in Sb and =40 meV in Bi. Both
Sb and Bi have large characteristic lengths: the mean
free path is a few micrometers and the de Broglie wave-
length is of 400 A. Consequently the interesting quantum
size effect is expected if the carriers in these semimetals
are spacially confined. Such confinement can be achieved
by sandwiching the semimetal film between layers of a
suitable barrier material. When the thickness of the sem-
imetal film decreases, the electron subbands should move
up in energy while the hole subbands move down. At a
certain thickness, the electron and hole subbands will
cross and a semimetal-semiconductor transition occurs.
It has recently been suggested that a narrow-gap semi-
conductor whose band alignment is indirect in mornen-
tum space would have highly attractive properties in op-
tical and electro-optical device application. Indirect
narrow-gap heterostructures such as Sb/CsaSb (111) and
Bi/CdTe (111)superlattices could potentially open a new
possibility in device manufacture. This situation will put
new demands on theorists to predict the properties of ex-

otic semiconductor-semimetal heterostructures before the
materials are even fabricated. Thus we need an
effectively theoretial method to survey and simulate very
complicated semimetal materials. Such an approach
should allow a rapid scan of many different electronic
properties for a complicated system. The semiempirical
tight-binding theory possesses such an advantage, and
has been widely used to calculate the band structures in
diamond and zinc-blende semiconductors and their
heterostructures. The results obtained from this method
have often been compared successfully with correspond-
ing experimental data. The rhombohedral A7 semimet-
als and their heterostructures have not received similar
attention up to now. At this moment, a comparable
tight-binding theory for the rhombohedral A7 structure
semimetals and their heterostructures is highly needed.

From a theoretical point of view, a lot of band-
structure and total-energy calculations for As, Sb, and Bi
have been carried out. We can mention an early
oversimplified tight-binding calculation for bismuth, ' the
qualitative analysis of binding in group-V rhombohedral

compounds,
" the pseudopotential calculations, ' ' and

the ab initio studies' of As, Sb, and Bi. A systematic
tight-binding theory, comparable to that developed for
zinc-blende and diamond semiconductors, has not been
tried until recently because of the complications arising
from the relatively low symmetry of the rhombohedral
A7 structure. However, the theoretical simulation of the
complicated systems such as rhombohedral semimetals
and their heterostructures depends greatly on a reliable
tight-binding approach.
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The purpose of this paper is to present such a theory
for bulk rhombohedral crystals. We show that a tight-
binding method using a few interaction parameters gives
accurate results for the band structures. We hope that
the tight-binding parameters determined in the present
work can be used to calculate the electronic properties of
the semimetal-semiconductor superlattices and hetero-
structures.

The tight-binding method we use is equivalent to that
of Slater and Koster. It can also be regarded as a more
complete version of the Weaire and Thorpe model' in
which interactions between more distant directed orbitals
are included. It is necessary to include these extra in-
teractions for a more complete description of the fine
structures in the energy bands. Our model has the fol-
lowing properties. (i) The chemistry of s p bonding is
manifestly preserved. This is because the external elec-
tron configuration of As, Sb, and Bi is s p, plus a com-
plete d shell. Those s and p levels will mix in the solid,
while the other d electron and core-electron levels will
remain practically unchanged. This means that only the
five s and p electrons will be considered as valence elec-
trons, while the others will be considered as being part of
the ionic core. (ii) The spin-orbit interaction is included
in the theory. Each energy level of p electrons will split
into two levels due to the spin-orbit coupling. The ampli-
tude of the splitting increases with the element atomic
number: approximately 0.36 eV for As, 0.6 eV for Sb,
and 1.5 eV for Bi.' ' In the case of As and Sb, this cou-
pling leads to the suppression of several specific degenera-
cies, which can be observed in the band structure, with
little infa. uence on the global electronic properties. In the
case of bismuth, however, the effect turns out to be
significant. (iii) the theory successfully reproduces not
only the valence bands but also the lower conduction
bands, even in indirect (negative) gap semimetals.

