
PHYSICAL REVIEW B VOLUME 48, NUMBER 23 15 DECEMBER 1993-I

High-frequency behavior of quantum-based devices:
Equivalent-circuit, nonperturbative-response, and phase-space analyses

F. A. Buot and A. K. Rajagopal
naval Research Laboratory, Washington, D.C. 20375

(Received 28 June 1993)

The high-frequency response of resonant tunneling devices (RTD's), subjected to a time-dependent sig-
nal, is considered in two different situations when operating in the negative-differential-resistance (NDR)
region: stable and unstable. The study of this behavior is considered from three different approaches, all
based on the phase-space distribution-function formalism. In the stable case, the equivalent-circuit ap-
proach (ECA) is deduced from the published numerical results obtained by one of us (F.A.B. and colla-
borators) dealing with the complex dynamical aspects in phase space of quantum transport in RTD,
operating at dc bias in the NDR region of its ideal characteristic current-voltage (I-V) curve. The ECA
is found to be very useful in resolving the various outstanding controversies concerning the dynamical
quantum transport behavior of RTD. For unstable operation in the NDR region, nonperturbative ap-
proaches are more appropriate. Here, a time-dependent transformation of phase space is found which
transforms the quantum distribution (QDF) transport equation to the same form as that in the absence of
a time-dependent signal. This time-dependent transformation is useful when the applied time-dependent
electric field is assumed to be position independent. In a more general and realistic situation, an applied
time-dependent voltage at the drain will self-consistently lead to a time-dependent and position-
dependent potential inside the device. For this general situation, we introduce two different representa-
tions of quantum transport, namely, the Liouville representation and the phase-space Auid representa-
tion. The QDF solution has inherent undesirable features for studying the dynamics of phase space,
which can be eliminated by special processing. This processing yields the positive definite Husimi distri-
bution. It is suggested that the use of the Husimi distribution enables a microscopic dynamical
viewpoint of ECA as well as shedding further light on the dynamical nature of the quantum inductance.

I. INTRODUCTION

The time-dependent characterization of quantum
transport in resonant tunneling devices (RTD's) has al-
ways been plagued with controversies due to the lack of a
clear physical picture of the fundamental underlying
quantum processes. Notable among these are the long-
standing controversy regarding the exact nature of the
experimentally measured "time-averaged" I-V charac-
teristics of RTD s, exhibiting a plateaulike behavior and
double hysteresis when operating in the negative
differential-resistance (NDR) region. There were two
schools of thought, with opposing views, trying to explain
this characteristic I-V behavior. Goldman, Tsui, and
Cunningham' attribute the entire behavior to the "intrin-
sic charge bistability, " i.e., charge is built up and eventu-
ally become degenerate with a depleted state and is eject-
ed from the quantum well. Theoretical analysis and nu-
merical modeling favoring this viewpoint do exhibit hys-
teresis, but failed to show any plateaulike behavior. An
opposing view was proposed by Sollner, claiming that
instead of the bistable charging of the quantum well, I-V
behavior is due to externally induced current oscillations.
Implied in this circuit viewpoint is the existence of lead
inductance. Theoretical analysis favoring Sollner's
viewpoint clearly shows that the plateaulike behavior is
attainable, but fails to show hysteresis. This confusing
state of understanding has only been resolved recently by
a fully time-dependent quantum transport numerical

simulation from Jensen and Buot. Following this work,
Buot and Jensen proposed an equivalent-circuit model
for the RTD which accounts for the quantum inductance
and nonlinear negative resistor, to explain the controver-
sial I-V behavior, particularly the charge bistability and
the presence of the intrinsic current oscillations.

Another major controversy arises from the results of
the numerical simulation of the RTD. Indeed, there is
much confusion in the literature concerning the
frequency-dependent response of the RTD to a small ac
signal applied at the terminals. The numerical simulation
of Frensley, using a series expansion of the Wigner dis-
tribution transport equation (WDFTEQ), reveals a capa-
citive behavior at lower frequencies changing into an in-
ductive behavior at higher frequencies. In contrast, the
numerical simulation of Kluksdahl et al. , using a simi-
lar WDFTEQ approach, applying a step voltage pulse
across the NDR region, and using a Fourier transforma-
tion, reveals inductive behavior at low frequencies,
changing into a capacitive behavior at intermediate fre-
quencies, and eventually displaying somewhat inductive
behavior at high frequencies. Both these simulations
qualitatively agree concerning the real part of the admit-
tance, namely that it is negative at lower frequencies and
becomes positive at higher frequencies. Their results also
concur at very high frequencies by having a cutoff in the
admittance. Until now the discrepancy in the reactive
behavior cited above has remained unresolved.

So far, there has been no other serious work on the
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subject of characterizing the high-frequency response of
the RTD to an ac signal, although there have been a
number of attempts to analyze the high-frequency
behavior of nanometric structures. These are attempts to
extend the Landauer-Buttiker viewpoint, which calcu-
lates conductance from transmission coefticients to high
frequencies. The gross deficiencies of all these attempts
have been discussed by Landauer. There are also at-
tempts, for example by Fu and Dudley, which employ
the machinery of the linear-response theory for nonin-
teracting systems; however, this particular approach is
plagued by its inability to treat far-from-equilibrium
operating bias conditions, of interest to the nanoelectron-
ics community. A different approach using an analytical
path integral method based on the nonequilibrium
Green's function was proposed by Chen and Ting. This
does not include self-consistency, and seems to be com-
plementary to the non-self-consistent WDFTEQ numeri-
cal approach of Frensley, in view of the comparison
made of their results with Frensley's and with experimen-
tal values. However, their result for the imaginary part
of the admittance is inductive at low frequencies, in con-
tradiction to the more recent result by Frensley, which
correctly shows capacitive behavior at these frequencies.
Moreover, none of the general features of the imaginary
part of the admittance mentioned above is contained in
their results. Thus their result for NDR stands alone,
and points to fundamental differences between their ap-
proach and Frensley's. More recent results from Cai and
Lax' employ a nonperturbative time-dependent Green's
function approach to compute the behavior of an electron
incident from an energy channel on a double-barrier
structure. Their results reveal the presence of intrinsic
oscillations in response to a voltage pulse across the
negative-differential-resistance (NDR) region, similar to
the result obtained by Buot and Jensen, " particularly
when self-consistency and scattering were switched off in
their WDFTEQ calculations. The results of Cai and Lax,
however, are limited to single-channel and non-self-
consistent contributions.

The purpose of this paper is to show that a coherent
and unified understanding of the high-frequency linear-
response behavior of the RTD arises from the
equivalent-circuit model of Buot and Jensen (BJ), re-
ferred to here as the BJ model (originally proposed to
study the nonlinear aspects of the RTD which arise from
quantum nonlocality and the self-consistent treatment of
WDFTEQ, including scattering, which is referred to here
as the QDF approach), and to point out a proper way to
a nonperturbative theoretical framework for analyzing
the high-frequency behavior of resonant tunneling de-
vices within the quantum distribution-function approach.
We also show that the BJ model (and its modification at
high frequencies to take into account the electron inertia)
may be justified from the fundamental QDF transport
equation by appropriate partitioning of phase space in
calculating the tunneling and displacement currents. It is
worthwhile to stress this point here since there have been
misleading statements in the literature claiming that no
understanding exists for quantum transport at nonzero
frequencies. Also, there is a need to clarify a statement

made in the literature which strongly implies that no in-
ductance (L)-resistance (R)-capacitance (C) (LRC) circui-
try can simulate the complicated frequency dependence
of the admittance in the linear-response regime, particu-
larly since this statement is made without further reserva-
tions. We will show here that the two numerical simula-
tions mentioned above ' may be recast in terms of the BJ
model corresponding to two separate regimes in the BJ
circuit parametrization, operating in the NDR region.
Moreover, these two regimes are also different from the
parametrization used by BJ to resolve the controversial
I-V characteristic of the RTD. Thus the BJ model is
found to be the basic equivalent-circuit model of the
RTD; it includes the high-frequency behavior of the
RTD more accurately, if one adds a smaller series induc-
tance to be discussed below.

