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ZnS/ZnSe strained-layer superlattices under pressure
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First-principles density-functional calculations of the electronic properties of ZnS/ZnSe (001)
strained-layer superlattices are used to investigate the inAuence of hydrostatic pressure on the valence-
band offset (VBO). Three different strain modes corresponding to various values of the relative
thicknesses of the two types of layers are considered. The pressure coe%cients of the VBO's are found to
be very sensitive to the strain mode. A I~II type conversion associated with the conduction-band
crossover between the ZnSe well layers and ZnS barrier layers is found, in agreement with recent experi-
mental data. The pressure behavior of the key quantities (VBO s, bulk moduli, energy gaps) is discussed
for various strain modes.

I. INTRODUCTION

Recently, there has been much interest in the effects of
the external modulations in semiconductor superlattices
and quantum-well structures. In this respect strained-
layer superlattices are especially interesting since they
contain strains which can be influenced by choosing the
alloy compositions, thicknesses of individual layers, or by
applying the pressure or electric field. This allows the
strain to be controlled, and in turn the superlattice elec-
tronic structure can be tuned.

Wide-gap ZnS/ZnS Se& strained-layer superlattices
(lattice mismatch of 4.5%%uo) may be useful as tunable light
emitters, either by variation of the constituent-layer
thicknesses or the composition x, or by changing the
external conditions such as hydrostatic pressure or elec-
tric field. To predict the electronic structure of the new
artificial materials, it is necessary to know the bulk pa-
rameters, elastic constants, and pressure coefficients of
the energy gaps as well as the heterojunction parameters
such as the strains in the layers, and conduction- and
valence-band offsets. A fit to the hydrostatic pressure
dependence of the electronic levels can provide an excel-
lent test of both the theory and parameter values.

In a previous paper' the electronic-structure calcula-
tions for ZnS/ZnSe (001) and (110) superlattices were car-
ried out, and valence-band offsets (VBO's) in heterojunc-
tions and "absolute" deformation potentials of the con-
stituent compounds were derived. The present work uses
the same method, i.e., self-consistent supercell calcula-
tions performed within the local-density approximation
(LDA), to calculate electronic properties of ZnS/ZnSe
(001) superlattice as a function of hydrostatic pressure.
As previously mentioned, ' we apply here the relativistic
linear-muffin-tin-orbital (LMTO) method. Three different
strain modes are considered; pseudomorphic growth of
ZnSe on a ZnS substrate, the reverse case, and "free-
standing" case (equal thicknesses of both type of layers).

As already described, ' the calculated VBO's are very
sensitive to the atomic positions in the interface region.
Therefore, it is necessary to replace macroscopically
determined structure (from elastic constants of the con-

stituents) by a fully relaxed structure. This relaxation is
made by means of valence-force-field calculations in the
Keating model.

The pressure coefficients of VBO's are found to depend
on the strain mode. Generally, the VBO increases with
pressure, but whereas this dependence is pronounced in
the case where ZnSe is pseudomorphically grown on a
ZnS substrate, it is almost negligible for the reverse case.
The more the VBO increases with pressure, the more the
conduction-band offset (CBO) decreases with pressure.
This effect leads to conversion from type I to type II asso-
ciated with the conduction-band crossover between the
ZnSe well layers and ZnS barrier layers. Unfortunately,
the LDA causes considerable underestimation of energy
gaps, and therefore, we have to adjust the gaps to experi-
mental band gaps for bulk materials in order to estimate
the CBO. This makes the estimated value of the cross-
over pressure somewhat ambiguous. Nevertheless, the
calculation confirms the experimental finding of the type
conversion under hydrostatic pressure.

Other considered quantities such as bulk moduli, their
pressure coe%cients, and pressure coefficients of energy
gaps are compared with the corresponding results for the
bulk ZnS and ZnSe and discussed in the context of the
various strain conditions.

The rest of this paper is organized as follows: in Sec. II
the method of calculations is outlined including the
determination of atomic positions in the interface region.
Structural and electronic properties of the constituent
materials (ZnS and ZnSe) under pressure are derived in
Sec. III. The pressure dependence of the electronic struc-
ture of ZnS/ZnSe superlattice is discussed in Sec. IV. Fi-
nally, Sec. V contains a summary of our results.