In Sec. II, we discuss the rhombohedral A7 structure;
the tight-binding Hamiltonian is given in Sec. III; and the
resulting band structures for As, Sb, and Bi are presented
in Sec. IV. Section V includes conclusion and discus-
sions. The explicit expressions of the tight-binding ma-
trix elements are given in the Appendix.

II. RHOMBOHEDRAL A 7 STRUCTURE

The typical structure of group-V elements is the rhom-
bohedral A 7 structure. It is the common cyrstal phase of
As, Sb, and Bi. The A7 structure can be viewed as a dis-
tortion of simple cubic. It can be obtained from simple
cubic by a strain of the unit cell along the (111)direction
and a simultaneous displacement of the atoms of the basis
towards each other in pairs along the same direction.
The resulting lattice, which has trigonal symmetry and
two atoms per unit cell, ' is shown in Fig. 1. Under these
distortions the six nearest neighbors of each atom of the
simple cubic structure distort to become three nearest
and three next-nearest neighbors. This can be under-
stood in terms of chemical bonds, since the group-V ele-
ments preferentially form three bonds. ' The primitive
translation vectors of the lattice can be expressed by

FIG. 1. Rhombohedral 37 structure.

a, =( —&3/6, —1/2, c, +cz)a,
a2=(V3/3, 0,c, +c2)a,
a3=( —&3/6, 1/2, c, +c2)a .

(2.1)

The values of a, c&, and cz for As, Sb, and Bi are listed in
Table I. The parameters c& and c2 are related to the
shear angle a and the bond length a„„(the nearest-
neighbor distance) by

Ci—
2

1

3

1/2

(2.2)

C2=

1 —4sin—
3 2

2 sin—
2

1/2

Ci (2.3)

TABLE I. Crystal structure parameters of As, Sb, and Bi.

ann

Cl

C2

As

3.7597 A
10.442 A
2.5165 A

54.554'
1.2731 A
2.2074 A

4.3084 A
11.274 A
2.9080 A

57.11'
1.5065 A
2.2513 A

Bi

4.5332 A
11.800 A
3.0624 A

57.35'
1 ~ 5896 A
2.3426 A

Each point in the reciprocal lattice is specified by a
vector l = l, b, + l2b2+ l3b3 where the three reciprocal-
lattice vectors b; with i =1, 2, and 3 are defined by
b 8j 2776 j and l

& l2, and l 3 are integers. In the rec-
tangular coordinate systems, we have
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l, +l31=b sing l2—
2

V3
sing(l3 —l

&
),cosy(l, + l2+ l3 )

2
(2.4)

where cosy'=(&3/3)tan(a/2). From the above relation
it follows that

g [(n, a, k~H~n', a', k&
n', a'

il i
=b [l, +l~+I3+cosp(l, l2+l~l, +l31, )], (2.5)

—Eq(k)&„„5 ](n', a', k~k, A, ) =0 . (3.3)

where P, the angle between any two reciprocal vectors, is
related to the shear angle a by

The solutios are

cosacosP=-
1+cosu (2.6)

~k, i(, &
= g(n, a, k~k, k& ~n, a, k) . (3.4)

Thus, the equation of any face of the Brillouin zone in
rectangular coordinates can be obtained by using Eq.
(2.5) with the relation k 1=—,

'
~1 ~

. Figure 2 represents the
first Brillouin zone; the usual notation for symmetry
points has been used.

III. MODEL HAMILTONIAN

In rhombohedral A7 structure crystals, there are two
atoms in the primitive cell. If we neglect the spin-orbit
interaction for each tight-binding basis function centered
on these atoms, two Bloch functions can be constructed:

The band index A, has eight values. The basis problem
of the tight-binding method is to find the matrix elements
of Hamiltonian between the various basis states. In the
semimetals As, Sb, and Bi, we consider only one set of s,
p„,p, and p, orbitals at each atom. We will denote these
by sl, p„l, pyl, p, l, or sz, p 2, pyz, p, 2, where the subscripts
refer to the atoms in the unit cell. The Hamiltonian ma-
trix in the

~ n, a, k ) representing all possible nearest-
neighbor, next-nearest-neighbor, and third-nearest neigh-
bor interactions between the tight-binding basis functions
centered on each atom in the crystal can be calculated
from the Slater and Koster approach,

~n, a, k&= 1 + ik R(+ik .
ra~ (3.1) H (k)= ge '(O, a~Hei, a') . (3.5)

[H —E,(k)]/k, X& =O,

or, in this basis,

(3.2)

The quantum number n runs over the s, p, p, and p,
orbitals. The N wave vectors k lie in the first Brillouin
zone,' the site index u is either 1 or 2. The atom 1 is lo-
cated at R;. The tight-binding basis functions ~n, a, R,. )
are Lowdin orbitals: i.e., the symmetrically orthogonal-
ized atomic orbitals.