A nonperturbative treatment of the RTD response. to a
small ac signal, biased in the middle of the NDR region,
becomes a necessity in the regime of circuit parametriza-
tion of the BJ model used to explain the experimental
time-averaged I-V characteristic of a symmetric double-
barrier structure. In this regime, the middle of the NDR
becomes an unstable point, which means that a small per-
turbation generally leads to large nonlinear effects,
rendering the linear approach invalid. In this paper, a
nonperturbative theoretical framework for analyzing the
high-frequency response of the RTD within the QDF ap-
proach is formulated.

The study of the structure of phase space in nonlinear
quantum transport characterization of the RTD was ini-
tiated by Buot and Jensen. " Indeed, quantum phase-
space theories have provided an attractive approach to
the study of nonlinear quantum phenomena, such as
quantum chaos, and their correspondence to classical
nonlinear phenomena. It provides a proper setting for
studying nonlinear dynamics through the structure of
phase space (trajectory and "contour" analysis). An ini-
tial study of the structure of the phase space of an open
system by means of the Wigner trajectories, subjected to
different voltage bias, has been reported by Buot and Jen-
sen. " In their work, difficulties in calculating the
Wigner trajectories were encountered at the current peak
where the WDF oscillates violently within the device. In
the present paper, we propose to study the structure of
phase space through the QDF approach for simulating
the RTD by a Gaussian smoothing of the numerically ob-
tained WDF to calculate quantum trajectories. It should
be mentioned that this smoothing does not alter the basis
of the QDF theory, as it is actually an alternative to the
Wigner distribution theory and has been successful in
elucidating the quantum dynamics of classically chaotic
motion in a double-well potential. ' For an operating
bias that does not lead to a violently oscillating WDF, the
smoothing procedure does not alter the WDF. This
phase-space analysis is discussed in this paper.

The outline of this paper is as follows. In Sec. II, we
describe the equivalent-circuit representation of the RTD
and describe in detail the result of such a characteriza-
tion, particularly the resolution of the controversy re-
garding the reactive behavior of the RTD. In Sec. III, we
introduce the time-dependent transformation of phase
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space in order to address the problem of time-dependent but position-independent applied external electric field. In Sec.
IV, the processing of the QDF for the study of the structure and dynamics of phase space is developed. Concluding re-
marks are given in the Sec. V.

II. THE EQUIVALENT-CIRCUIT
REPRESENTATION OF THK RTD

An exact QDF transport equation is derived, and applied to the RTD together with the subsidiary device boundary
condition, by Buot and Jensen. "A simplification of the QDF transport equation was used" in simulating RTD's, based
on the effective-mass approximation and retaining only the leading collision terms. In the relaxation-time approxima-
tion for the leading collision terms, the resulting equation for the QDF is given as

t)f (P q t) p 2n (p —p'). v, .V f„(p,q, t)+
~ dp'dv{V(q —v/2) —V(q+v/2Isin f (p', q, t)

Bt

I Pqrfo Pq+ ' pqr
Vo(q)

where p(q, t) = I /h f d pf (p, q, t) is the particle density,

fo(p, q) is the equilibrium WDF, and r is the average re-
laxation time calculated by considering all the scattering
processes and using Matthiessen's rule. The above equa-
tion must then be solved together with the Poisson equa-
tion, namely,

V' P(q) = [ep(q, t) eno(q)—j/c, (2)
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FIG. 1. Schematic band-edge diagram of the RTD under bias
simulated by the QDF approach, and used to derive the BJ cir-
cuit model.

where eno(q) represents the background charge density.
Therefore V(q) is given by

V(q)=P(q)+&E, (q) .

f (p, q, t) is the familiar Wigner distribution function
(WDF), and m * is the effective mass of the electron. hE,
is usually determined empirically from the band-edge
discontinuities at the heterojunction interfaces.

Using a subsidiary boundary condition, the above
simplification was used by Jensen and Buot to simulate a
symmetrical double-barrier structure shown in Fig. 1. It
consists of an undoped buffer-barrier-quantum-well-
barrier-buffer region sandwiched between two heavily
doped regions. The time-averaged I-V characteristic is
shown in Fig. 2, where the non-self-consistent (i.e., volt-
age is linearly dropped across the undoped region only) 8.0
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FIG. 2. Current as a function of applied bias. "Linear drop"
refers to (non-self-consistent) simulations in which the bias was
assumed to linearly decrease across the quantum-well region
(Ref. 3). The NDR region occurs between biases of 0.23 and
0.32 V.

I

I-V result is also shown for comparison. The presence of
a series resistor can immediately be observed from com-
parison of the two I-V plots. This series resistance R can
be estimated to be equal to the voltage difference of the
location of the two current peaks divided by the value of
the current peak of the self-consistent I-V result. The
presence of this resistor is critical since together with the
capacitance C across the undoped region it creates delay
in bringing a supply of electrons from the reservoir to the
barrier edge. The accumulated charge at the barrier edge
would then leak through the double-barrier region via
tunneling.

Thus there are basically two characteristic times that
control the current How in a symmetric RTD, operating
in the NDR region. The first is referred to here as the
charge buildup time ~z, and the second is referred to as
the charge leakage time ~L. The charge buildup time ~~
is the time it takes to build up the charge of the electrons
from the particle reservoir to the emitter-barrier edge in
response to the increase of voltage bias at the collector
terminal. This is measured by the product of the series
resistance R and the capacitance of the undoped region
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consisting of the buffer-barrier-well-barrier-buffer layers.
The charge leakage time ~L is more complicated since it
reAects the nonlinearity of the quantum transport
through the double-barrier structures. When the Fermi
level of the source (emitter) is above the quantum-well
resonant-energy level, it is the time it takes to charge the
quantum well by tunneling through the first barrier, so
that by virtue of self-consistency, the resonant-energy lev-
el becomes aligned with the Fermi level of the source, al-
lowing the tunneling current to increase to a maximum.
Thus the tunneling current would typically lag behind the
increase in the voltage drop across the double-barrier re-
gion. However, the rather slow readjustment of the
charge buildup in the emitter region will eventually catch
up resulting in the Fermi level lying below the resonant-
energy level of the quantum well, with attendant
overshoot in the alignment between the two levels. On
the other hand, when the Fermi level of the source is ly-
ing below the resonant-energy level of the quantum well,
the tunneling-leakage time through the second barrier
measures the charge depletion process in the quantum
well, which together with the action of self-consistency,
leads toward realignment of the resonant-energy level
with the Fermi level of the source (emitter), allowing the
tunneling current to increase to a maximum. However,
the slow readjustment of the charge in the emitter region
to replace the charge will eventually result in the
overshoot of the alignment of the two energy levels, with
the Fermi level of the source lying above the resonant-
energy level of the quantum well. This process then re-
peats, and oscillations occur. It is clear that for a sym-
metric double-barrier structure, the discharging and
charging tunneling times are equal, with the correspond-
ing processes being inherently not in phase, i.e., one
necessarily follows somewhat after the other. Since the
charging and discharging of the quantum well rejects the
tendency to maintain ("to correct") the alignment of the
Fermi level of the emitter with the resonant-energy level
of the quantum well, the oscillatory behavior results from
the overshoot of the energy-level alignment and the high-
ly correlated discharging and charging of the quantum
well, by virtue of the longer buildup times of the charge
at the barrier edge compared to the leakage tunneling
time. This means that for r~ ) rL (this condition will be
discussed in more detail later), the alignment of the
resonant-energy level of the quantum well relative to the
Fermi level of the source oscillates, for the RTD operated
in the NDR region. Indeed, this phenomena is unambi-
guously demonstrated by the numerical simulation of the
RTD using the "quantum Monte Carlo" particle tech-
nique. '

The resulting current oscillations have been demon-
strated by Jensen and Buot, using the QDF approach
discussed above. The fact that the tunneling current con-
tribution to the total current has an inductive character
led Buot and Jensen to propose the BJ model for the
equivalent circuit of the RTD operating in the NDR re-
gion, which incorporates the quantum inductance L in
series with the nonlinear negative conductance G. In the
BJ model, ~L is measured by the product of an induc-
tance L, which is referred to as the quantum inductance,

and the absolute value of the negative conductance G.
The total current is the sum of the inductive tunneling
current, T(t), plus the rate of change of the polarized
charge across the RTD structure. This is the time-
dependent displaced charge QD of the doped region at
the drain side. Therefore, we have the total time-
dependent current I(t), given as

I (t)=T(t)+ QD, (4)
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FIG. 3. (a) The basic BJ equivalent-circuit model of the RTD
at low frequencies. It is derived from the numerical simulation
of the QDF transport equation (Ref. 4). This was used by BJ to
resolve the controversy regarding the intrinsic bistability of the
RTD, operating in the NDR region. (b) Transformation of
current and voltage variables used in the circuit equations.

which immediately suggests the presence of an equivalent
circuit representing the undoped region, consisting of an
inductive branch parallel to a capacitive branch. Since
the inductive branch is solely responsible for the conduc-
tion when the current does not oscillate, i.e., when the
series resistor R is small enough such that ~~ & ~1, it be-
comes easy to deduce that the inductive branch consists
of the inductive element L and a nonlinear resistor
characterized by the i (v) relation of the non-self-
consistent linear-drop model of Fig. 2.

Thus the basic BJ model of a RTD operating in the
NDR region derived from the fundamental consideration
of the quantum transport across a double-barrier struc-
ture has four independent equivalent-circuit parameters:
the series resistance R, a nonlinear resistor characterized
by a negative conductance G, quantum inductance L, and
capacitance C. This is shown in Fig. 3. As indicated
above, the RTD simulated by BJ, with fixed bias applied
in the NDR, is characterized by the following inequalities
for the circuit parameters: R~G~ ) l and RC )L~G~.
RC ) 1 roughly means that a relatively large amount of
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charge has to be moved in the emitter region from the
reservoir corresponding to a small change in the
resonant-energy level. This would enhance the charge
buildup time ~~ in the emitter region. These are condi-
tions for the presence of oscillatory behavior and instabil-
ity of the operating point in the rniddle of the NDR re-
gion ' leading to the intrinsic bistability and hysteresis in
the current-voltage characteristics, which were the focus
of the original BJ model. In contrast, we now find that
the RTD's simulated by Frensley and Kluksdahl et al.
are obtained if the following inequalities are obeyed:
R

~ G~ & 1 and RC & L G~, along with further conditions to
be specified in what follows. The above are conditions for
the nonoscillatory and stable operation in the middle of
the NDR region allowing for the applicability of linear-
response approximation. They also imply that the series
resistance is quite small compared to that of the RTD
simulated by BJ (note that the RTD simulated by BJ, al-
though having approximately the same feature sizes for
the double-barrier region, differs in having an undoped
buffer layer on both sides of the double barrier, which
may also affect the value of the capacitance relative to
those of Refs. 5 and 6, and a longer computational box
length, which together introduces a larger R ). Moreover,
the RTD simulated by Frensley, without taking self-
consistency into account, differs from that simulated by
Kluksdahl et al. , which takes self-consistency into ac-
count, by the following inequality: L~G~ &Cl G for
Frensley, whereas L G~ )Cl

~
G~ for Kluksdahl et al.

These imply a larger quantum inductance for the RTD of
Ref. 6 as compared to that simulated in Ref. S. The re-
sidual small inductance in Frensley's case is due mainly
to quantum reAections and nonlocality. This means that
the current response lags behind the change in the ap-
plied voltage due tn quantum rejections at the interfaces
and large distance readjustments of the wave function.
This is supported by the numerical simulation in which
an oscillatory current response results from the applica-
tion of a step voltage pulse across the NDR region,
without taking self-consistency into account. This situa-
tion is only true for operating bias in the NDR region, by
virtue of the fact that it takes some time for the wave
function to spread out across the quantum well, with the
aid of a reAection-mediated readjustment to effectively
raise the resonant-energy level out of the triangular po-
tential region of the deformed quantum well. There is no
readjustment of the Fermi level in the emitter region in
the absence of self-consistency, so that alignment
overshoot and self-oscillations cannot be supported at
fixed bias in the NDR region. Further, note that Ref. 6
uses wider barrier widths than those used in Ref. 5 and
BJ, and furthermore, that BJ use an undoped buffer layer
at each side of the double-barrier region. All these will
affect their actual respective capacitance and series resis-
tance. From the discussion of this paragraph, the BJ cir-
cuit model serves not only to clarify the origin of the
discrepancy of the results of the two numerical simula-
tions, ' but also to bring together the various dynamical
aspects of the RTD in terms of WDFTEQ.

In addition to the quantum inductance, found by BJ to
be parallel to the capacitance for fixed bias in the NDR

region, it is important also to take into account effects
arising from the electron kinetics in calculating the RTD
response to a high-frequency ac signal. These effects are
often regarded as due to the electron inertia, i.e., it takes
time for the electron to accelerate and decelerate, typical-
ly causing the current to lag in time behind the electric
field. These inertial effects, although always present, are
negligible at low frequencies. It is taken into account in
our high-frequency equivalent-circuit model of the RTD
by adding another inductance I (l is typically an order of
magnitude smaller than the quantum inductance L), in
series with R, outside the two-branch circuit of I., 6, and
C. This is shown in Fig. 4. As will be shown in the fol-
lowing figures, this additional "inertial inductance" l
serves to cut off the RTD response at very high frequen-
cies.

A. Calculation of the complex admittance
of the RTD: Linear response

Then the equation for the voltage drop U measured from
the middle of the NDR region across the nonlinear resis-
tor is given by the following linear circuit equation:

RCLGv+(RC+LG)v+(RG+1)u =uoe' '.
For the calculating the current response, we are only in-
terested in the particular solution of Eq. (6). This is given
by

u =voe' '!I[(RG+1) tv RCLG]+—ice(RC+LG)I . (7)

The terminal current response, hi (t)=bi, +bit in the
equivalent-circuit model of Fig. 3 is obtained as

bi (t) =CLGO+Cv+Gv .

Upon substituting the particular solution for u in Eq. (8),
we are led to the following expression for the complex ad-
mittance:

o.(cv) =Reo (co)+i Imo. (co), (9)

g R
0000 wvv—

G
OIIOtl9IItlo~

FIG. 4. An equivalent-circuit model of the RTD for calculat-
ing the high-frequency signal response. It is used here to
resolve the controversy concerning the reactive behavior of the
RTD.