The Schrodinger equation for the Bloch function
~ k, A, )

is

For each atom in the unit cell there are three nearest
neighbors, three next-nearest neighbors, and six third-
nearest neighbors as shown in Fig. 1. Now we need the
atomic matrix elements (O, a~H ei, a'), the form of which
has been given by Slater and Koster. Chadi and Cohen
have reported the (8X8) secular determinant for dia-
mond and zinc-blende crystals. Later on Vogl, Hjalmar-
son, and Dow extended this approach to the sp s* basis
for the zinc-blende semiconductors. Here we give the
Hamiltonian matrix on the sp basis for rhombohedral
3 7 structure semimetals:

Sl
Pxl
Pyl
Pzl
$2

px2
Py2
Pz2

$1

H ls ls
H ls lx
H ls ly

0

H l.z

H1,2
H 1.2.

H ls lx
H lx lx
H lx ly

0

H lx2
H12,

Pyl

Hl, ly
H lx ly

H lyly
0

—H i.zy

Hl 2

Hl 2y

Pzl

0
0
0

Hl, l,
H ls2z

Hl 2,
H lx2z
H )fc

S2

H1.2,—H1,2—H1,2—H1,2,
H ls ls
H ls lx
H ls ly

0

px2

H1,2

Hl ~

Hl ~

Hl 2

H ls lx
H lx lx
H lx ly

0

py2

H1,2

Hl 2

Hl 2

Hl 2,
H ls ly
H lx ly
H ly ly

0

px2

H1,2,

Hl 2,
H1.2.

0
0
0

Hl, l,

The explicit expressions of these matrix elements are
given in Appendix. In Eqs. (Al) —(A17) there are four-
teen interaction parameters to be determined: E„Ep,

I I I rz' yg I I I I
Vsso ~ ~spo ~ Vpp~~ Vppo ~ sso~ spo. ~ ppm~ "ppo ~ " sso. ~ spo ~

I

V"„, and V" . The first two are the on-site orbital ener-
gies. The third to sixth and seventh to tenth are the
nearest-neighbor and next-nearest-neighbor interaction
parameters. The last four are the third-neighbor interac-
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b3

b2

use the dependence of the energy levels (at a few points in
the Brillouin zone) on the potentials. Along some sym-
mery lines and at some symmetry points the dependence
of the energies on the interaction parameters can be ob-
tained in closed form. Here we list some of these rela-
tions.

At the I point, the doubly degenerate eigenvalues are
given by

E{I4s)=E +3(V" + V"„) —,'(V 2, + V' A2)

+3[V ( 1 —
—,
' A, ) + V~~ (1—

—,
' A 2 )], (3.6)

FIG. 2. Brillouin zone for rhombohedral A 7 crystals.
where A, and A~ are defined by Eq. (A20) in the
Appendix. If we set the s-p interaction parameters
V,z =Q(l —2

&
)/(1 —22) V,~, we have

tion parameters. Here the two-center approximation has
been used.

From Eqs. (Al) —(A17) we can see that our Hamiltoni-
an matrix elements are much more complicated than
those given by Chadi and Cohen and Vogl, Hjalmarson,
and Dow for zinc-blende and diamond semiconductors
because the rhombohedral 2 7 crystals have the relatively
low symmetry.