To calculate the complex-value admittance, let us as-
sume that a small complex-valued ac signal given by
Uoe'"' is applied across the two terminals of the RTD.
For a stable perturbation around the middle of the NDR
region, we can approximate the current in the nonlinear
resistor in Fig. 3 to be given by

i (u)=Gu .
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where

1
Reer co =

R CLG

G (1 co—CL)(co() co—)+co Ci)

( co()
—co ) + ( coi) )

RCLG

(10)

C (co() —co ) —G ( 1 co —CL )i)
(1 1)

(co2 —co ) + (coi) )

The expressions for co& and g are given in terms of the
equivalent-circuit parameter as

co() =(RG +1)/RCLG,

i) =(RC +LG)/RCLG . (13)

We immediately observe that if Reer(co) represents a neg-
ative conductance at ~=0, as found by Frensley and
Kluksdahl et al. , then RG+1)0 or RlG &1. This is
consistent with our previous assumption regarding the
smallness of R in Refs. 5 and 6 compared to BJ. This also
implies that the parameter co&(0. Since R is small, then
the parameter g )0 for similar reasons. In the limit co be-
come very large, the inductive element blocks the effect
of the negative resistor, Reer(co) becomes positive and is
asymptotically given by 1/R, a finite limit in the absence
of the effects of the electron inertia discussed above.
Therefore Reer(co) must cross the frequency axis at some
particular value m, . The crossing frequency is given by
the smallest positive root of the following equation:

G (1 co CL)(l (—) co+co )+co Ci)=0 . (14)

This is a quadratic equation in y =co . One positive root
is guaranteed; this is the crossing frequency co, given by

co = [a+&cc'+y']'" (15)

~= [ Gl+Cq —Gl ~,' CL]/(2IGI«),

CL

Clearly, when a smaller inductance due to the effects of
the electron inertia is also taken into account, at least an
extrema of Reer(co) exists for another positive value of w.

L Gl —C
RCL Gl(lG CLr)+C)

1/2

(19)

The above finite asymptotic capacitive limit is only true if
the inductive effect due to the electron inertia is not taken
into account. Otherwise, another crossing of the frequen-
cy axis from capacitive to inductive behavior also exists,
with the inductive behavior asymptotically going to zero
at very high frequencies. This analytical result agrees
with the numerical simulation of Kluksdahl et al. On
the other hand, if L Gl & C/l Gl as in the numerical simu-
lation of Frensley, then crossing of the frequency axis
should be absent, unless a smaller inductance (roughly
one order of magnitude less than the quantum induc-
tance) due to the electron inertia in series with the RTD
circuit of Fig. 3 is also taken into account, which will
lead to crossing from capacitive to inductive behavior
and asymptotically going to zero at very high frequen-
cies. These considerations are indeed in conformity with
Frensley's numerical result.

In the presence of the inertial inductance l, the expres-
sion for the real and imaginary parts of the admittance
become

These results are indeed what was observed in the WDF
numerical simulation of Frensley and Kluksdahl et al.

The imaginary part Imcr(co) is proportional to co at low
frequencies. It is inductive at low frequencies provided
LlGl )C/ Gl holds. Otherwise, Imcr(co) is capacitive.
At low frequencies, Kluksdahl et al. found Imcr(w) to
be inductive, whereas Frensley found it to be capacitive.
This supports our claim that the neglect of the self-
consistency in Ref. 5 resulted in a much smaller quantum
inductance compared to that of Ref. 6, where self-
consistency was taken into account. In all cases, at
higher frequencies, the quantum inductance ceases to
contribute to the reactive component, as expected, and
Imo(co) is always positive and characterized by the RC
branch of the equivalent circuit, i.e.,

1
Imcr (co)

R AC

It is interesting to note that when the following condition
is satisfied, namely LlGl )C/l Gl, then a positive frequen-
cy cu, for crossing from the inductive to capacitive
behavior exists and is given by

1
Reer(co) =

RCLG

Imo (co) =
R CLG

G(1 co CL)[co()—(1+—5)co ]+co C(i)+5g)
[co()—( 1+5)co ] + [co(i)+5i))]

C [co()
—(1+5)co ] —G(l co CL)(g+5r))—

[coo—(1+5)co ] + [co(i)+5i))]

where the "correction terms" are given by

l 1' LRG (22)

(23)

Figure 5 shows the result of the calculations employing
the parametrization of the BJ model discussed above,
characterizing the non-self-consistent RTD numerical
simulation of Frensley, without taking into account the
inertial inductance /. In this figure the value of the cir-
cuit parameters are chosen such that R

l
G

l
& 1.0,
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B. Calculation of the complex admittance
of the RTD: Nonlinear response

A more realistic treatment of the RTD is to consider
the source and drain resistance to be larger than the abso-
lute magnitude of the inherent negative differential resis-
tance in the middle of the NDR region. This was
achieved in the QDF numerical simulation of Jensen and
Buot by using a longer simulation box length. Self-
consistency and scattering, through the use of the
relaxation-time approximation, " were taken into ac-
count. The criteria for oscillations and limit cycle opera-
tion in the NDR region were achieved at low tempera-
tures as discussed in Ref. 3, with results in excellent
agreement with the experiments.

For a NDR operation which exhibits oscillations and
limit-cycle behavior, resulting in hysteresis and charge bi-
stability in the averaged I-V characteristic, the middle of
the NDR region, v =0, is an unstable point. Therefore, it
is no longer valid to use the linear approximation to the
current across the nonlinear resistor. Any small pertur-
bation will bring the values of U to large excursions. Thus
the problem becomes highly nonlinear. To give the prob-
lem a definite form, let us approximate the i (v) charac-
teristic of the nonlinear resistor by adding a cubic term as
dictated by the symmetry in Fig. 3, given by

i (u) = Gv +Pv (24)

where P may be approximated as

P= IGI/3v, . (25)

7, but taking into account the presence of a smaller iner-
tial inductance l which is about an order of magnitude
smaller than the quantum inductance I.. The agreement
with the characteristic features of the numerical results of
Kluksdahl et al. is quite good. The agreement of all the
calculations can be made more accurate quantitatively by
optimizing the five circuit parameters (e.g. , using the nu-
merical Levenberg-Marquardt algorithm' ), subject to
the constraints given above, so as to produce the exact
crossings and points of extrema. The optimization is not
done in this paper, since our immediate goal is to demon-
strate the dominant role of the different regimes of the BJ
circuit parametrization on the high-frequency qualitative
behavior of RTD, and to confirm the basic nature of the
BJ equivalent-circuit model for the RTD.

coo(u)=(RG+1+Pu )/D(u),

D ( v ) =R CL6 + 3PR CLv

Q(v)=vo/D(u) .

(29)

(30)

(31)

III. THEORY OF NONPERTURBATIVE
SMALL ac SIGNAL RESPONSE

OF THE RTD BIASED IN THE NDR REGION

The starting point for the quantum transport equation
in the presence of space- and time-dependent perturba-
tion is the QDF transport equation. To simplify the non-
perturbative calculation of the small ac signal response,
many-body effects are taken into account only to leading
order in the expansion in powers of A. The derivation of
the resulting quantum transport equation in the
transformed phase space is outlined in Appendix A for
the Hamiltonian in the effective-mass approximation
given by H =p /2m*+ V(q) —f(t) q. The time-
dependent perturbation is f(t).q, with f(t) the position-
independent but time-dependent external electric field.
At high frequencies, this sort of perturbation is not a bad
approximation. For a rigorous numerical treatment of
the small ac signal response applied at the drain, one
must solve the QDF quantum transport equation and the
Poisson equation successively, without the need to as-
sume the form of the perturbation inside the device. This
is dealt with in Sec. IV.

In Appendix A, it is shown that the driving term in-
volving f(t) and its time derivative can be eliminated
from the quantum transport equation by making the fol-
lowing transformation in phase space:

Equatio~ (25) is a highly nonlinear equation, and
represents a nonlinearly driven nonlinear-damped oscilla-
tor. Furthermore, the additional smaller inductance due
to the electron inertia in series with the two-branch RTD
equivalent circuit could add further complications. The
problem requires the analytical and geometrical tools of
nonlinear mechanics' for its numerical solution.