In order to obtain the interaction parameters we wiH

E(I 6 )=E,+6V,", +3(V„+V,', ), (3.7)

E(I 6*)=E +3(V" + V" ) 3(V „2,+V'„A2)

+3[V (1—3, )+V' (1—A2)] . (3.8)

Along the I -T-L and T-H directions, only the energies
of the nondegenerate bands can be obtained in closed
form:

E=E + V" 2+cos k +3V"„cos k
v'3 V3

X PP&

+ a +P + V~ + V' +2(aV~~„+PV~ )cos k, +2aPcos k +(c, +c2)k,
2 3

1/2

+2(aV~~ +PV~~ )cos k —(c, +c2)k, +2V V' cos
u'3

k —(c, +c2)k, (3.9)

where

(3.10)

teraction integrals. The spin-orbit component of the
Hamiltonian

(3.11) H, , = (VVXk).o,
4m e

(4.1)

IV. BAND STRUCTURES
OF RHOMBOHEDRAL SEMIMETALS

%ith the help of the relations between energies and po-
tentials given in the preceding section [see Eqs.
(3.6)—(3.9)], the empirical matrix elements of the sp
Hamiltonian can be obtained by Atting the pseudopoten-
tial' ' and ab initio' results. Before doing this, we
should point out here that the spin-orbit interaction plays
an important role in determining the electronic band
structure for group-V semimetals. Going from As to Sb
to Bi, the strength of the spin-orbit interaction increases.
The spin-orbit coupling parameters A, for p electron
configuration are of the order of 0.3 eV for As, 0.6 eV for
Sb, and 1.5 eV for Bi, ' ' respectively, which are almost
the same order of magnitude as the nearest-neighbor in-

where Vis the total crystal potential and o. represents the
Pauh spin matrix, couples p orbitals on the same atom.
In this case we should take (sa);, (sp);, (p, u);, (p,p);,
(p a);, (p P), , (p, a), , and (p,P), (where i = 1,2, and a,P
denote spin states) as basis functions and extend the di-
mension of the tight-binding Hamiltonian matrix from
(8X8) to (16X16).

In order to calculate the matrix elements of H. .. we
note that our basis functions can be expressed in terms of

~ j,m ), the eigenfunctions of the total angular momen-
tum. Then, the spin-orbit coupling parameter A, can be
defined as the split between triplet and singlet states on
the basis of the total angular momentum:

A, =(4'/3)(( —', , m ~H, ~

—', m ) —( —', m ~H, ~

—', m ) ) .

{4.2)
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The tight-binding parameters for As, Sb, and Bi ob-
tained by fitting the pseudopotential' ' and ab initio'
results are given in Table II. The values of spin-orbit
coupling parameters k we use here are 0.36 eV for As, 0.6
eV for Sb, and 1.5 eV for Bi. The resulting band struc-
tures are shown in Figs. 3—5, where the Fermi level is
chosen as energy zero.

For As, it can be noted from Fig. 3 that the Fermi level
crosses the band only near L and T, as well as H, which
lie on the reAection plane o of the Brillouin zone. In ad-
dition, the spin-orbit coupling leaves the degeneracy
along the T-8'line, leading to the minimum of the lowest
conduction band being located at L, while the maxima of
the valence band are at T and H. Our tight-banding cal-
culation provides the correct location of the carriers, i.e.,
the electron pockets at the L point of the Brillouin zone
and hole pockets at T and H. All these results are in
good agreement with the pseudopotential' and the first-
principle' results.

For Sb, one can see from Fig. 4 that the minimum of
the lowest conduction band corresponds to L, while the
maximum of the valence band is at H. We should point
out here that if we neglect the spin-orbit coupling, there
would be a crossover of two bands along the T8' line;
these two bands intersect the Fermi level very close to
their crossover point. At first sight it would seem that
that energy-level structure will give rise to extra electrons
or extra holes, depending upon whether the crossover lies
above or below the Fermi level. However, as is shown in
Fig. 4, the spin-orbit interaction splits the conduction
and valence bands at this point. In fact, the inAueence of
the spin-orbit coupling can be easily seen by means of a
simple perturbation calculation. Let us consider the lev-
els T, and T2 in the neighborhood of the T point and as-
sume a constant spin-orbit interaction A, . In this way, if
the band energies e&(k) and e2(k) without spin-orbit cou-
pling have a crossover along the T-8'line, the total ener-
gies E, (k) and E2(k) with spin are given by

E, 2(k)= —,'[e,(k)+e2(k)]+ —,'Q[e, (k) —e2(k)] +4k.

(4.3)

0

H

FIG. 3. Calculated band structure for As with spin-orbit cou-
pling A, =0.36 eV.

This shows that the total energies are splitted by the
spin-orbit coupling. Namely, the spin-orbit coupling
leaves the degeneracy along the T-W line, leading to the
conduction and valence bands being split along this line,
remaining thus one below the Fermi level and the other
above it all along the T-8'line. On the other hand, the
spin-orbit interaction alters only slightly the level struc-
ture along the T-H line, and the location of the hole
pockets at H point is essentially unchanged. These de-
tails of the band structure for Sb agree well with pseudo-
potential calculation' and the ab initio results. '

For Bi, only the bands near the T and L points are
close to the Fermi level. The slight overlap (at the T and
L points) between valence and conduction bands is hardly
visible. It can be noted in bismuth, where the spin-orbit
coupling ( —1.5 eV) is larger than most interaction pa-
rameters, from Fig. 5 that the maximum splitting in-
duced by the spin-orbit interaction for the p bands is
about 1.5 eV along the I -T line. In particular, the cross-
over point along the T-8'line corresponding to the case
without spin-orbit coupling is splitted and the location of

TABLE II. Empirical matrix elements (in eV) for rhom-
bohedral group-V semimetals.

As

Ep
~ss o

+spo

~ppm

~pp-
I

~sso.
I

~sp a
I

+ppm
I

~ppo
V,',

II
~sp o

II
~ppo

—10.277
—0.524
—1.344

1.275
—0.828

2.857
—0.427

0.580
—0.754

1.628
—0.004

0.067
—0.017

0.55

—8.527
—0.294
—0.923

1.170
—0.658

2.340
—0.366

0.480
—0.534

1.608
0.000
0.090

—0.040
0.210

—9.643
—0.263
—0.703

1.300
—0.679

2.271
—0.275

0.108
—0.337

1.420
—0.007

0.065
0.004
0.303

0

L T H

FIG. 4. Calculated band structure for Sb with spin-orbit cou-
pling A, =0.6 eV.
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TABLE III. Values of overlaps between conduction and valence bands, and the coordinates of the H point for As and Sb. (a)
Difterence between the Fermi energy and the extremal energy for electrons (in eV); (b) di6'erence between the Fermi energy and the
extremal energy for holes (in eV); (c) coordinates of the H point for As and Sb, expressed in trigonal coordinates.

Sb Bi

(a) Electrons:
Present work
Other theoretical
Experimental

{b) Holes:
Present work
Other theoretical
Experimental

(c) H point:
Present work
Other theoretical

0.234
0.408,' 0.367
0.202, 0. 190g

0.196
0.202,' 0.362"
0.154,' 0.177g

(0.387,0.459,0.387)
(0.194,0.370,0.194)'
(0.204,0.376,0.204)b

0.160
0.206,' 0. 115,' 0. 108"

0.093—0. 160

0.095
0.114,' 0. 119,' 0. 142

0.0844

(0.365,0.440,0.365)
(0.163,0.350,0.163)'
(0.101,0.372,0.101)'
(0.245,0.393,0.245)"

0.0259
0.0183,' 0.016', 0.027'

002—0 030'"

0.0144
0.0234,' 0.008, ' 0.012'

0.006-0.016'"

'Reference 15.
P. J. Lin and L. M. Falicov, Phys. Rev. 142, 441 {1966).

'Reference 24.
Reference 13.

'Reference 14.
'Reference 3.
M. G. Priestley et al., Phys. Rev. 154, 671 (1967).

"V. S. Edel'man, Adv. Phys. 25, 555 (1976).

hole pocket is pushed to the T point by the spin-orbit
e6'ect. This result is consistent with the pseudopotential'
and first-principle' calculations.