We should point out that there have been a few at-
tempts in the literature aimed at characterizing the quan-
tum inductance of the RTD. Notably, these are attempts
which employ linear-response theory and do not treat the
far-from-equilibrium operating bias condition. The result
presented here is a by-product of the time-dependent
self-consistent QDF approach, ' '" whose value for real
device analysis cannot be underestimated.

The quantity v is the voltage, measured from the middle
of the NDR region, where the current peak is located.
Let us take a real ac small signal given by vocos(cot) ap-
plied across the terminals of the RTD. Then the equa-
tion for the voltage drop across the nonlinear resistor,
measured from the middle of the NDR region, is given by

p'=p, + f f(t")dt",

q'=q +g(t'),
where

(32)

(33)

{34)
V+g(u)0+((u)0 +coo(u)u =Q(v) cos(cut),

where

g(v) =(RC +LG +3PLu2)/D (v),

((u) = 12PR CLu /D (u),

(26)

(2g)

(35)

(36)

In terms of the moving phase space (primed variables),
we have
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Bf (p', q', t')
Bt'

.V f„(p',q', t')+, f dp"dvsin —(p' —p").v
ih'(h /2)

X I V[q' g(—t') —v] —V[q' —g'(t')+v]]f (p",q', t')

+ — ', fo(p' ~') —f.(p', q' t')-1 p(q', t')
po(q')

(37)

We can immediately notice that the last equation written
in the moving phase space has exactly the same form as
the equation in the absence of the ac signal, which has
been used in a number of RTD simulations in Refs. 3 and
11, except for the presence of the driving force in the po-
tential term, in such a manner that one can think of the
potential function as moving forward relative to the mov-
ing phase space, with velocity v(t) =g'(t')= I' f(t")dt".
Thus one writes the potential kernel as

M [q' g(t'), p' ——p" ]

1 ~ 2
d v sin —(p' —p" ).v

A(h /2)

X I V[q 'g(t') —v]—
—V[q' —g'(t')+ ]v] .

By assuming a harmonic perturbation f(t)=cocos(cot),
then g(t') is bounded, oscillatory and small. Thus, from
the numerical standpoint, the matrix
M [q' —g(t'), p' —p" ] is simply modified by the oscillato-
ry time dependence (resembling a "back and forth" shak-
ing motion of the potential in the moving phase space)
with time t' simply acting as a parameter in the matrix M
of the customary time-dependent computer algorithm.

The oscillating time dependence in the matrix M is ex-
pected to nonperturbatively modify the form of the re-
sults for the QDF obtained in the numerical simulations,
as given in Buot and Jensen" and Jensen and Buot.
Therefore, in the moving phase space, the QDF incorpo-
rates the effects of the small ac signal, nonperturbatively,
through the oscillating potential matrix M. It follows
that the current in the moving phase space would also re-
veal the effect of the "shaking motion" of the double-
barrier potential through the current density J(q', t'). On
the other hand, another time-dependent effect is created
by the transformation back to the fixed phase space (labo-
ratory frame), i.e., in the laboratory phase space we have
J[qo+g(t), t]. Thus it is seen to acquire another nonper-
turbative dependence on time through the qo+g(t)
dependence.

The above discussion leads to the identification of two
major nonperturbative effects on the current density.
These are (a) effects due to the shaking motion of the
effective double-barrier potential as seen by the charge
carriers in the moving phase space, and (b) effects due to
the transformation of the obtained current density back
to the laboratory frame of reference. The first is expected
to cause a major complicated change in the intrinsic au-
tonomous oscillatory behavior of the current density,
found by Jensen and Buot for the RTD operating in the

NDR region, as a function of the frequency of the ap-
plied ac signal. We can expect either increased or imped-
ed tunneling rates to occur, resulting in enhancement or
quenching of the autonomous intrinsic current oscilla-
tions. In a separate context, such phenomena have been
found to occur in the quantum transport treatment of a
classically known driven-anharmonic oscillator system. '

The second is expected to cause frequency modulations of
the effective intrinsic current oscillations, by virtue of the
"swinging back and forth" motion of the current-density
wave, as a function of position, across the whole RTD de-
vice.

Another way to examine these nonlinear effects is to
consider the BJ equivalent circuit for a RTD with a non-
linear negative resistor, which takes into account a series
inertial inductance. This has been discussed earlier in
Sec. II B.

IV. QUANTUM TRAJKCTORIKS:
PHASE-SPACE PICTURE

OF NONLINEAR QUANTUM TRANSPORT

Still another way to study the nonperturbative small ac
signal response of the RTD, using the QDF approach, is
to search for the quantum particle trajectories in phase
space. Buot and Jensen" effectively introduce the "Liou-
ville representation" by identifying the QDF transport
equation with the following expression:

~f.(p q t) = —q V f (p, q, t) —p. VQ (p, q, t),Bt

so that, at steady state, the contour lines of the QDF
represents particle quantum trajectories. Note that
in this representation the Liou ville theorem
df (p, q, t)/dt =0 is satisfied. In the absence of an ac sig-
nal, at steady state, Buot and Jensen" and Jensen and
Buot' have reported their study of the Wigner trajec-
tories (contour lines of the QDF). At low bias, these tra-
jectories do seem to have the behavior of real particle tra-
jectories, e.g. , they exhibit conservation-of-energy
behavior, as well as the expected coherent and incoherent
tunneling across a double-barrier structure. However, at
very high bias, and particularly at the resonance current
peak, the violent fiuctuations present in the QDF trans-
port solutions complicate the interpretation of the results
and prevent the authors of Refs. 11 and 17 from attach-
ing any meaning to their calculated trajectories. There
were also numerical difficulties due to the violent Auctua-
tions, in which the QDF freely takes positive and nega-
tive values.

Furthermore, conceptual and numerical difficulties also
arise when one tries to define time-evolving trajectories
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by calculating the "quantum force" acting on the ficti-
tious particle from Eqs. (1) and (39), as follows:

=2~ V Vdp'dv. V q ———V q+—
2 2

Xsin v f (p', q, t)(p —p')

fo(p, q) —f.(p q t)
1 p(q, t)

po(q)

The presence of the gradient of the violently oscillating
QDF renders the numerical calculation of the force al-

most useless. It should be mentioned that even in the ab-
sence of scattering and many-body effects, current con-
tinuity in phase space is not satisfied in the Liouville rep-
resentation, unlike in classical systems.

An alternative approach to the calculation of a time-
evolving trajectory in phase space and a fictitious quan-
turn force is to enforce the current continuity in phase
space by identifying the QDF transport equation with the
following expression:

Bf (p, q, t) = —V J (p, q, t) V~—.J (p, q, t),at

where f (p, q, t) is treated as the quantum phase-space
density, and the phase-space current densities are given
by

f (pqt» (42)

J (p q t)= — dp'dv V q ———V q+ — . cos v f (p' q t) v
1 V V (p —p')

p 7

2 2

&a
dp . o p', q — p', q, t

0 po(q)
(43)

J(p, q, t) =v(p, q, t)f (p, q, t),
where

J(p, q, t)=[J (p, q, t), J (p, q, t)],
v(p, q, t)=[v (p, q, t), v (p, q, t)] .

(45)

(46)

The "dynamical equations" from which trajectories are
calculated are taken to be

We refer to this approach as the "phase-space fIuid repre-
sentation. " The price one has to pay for enforcing the
current-continuity equation in phase space is that the
QDF do not satisfy Liouville's theorem, even in the ab-
sence of many-body effects, unlike the classical systems.
The phase-space velocity functions are then defined
through the expression

cillations of the QDF, preventing us from obtaining nu-
merically well-behaved "point functions" in phase space.
Indeed, preliminary calculations of the phase-space "Auid
velocities" shows irregular behavior. Therefore, the
Wigner trajectory is not suitable for studying the phase-
space picture of quantum transport at all bias ranges.

To formulate an appropriate framework for describing
the quantum particle trajectories in phase space, it is im-
portant to recall that the average value of the position or
momentum in the WDF approach obeys effective classi-
cal equations of motion by the Ehrenfest theorem. We
can reformulate this theorem in the lattice phase-space
dynamics, appropriate for our purpose, as follows. In the
lattice phase-space quantum dynamics of particles in
solids, ' the time evolution of the expectation value of an
arbitrary one-body operator A can be written as

p=J (p, q, t)lf (p, q, t),
q=J (p, q, t)/f (p, q, t) .

(47)

(48)

p„„(p,q, t) [H, A ]„„(p,q), (49)
p, q, pl, pl

dt

Numerically, the absence of the gradient of the QDF
above is preferable to the definition of the quantum force
in the Liouville representation. Note also that the
dynamical equations for both the Liouville representation
and the phase-space Quid representation are identical
when v (p, q, t) is not a function of q, and v (p, q, t) is not
a function of p, as in the case of conservative classical
systems. However, the equation for p and q cannot be
taken strictly as are dynamical equations of the particle
trajectory, since the physical interpretation of Eq. (41) as
a continuity equation in phase space cannot be taken seri-
ously because the QDF is not positive definite. The nu-
merical difticulties that arise are a result of the violent os-

where p„„(p,q, t) is the Weyl transform of the density-
matrix operator, n and n ' stand for the band and spin in-
dices, and H is the single-particle Hamiltonian operator.
Substituting the momentum and position operators P and
Q for 3, and using the product rule for the Weyl trans-
form of a commutator, we obtain

d&P(t) &

p (pq t)
p, q, n, n' Bq

d(Q(t) & p„„.(p, q, t)
p, q, n, n' Bp

(50)

(51)

The two equations above are versions of the Ehrenfest
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l
(xlp, q, &

=
3/4 3/2 exp

(27r) b,

(52)

Upon taking the Weyl transform of this wave packet
(x p„q, ), and taking the continuum limit, the result is
the minimum uncertainty Wigner wave packet or the
minimal WDF (MWDF), denoted by fg(p, q; p„q, ),
given by the following expression:

3
2

fPv(p q'p 'q )= exp '
—(q —q, )'

26

equations in the lattice Weyl-Wigner formulation of the
band theory of solids for arbitrary QDF, p„„,(p, q, t).
Given an initial position and momentum, the last two
equations define a time-dependent particle quantum tra-
jectory in phase space.

We now show that a single particle described by a
minimum uncertainty wave packet obeys exactly the
Hamilton equations of motion within one band, in the
classical limit to be specified below. Let us consider a
normalized minimum uncertainty Gaussian wave packet,
which we denote by (x~p„q, ) (also often referred to as
coherent state labeled by p, and q, ). Coherent states
have the property that they are overcomplete:

—(x —q, ) ip,
4A

+ .X'.

W(p„q„t)= (p„q, ~P(t) p„q, ), (57)

(p,'&=(p'&+ (60)

(q,') = (q'&+

which is clearly non-negative because the density matrix
is a positive-definite, trace-class operator. The above re-
sults are well-known in the coherent-state phase-space
formulation of quantum mechanics, aimed at making cal-
culations which correspond to the classical analogs. ' It
has been shown that this so-called Gaussian smoothing
renders the QDF positive definite, and yet maintains all
quantum information, because the smoothing corre-
sponds to a mere change of the operator-ordering scheme
from that inherent in the QDF/Wigner approach.
The smoothed-out QDF is often called the Husimi distri-
bution function, and has been useful in the study of
quantum tunneling and chaos in driven nonlinear quan-
turn systems, by studying the structure of phase
space.

Related to the QDF (or WDF), it has some common
properties, as expressed by the following relations

(p) = ff (p, q)pdpdq= f W'(p„q, )p, dp, dq, , (58)

(q) = ff (p, q)qdpdq= f W(p„q, )q, dp, dq, , (59)

—2b, (p —p, )
X exp'

g2
(53)

However, W(p„q, ) is a normalized quasidistribution,
since the integral over p, or q, does not lead to distribu-
tion of coordinates or momenta, i.e.,

Note that in the limit A~O, 6~0, such A/6~0 as well
(in the minimum uncertainty case, b =&A'/2 and
A'/b, =&2A'~0 if A'~0), the MWDF is just a representa-
tion of the 6 function. Therefore, in this classical limit,
we have the Hamilton equation of motion

f W(p„q, )dp,
3

h

2

3/2 r

26 p q exp
—(q —q, )'

'dq,
2A

d(P(t) )„aH„(p„q,)

dt Bq,
(54) and similarly,

d(Q(t))„
dt

BH„(p„q, )

Bp

describing the classical equation of motion in one band.
Therefore, the center coordinates of the MWDF obey the
classical Hamilton equation. In what follows, we will
simply refer to the center coordinates in phase space as
the "dynamical variables" p, and q, .

What we are interested in is the expected component
("weight" ) of the MWDF bearing the dynamical vari-
ables p, and q, (i.e., centered on p, and q, ) in an arbi-
trary QDF. We can calculate the expected "weight" in
the usual manner as in calculating averages, namely

W(p„q„t)= ff (p, q, t)fg(p, q;p„q, )dpdq . (56)

We can view the W(p„q, ) as the distribution of
"dynamical variables" corresponding to any arbitrary
QDF. Indeed, what we have defined as W(p„q, ) can be
shown to be the diagonal matrix element of the density-
matrix operator p in the coherent-state representation, '

1.e.)

f W(p„q, )dq,
3

h (~26, ) fp(p)exp
2

—2b, (p —p, )
'dp

with

f W(p„q, )dp, dq, =l, (64)

f W(p„q, )dp, -=p(q, ),
f W(p„q, )d q, -=p(p, ) .

(65)

(66)

which show that the smoothed distribution function
W'(p„q, ) does not lead directly to distributions of mo-
menta or coordinates, but instead to a smoothed-out dis-
tribution of momenta or coordinates. On the other hand,
we have found that in most cases in our numerical RTD
simulations, the distribution of momenta or coordinates
is often quite smooth, even if the full QDF is violently os-
cillating. In these cases, the Gaussian smoothing func-
tion can simply act like a 5 function, and we can write
the following approximations:
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= —q, V~ W(p„q„t)—p, .V~ W(p, q„t) . (67)

In the Liouville representation, it becomes more appeal-
ing physically to interpret the evolution of W(p„q„t) as
due to the propagation of quantum trajectories in dynam-
ical phase space, where W(p„q„t) satisfies the Liouville
theorem

dW(p„q„r)
dt

=0. (68)

Therefore, for steady-state situations the contour lines of
W(p„q„r) give the description of the quantum particle
trajectories; these reduce to the Wigner trajectories,
which were calculated in Refs. 11 and 17 for a relatively
smooth QDF (or WDF). This discussion serves to justify
the association made in Refs. 11 and 17 of Wigner trajec-
tories to quantum particle trajectories.

For calculating time-evolving trajectories from a
dynamical equation of motion, we can use the phase-
space fluid representation by identifying the time-
evolution equation for W(p„q„t) with,

8 W(p„q„r) = —V, J,(p„q„t),
Bt

where

V, =[V~,V ],
J, =[J (p„q„t),J, (p„q„t)],

(70)

(71)

=1—V J (p„q„t)= p„q,
P

~ &p pc&qc
2m

The above approximations allow us to treat the
smoothed-out function W(p„q, ) as a true probability
distribution function. These approximations are made
here only to illustrate these salient features of W(p„q, ),
but they are not required for the full analysis of the prob-
lem.