In the three materials, the overlap between the conduc-
tion and valence bands creates free electrons at L, and
free holes at II (for As and Sb) or T (for Bi). This overlap
decreases from As to Sb to Bi: about 0.43 eV for As,
0.255 eV for Sb, and 0.04 eV for Bi. The magnitude and
the location of these overlaps obtained from our tight-
binding calculation are in good agreement with the first-
principle calculation' and experimental results.

The overlap values and the coordinates of the maxima
of the valence band are summarized in Table III. The lo-

8 i

cation of the free hole and electron pockets we find here
is commonly accepted by other authors. ' ' ' The
spin-orbit coupling is very important in bismuth since,
without it, the holes would not be obtained in the experi-
mentally observed location point T. The comparison of
our band-structure calculations at the symmetry points,
I, T, and L with the ab initio results' is given in Table
IV. It can be noted that our results provide good valence
bands and the overlaps between conduction and valence
bands. In particular, the results for Bi and Sb are fairly
accurate. The conduction bands are not well reproduced
by our tight-binding method, which we attribute to the
common problem faced by all the tight-binding-like ap-
proaches, that is, the conduction bands tend to be too
Bat.

V. DISCUSSIONS AND CONCLUSION

FIG. 5 ~ Calculated band structure for Bi with spin-orbit cou-
pling A, =1.5 eV.

We have developed a tight-binding theory for the
rhombohedral group-V semimetals. Our approach is
comparable with that proposed by Chadi and Cohen and
by Vogl, Hjalmarson, and Dow for diamond and zinc-
blende semiconductors. The interaction parameters have
been determined based upon a two-center approximation
for As, Sb, and Bi by fitting the existing pseudopotential
and ab initio results. It can be seen from Table II that as
far as the nearest- (next-nearest-) neighbors are con-
cerned, all these parameters have the right signs for two-
center integrals of the corresponding atomic orbitals, as
well as the right order of magnitude: the largest interac-
tion is Vzz ( Vzz ) between two p orbitals pointing along
the bond, while V„(V,', ), the interaction of s orbitals,
is considerably smaller, and the other interactions even
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TABLE IV. Comparison of our results for the energies (in eV) of As, Sb, and Bi at the symmetry
points I, T, and L with the ab initio calculations (Ref. 15).