Moreover, in a manner similar to the treatment of the
QDF transport equation, we can apply the Liouville rep-
resentation for calculating steady-state trajectories in
phase space by identifying the smoothed-out QDF trans-
port equation with

8 W(p„q„ t)

at

Numerically, the movement of the trajectory in phase
space is described by the following algorithm:

v( p„„qt) +v(p, ,q„t +5t)
(p„q„t +5t ) = '

xfir+(p'„q'„r) . (76)

One can also study the structure of phase space by means
of trajectories using "stroboscopic techniques, " i.e., by
calculating the contour lines of W(p„q„t) at various in-
stants of time.

The major task therefore lies in calculating the velocity
field. We will discuss this in more detail here. This ve-
locity field in phase space can be defined in terms of the
fiux density J(p„q„t) and the W(p„q„t) as follows:

J(p„q„t)=v(p„q„t)W(p„q„t), (77)

space. However, the smoothed-out distribution does not
satisfy the Liouville theorem.

As indicated before, in general W(p„q, , t) cannot be
considered as a true probability distribution. On the oth-
er hand, the continuity equation still allows us to regard
the smoothed non-negative distribution as leading to a
conserved density in phase space. We may therefore in-
terpret the smoothed distribution W(p, , q„t) as the den-
sity for a conserved quantum fluid Aowing in phase space,
i.e., the evolution of W(p„q„t) may still be viewed as
due to the propagation of quantum trajectories in phase
space. The calculational difficulties arise from the fact
that the resulting particle trajectories are no longer gen-
erated by the Hamiltonian dynamical equations. What
we need is a generalization of the Auid Bow equations, in
the same manner that was attempted before for the QDF
transport equation.

To obtain the quantum trajectories in phase space, we
need to calculate the velocity field v& (p„q„t) and

C

vz (p„q„t). Using this velocity field, the quantum parti-
C

cle trajectories which govern the evolution of the
smoothed density are obtained as solutions to the follow-
ing generalized dynamical equations:

dpc
=v~ (p„q„t),dt

dq, =v (p„q„t) .

—V, J, (p, q, r)=,&&p. q. li~ p]~p. q. &

+,„&p, q, ~~lp, q, & . (73)

We have included the collision operator C', taken in the
relaxation-time approximation, in the definition of the
smoothed-out phase-space current in the dynamical
phase space. By using the last two equalities, which serve
to define the velocity q„and the force p„we may now
interpret the evolution of W(p„q„t) as due to the prop-
agation of quantum trajectories in dynamical phase

d W(p„q„r) BW(p„q„t) +v.VW(p, q„t) .
dt at (78)

Using the continuity equation in lieu of the first term on

where W(p„q„ t) is the result of smoothing the QDF (or
WDF). Therefore the central task is in evaluating the
flux density in phase space, J(p„q„t). This can be done
in principle since the existence of well-defined J(p„q„t)
is assured by the continuity equation. Indeed, the con-
tinuity equation and the velocity field govern the changes
with time of W(p„q, , t), and lead to the violation of the
Liouville theorem in classical mechanics. This is derived
as follows. Let us write
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the right-hand side of Eq. (78), we obtain

d W(p„q„t) = W(p„q„t)V.v(p„q„t) .
dt

(79)

One can see from the definition of v(p„q„t) that the
divergence of the velocity field in phase space is nonzero
in general, i.e., there is no conservation in phase-space
volume. This is in contrast to the use of Liouville's

BH
BpBq

(80)

The Aux density in phase space can be determined from
the QDF by using Eq. (1) and the continuity equation for
the W(p„q„t):

theorem, where the Hamiltonian structure is such that
the following holds:

J (p„q„t)=J f (p, q, t)fw(p, q;p„q, )dpdq,

1 V VJ (p„q„t)= dp'dv. V q ———V q+—
2 2

X cos .v f (p', q, t)fw(p, q;p„q, )dpdq
(p —p') .1, p(q, t), ~ Mfo(p' q) —fw(p' q t) fw(p q p, q, )dpdq .

7 0 poq
(82)

The virtue of the approach taken here in studying the
phase-space structure is that we have avoided the direct
numerical solution of the smoothed distribution
W(p„q„t) whose integrodifferential equation is more
difficult to solve than the QDF transport equation. It is
more preferable that the smoothing procedure and the
calculation of quantum trajectories be performed as a
processor of the numerically obtained QDF or WDF,
with a small ac signal component applied at the drain
boundary. The last point needs to be stressed, since this
is the essence of the method proposed in this paper for
studying the structure of phase space. This approach
consists of the following procedure.

(1) Numerical solution of the QDF transport equation
of the RTD using a subsidiary open boundary condition,
as described in Refs. 3 and 11.

(2) Processing the numerically obtained QDF solution,
e.g. , using Gaussian smoothing, to calculate other quanti-
ties of interest, such as the current Aux densities in
"dynamical" phase space and the velocity fields and map
the time-evolving trajectories in order to study the struc-
ture of phase space.

There are two ways to characterize the trajectories: (a)
By means of "stroboscopic techniques, " calculating the
surface contours of the Husimi distributions at various
instants of time. This is conveniently done in the Liou-
ville representation. (b) Solving the general "phase-space
fiuid" dynamical equation of motion, Eqs. (74) and (75),
in the phase-space Quid representation.

The approach proposed here should allow one to study
the respective contributions of tunneling and nontunnel-
ing trajectories to the current Aux. The study of the sepa-
ration between tunneling and nontunneling trajectories
will naturally lead to a division of phase space, with a
dynamically changing separation boundary. This will
lead to a "classical" division of the current corresponding
to the tunneling-transport and displacement currents.
Moreover, the detailed dynamical study of the tunneling

component would reveal the complex dynamical nature
of the quantum inductance, I.. Clearly, the BJ
equivalent-circuit model for the RTD is suggested by the
expected dichotomy of phase space into the "reactive
tunneling component" and "displacement component. "

V. CONCLUDING REMARKS

In this paper, we have demonstrated that the BJ
equivalent-circuit model for the RTD goes a long way to-
ward characterizing the different fundamental behavior
of a double-barrier nanostructure, as revealed by the nu-
merical quantum transport simulations. The results ob-
tained here lend support to the accuracy of the BJ
equivalent-circuit model of a RTD at fixed bias (and low-
frequency bias at the drain), as well as confirming the va-
lidity of the high-frequency equivalent-circuit model of
the RTD introduced in this paper, which incorporates a
smaller series inertial inductance in addition to the quan-
tum inductance. These results also serve to invalidate a
claim made without any reservation that no LRC circui-
try can simulate the complicated frequency dependence
of the admittance in the linear-response regime. It is
worthwhile to reiterate that the BJ equivalent-circuit
model is subtle and basic to the characterization of the
different behavior of the RTD obtained from quantum
transport numerical simulations. Indeed, the model
presented here dispels the discrepancy in the reactive
behavior of the two earlier numerical simulations of the
small ac signal response as two different special cases of
the parametrization of the BJ equivalent-circuit model
for the RTD. Thus the discrepancy between the reactive
behaviors found by Frensley and Kluksdahl et al. is
resolved. Moreover, the exact role of electron inertia in
the high-frequency behavior of the RTD is clarified in
this paper.

For the case when linear-response approximation
breaks down, as would be the case when the correspond-
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ing parametrization of the BJ equivalent-circuit model
corresponds to the parametrization used by BJ to explain
the plateaulike behavior of the I-V characteristic, then a
nonperturbative-response scheme is required. In this pa-
per, we propose to study this problem by three methods
which are expected to complement each other.