Level

r,+
r,
r,+
r,+
I 45

+

I6r;
I 45

As
Ours

—15.84
—5.57
—2.52
—0.36
—0.12

0.94
1.90
2.12

Ref. 15

—15.10
—5.22
—2.57
—1.89
—1.67

1.61
2.89
2.94

Ours

—12.87
—5.17
—2.25
—1.50
—1.22

1.08
1.64
1.74

Ref. 15

—12.67
—4.89
—2.28
—1.55
—1.28

1.87
2.56
2.98

Ours

—13.32
—7.53
—2.66
—1.25
—0.89

0.72
2.11
2.41

Bi
Ref. 15

—13.01
—7.28
—2.73
—0.80
—0.61

1.11
3.33
3.63

T6
T+
T6
T45
T6

T45
T6

—13.96
—9.14
—1.40
—1.13
—0.47

0.92
2.89
3.13

—13.56
—10.00
—1.91
—1.56
—0.44

0.67
1.01
2.11

—11.26
—8.36
—1.33
—0.90
—0.26

1.06
1.09
1.41

—11.11
—8.89
—1 ~ 50
—1.00
—0.33

0.09
0.39
1.31

—11.78
—9.39
—1.25

0.014
—1.22

0.77
1.50
1.00

—11.55
—9.67
—1.67

0.023
—1.28

0.49
1.33
1.11

L,
L,
L,
L,
L,
L,
L,
L,

—12.36
—10.81
—2.80
—2.42
—1.01
—0.23

0.13
2.17

—12.22
—11.00
—2.88
—2.61
—0.56
—0.41

0.21
1.50

—10.36
—9.42
—2.05
—1.81
—0.50
—0.16

0.28
0.84

—10.22
—9.56
—2.06
—1.83
—0.39
—0.21

0.28
0.72

—11.09
—10.35
—2.83
—2.27
—0.026
—0.90

0.83
1.36

—11.00
—10.28
—2.01
—1.99
—0.018
—0.28

0.76
1.33

smaller. As far as the third-nearest neighbors are con-
cerned, the parameters are much smaller than the
nearest- and next-nearest-neighbor terms. According to
our calculations, we find that a reasonably approximate
band structure for As, Sb, and Bi might be obtained by
considering only the nearest- and next-nearest-neighbor
interactions. However, in order to fit the fine structure of
the pseudopotential and ab initio results, for instance, the
level structures near the L, point in three semimetals and
near the H point in As and Sb, one has to include the
third-nearest-neighbor terms. Detailed calculations show
that the overlap along the O'-I. and T-H lines is very
sensitive to the third-neighbor interactions V" and V",
while the other two third-neighbor interaction parame-
ters V,

", and V,
" have little effect on the band structures.

In practice, one can still get a fairly good result by
neglecting V,

", and V,
" .

Our calculations have shown that the spin-orbit cou-
pling is very important in rhombohedral group-V sem-
imetals. In the cases of As and Sb, this coupling leads to
several specific degeneracies which affect directly the lo-
cations of hole pockets. In the case of Bi, this effect turns
out to highly significant since, without it, the holes would
not be obtained in the experimentally observed location.

The only disadvantage of our calculations is attributed to
the common problem faced by all the tight-binding-like
methods, that is, the valence bands can be fit fairly well,
but the conduction bands tend to be too fiat (i.e., the elec-
tron effective massses tend to be too large). Besides this,
the magnitude of the overlap between the conduction and
valence bands and its location obtained from our tight-
binding calculation are in good agreement with the pseu-
dopotential and first-principle results, as well as with ex-
perimental data throughout.

As we mentioned in the Introduction, this work was
motivated by the recent experiments on the semimetal-
semiconductor heterostructures. ' Our next goal is to
use these tight-binding parameters determined for sem-
imetals to study Sb/GaSb (111) and Bi/CdTe (111) het-
erostructures and superlattices.
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APPENDIX: EXPRESSIONS
OF THE TIGHT-BINDING MATRIX ELEMENTS

k,
0&,&, =E,+ V,

", 2cosk„+4cos k cos (A 1)
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kyH„,„=i2&3V~ sin k cos
2 2

k,
H]s ]y l 2 Vsp~ s]Ilky +cos kx sm

2

(A2)

(A3)

H»2$ = V»~ e '+2 cos e ' + Vs'$~ e '+2 cos e
ig) l Y]( &

l Pp y l'Q~

2 $$0 (A4)

H]2 =V, A]
ky —lP ky

e ' —cos e ' —V' A e ' —cos esp0 2 (A5)

H„z =i&3V~ A, sin e '+i@'3V~ A~sin e
2 sp 0' 2 (A6)

2 sptT 2 2 (A7)

k, ~3 k,
H] 1 Ep +3 Vpp COS k COS + Vpp COS k COS +2 COSky (A8)

k,
H,„, = —&3( V~~

—V" )sin k„sin
2 2

(A9)

, 2 =-,' ] 2e '+cos e ' + ] ] e '+2 1+ cos e
ig) y

—l YJ~ 2 2 1 l P)
pp vr 1 1

4c1 2

r

—i('& 1 k
+2 1+ cos

4c2
(A10)

H 1x2y (V —V )A, inse '+ (V' —V' )A&sin e
2 (A11)

(A12)

k ~3 k
H ]y ]y Ep + Vpp 0 cos kx cos +2 cosky +3 Vpp ~cos kx cosPP 0'

2 x y pp7r 2 x (A13)

2 k, -n, 2 2, ky
H& z

=—,'V A, cos e '+ V 6A f(c&+—,')cos e '+e
2 pp 7T

(A14)

H&~z, = —i3(V~~ V~~„)c&A /sin —e ' —i3(V~~ —
V~~ )czA~sin e ', (A15)

k,H ]z ]z Ep + Vpp~ 2 COSky +COS kx COS
2 2

r

2 y le)H ] 2 3 Vpp c ] A ] e ' +2 cos e ' + Vpp A ] e ' +2 cos e
2 pp 77

(A16)

+ 3 Vpp g 2 A 2 e +2 cos e + Vpp A 2 e +2 co
2 pp'll 2 (A17)

where
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