The first method is the use of the equivalent-circuit
model of the RTD, biased in the NDR region, by incor-
porating nonlinear terms in the i (U) characteristic of the
nonlinear resistor. A host of nonlinear behaviors, includ-
ing enhancement and/or quenching of the intrinsic oscil-
latory "limit-cycle" current behavior, as a function of the
frequency of the exciting signal, would be quite interest-
ing to investigate.

The second method is through the study of the funda-
mental quantum transport equation in the presence of a
time-dependent but position-independent electric field
throughout the device. This type of applied bias is a
standard approach in analytical transport theory. The
virtue of this method is that it can reveal nonperturbative
fundamental effects due to a small ac signal. Indeed, in
this paper we have shown that a time-dependent transfor-
mation of phase space can be used to reduce the problem
to a problem of the absence of the applied ac field, which
has been subjected to a time-dependent numerical simula-
tions in Refs. 3 and 11. The only difference is that the
double-barrier potential in the moving phase space ac-
quires time as a parameter, effectively executing a vibrat-
ing motion in the moving coordinates. Nevertheless, the
customary numerical technique can be used to study this
problem. Moreover, transformation back to the laborato-
ry frame explicitly reveals another component of the time
dependence, which is effectively due to the "vibrating
current density wave (as function of position)" across the
device.

The third method formulated here relies on a numeri-
cal approach. It is based on a detailed study of the "clas-
sical" structure of phase space. It extends the previous
numerical approach to a time-dependent ac bias at the
drain. In this approach, it is assumed that a bias in the

I

middle of the NOR region, with a small ac component, is
applied at the drain in the customary time-dependent nu-
merical simulation. The numerically obtained time-
dependent QDF solutions are then processed to calculate
various quantities, as routinely done before, with an ad-
ditional procedure for Gaussian smoothing of the QDF in
order to calculate quantum trajectories, velocity fields,
and current cruxes. Although this procedure is expected
to be computer processing intensive, it will open up in-
teresting regimes of investigation of the nonlinear proper-
ties of quantum-based devices, bringing additional non-
linear quantum effects to the fore, and ushering new ap-
plications of these nonlinear quantum phenomena.
Indeed, the use of the Husimi distribution has already
made it possible to study some interesting properties of
quantum tunneling and chaos in a driven anharmonic os-
cillator, ' ' showing interesting parametrically con-
trolled tunneling rates. Application of Husimi distribu-
tion to technologically important open systems has, to
our knowledge, never been discussed in the literature;
this paper serves to make a beginning in this direction.
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APPENDIX A: TRANSFORMATION
OF THE QDF TRANSPORT EQUATION

In the presence of many-body effects, the proper start-
ing point in the derivation of Eq. (37) is the exact QDF
transport equation derived by one of the authors (Ref.
11), using the lattice Weyl-Wigner formulation of the
quantum dynamics (LWWFQD) of electrons in solids. In
the continuum limit of the LWWFQD, the time-
evolution equation for the single-particle density matrix
in phase space or the QDF, p (p, E,q, t), is given as
[writing p = (p, E),q = (q, t) ] (Ref. 11)

p (p E q t)=,
&

dp'dq'K-(p, q;p', q')p (p', q')+ dp'dq'K', (p, q;p', q')( i)ReG "(p', q—')
(It /2)

2

. s fdp'dq'K', (p, q;p', q')( —i)ImG "(p', q')
h

2

8 f dp'dq'K r (p» q'p' q')t '(p' q')
h

2

where &=M +ReX', and the integral kernels are defined by

(Al)

2lK;(p, q,p', q')= f du dv exp —[(q —q') u+(p —p') v] [a(p+q, q
—v) —a(p —u, qtv)I (A2)

2l
K;(p, q;p', q')= f du dvexp —[(q —q'). u+(p —p')v] [a(p+q, q

—v)+a(p —u, q+v)I . (A3)
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The time-evolution equation for G "(p,E,q, t) may also be given as

1

i dt (Q 4)2
G "(p,E,q, t) =

4
dp'dq'K' „(p,q;p'q')G "(p', q') . (A4)

To simplify the nonperturbative calculation of the small ac signal response, we will neglect the second term of Eq. (Al),
and take into account the last two terms in the leading terms of.the expansion in powers of A. The result is an equation
for the Wigner-distribution function which includes leading collision terms, given by

i dt (Q 4)2p (p, E,q, t)= dp'dq'KH(p, q;p', q')p (p', q')+[X (p, q, t)A (p, q, t) —I (p, q, t)G (p, q, t)] . (A5)

where H =p /2m+ V(q) —f(t).q. The time-dependent perturbation is f(t) q as the position-independent but time-
dependent external electric field. Evaluating the integral in Eq. (A5), using H in the effective-mass approximation given
above, we end up with the following expression:

3

Bp —p 1 h, . 2
Bt ' ' '

m
(p, E,q, t) = V'~ (p E q t)+ —— d p'd v sin —(p —p') v

2

&&[V(q—v) —V(q+v)]p (p', E,q, t)

—f(t) V~ (p, E,q, t) —q f(t) p (p, E,q, t)

——IX (p, E)A (p, E)—I (p, E)G (p, Eq, t)j (A6)

where we assume that the self-energies and spectral functions are independent of time and position.
We can eliminate the explicit appearance of the driving term, f(t), and its time derivative from the last equation by

making the following transformation in phase space:

p'=po+ f t" dt",
E'=Eo+qo. f(t'),
q'=q +g(t'),

where

po=p ~

Eo =. E,

g(t')= I f(t")dt",

In terms of the moving phase spaces (primed variables), we have

I

, p (p', E', q', t')= — V p (p', E', q', t')+, Jdp"dvsin —(p' —p") v
P1 h

2

(A7)

(Ag)

(A9)

(A 10)

(Al 1)

(A12)

(A13)

(A14)

X I V[q' g(t') —v] —V[q' —g'(t')+v] jp (p"—,E', q', t')

——IX (p', E')A (p', E')—I (p', E')G (p', E', q', t') j . (A15)

Applying the relaxation-time approximation to the last term, we have

——fdE'IX'(p', E')A(p', E') —I ( ', E')G'(p', E', q', t')j= — p ', fo(p', q') —f (p', q', t')
7 Poq

(A16)

Therefore, by integrating with respect to the energy variable, and noting that dE =dE', we finally obtain
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z, f.(p' q' t')=-a
Bt'

I

.V f (p', q', t)+ . . 3- f dp"dvsin —(p' —p").vI q ' '
p,

2

X I V[q' —g(t') —v] —V[q' —g(t')+v]]f (p",q', t')

+— ', fo(p' q') —f.(p' q' t')1 p(q', t')
po(q')

(A17)

In the absence of the collision terms, the above result can of course be obtained by starting with the equation for the
single-particle density-matrix operator

= —[H,p] (A18)

instead of Eq. (Al).

APPENDIX 8:DERIVATION QF SMOOTHED-OUT CURRENT FLUXES

The time-evolution equation for IV(p„q„t) can readily be deduced by smoothing Eq. (1). The result is given by

c) 8'(p„q„t) P . M—= —f d p d q —yqf (p, q, t)f (p

1 -, f'd pdq f dp'dvsin —(p —p') v [V(q —v) —V'(q+v)] f (p' q t)f (p q p q )
2 M

h

2

+ "p "q ' fo(p q) —f.(p q, t) f(p, q;p„q, )-
1

po q

We are interested in transforming the above equation to the form of Eq. (69). In order to do this, we make the transfor-
mation q=q+q, to the first term, use Vq=Vq and transfer Vq out of the integral sign. We are left with the form

C C

&, .J, (p„q„t). T»s define J (p„q„t) given by Eq. (81). Similarly, for the second and third term, first let p=p+p
C C C

and recast these terms as gradient terms with respect to p„ i.e., T .J (p„q„t). The result serves to define J (p„q„t)
C C C

as given by Eq. (82).
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