II. METHOD OF CALCULATION

The LMTO method in the version that applies spheri-
cally symmetrized charge distributions and potentials in
atomic spheres, i.e., space filling (and thus slightly over-
lapping) spheres, the atomic-sphere approximation
(ASA), is used to obtain the electronic structure of the
considered superlattices. The self-consistent potentials
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are Arst calculated for the supercell geometry where the
primitive cells (supercells) are chosen to have an odd
number of compound layers on each side of the interface.
In our calculations seven layers of each compound are
taken into account. The ASA potential consists of indivi-
dual atomic-sphere potentials, and therefore, we can ex-
tract the central-layer potentials, which are bulklike in
shape if the cell is big enough. These potentials are then
automatically adjusted on a common energy scale accord-
ing to the polarizations caused by the interface forma-
tion, and the VBO's (defined as the difference between the
valence-band maximum deeply inside the compound on
the "right-hand side" and "left-hand side") are obtained
by performing two single band-structure calculations, one
with the right and one with the left central-cell potentials
transferred to bulk crystal structures ("frozen-potential
calculation" ). From these band structures the valence-
band maxima E, (R) and E,(L) are found and the VBO is
determined as b,E, =E„(R)—E,(L)—. It has to be pointed
out that in the case of strained-layer superlattice, the
bulklike structures used in the band calculations must be
appropriately strained.

The self-consistent supercell potentials are generated
by including all relativistic effects except the spin-orbit
coupling. The final band calculations in the zinc-blende
structure, from where the offsets are obtained, are Dirac
relativistic. All calculations are performed within the lo-
cal approximation to the density-functional theory. As
usual, LMTO calculations for the semiconductors must
include so-called "empty spheres" located in the intersti-
tial positions, i.e., atomic spheres without "nuclear"
charge (see Ref. 6 and references therein). Each layer
contains two real atoms (cation and anion) and two emp-
ty spheres that in general are nonequivalent.

The calculations are performed in two energy panels:
the lower panel contains the s states of anions while the
rest of the states are included in the upper panel. The
basis set includes the s, p, and d partial waves on all sites
in the upper panel, the basis set in the lower panel is re-
duced by omission of the d partial waves on the sites of
the anions and the empty spheres. The Zn 3d states are
included as fully relaxed band states.

We consider three different strain modes corresponding
to various values of the relative thicknesses of the two
types of layers: (A) the lattice constant parallel to the in-
terface is that of bulk ZnS, i.e., corresponding to a pseu-
domorphic growth of ZnSe on a ZnS substrate; (8) free-
standing case: ZnS as well as ZnSe layers, both with the
same thickness, assume lattice constants different from
the bulk values and (C) pseudomorphic growth of ZnS
on a ZnSe substrate.

The strained-layer lattice parameter a~ perpendicular
to the interface is allowed to relax to the value deter-
mined by the elastic properties of the material:

ai =(1+Bi)a,
where

c=D 1—

is the strain-tensor component for the deformation per-
pendicular to the interface, a is the bulk-lattice constant,

a~~ is the in-plane lattice constant, and D is a function of
the elastic constants, depending on interface orientation
(see, for example, Ref. 7).

The relations above determine the macroscopic strain
state, but yield no information about the actual atomic
positions in the interface region. We determine the actu-
al atomic positions in the interface region by requiring
that the force on each atom vanishes, forces being calcu-
lated within the Keating model in the form which is gen-
eralized to heteropolar semiconductors. The strain ener-

gy is expressed in terms of bond-stretching (a) and
bond-bending (/3) force constants. The atomic positions
in the relaxed structures are obtained by minimizing the
strain energy by allowing the atoms to move in the
growth direction. Values of the force constants used here
are obtained from the the corresponding elastic constants
using the formula given by Martin (with effective point-
ion Coulombic forces added to the Keating model):

a =a ( c» +3c,2 +0.491SC0 ) /4

P=a (c» —c,2
—0.05 3SCO ) /4,

where SCo =e T* /c. r, e T is the dynamic effective
charge, c, the dielectric constant, r the bond length, and
a the lattice constant.

Results for the (001) ZnS/ZnSe superlattices at zero
pressure were presented in a previous paper. ' Here we
focus our attention on the pressure effects. For the given
value of hydrostatic pressure the force constants a(p) and

P(p) are expressed in terms of the lattice parameters and
elastic constants: a (p), c»(p), c,2(p), and SCO(p), where

a(0) E„(0)eT* (p)
SCO(p) =SCO(0)

a (p)'E (p)„eT*'(0)

III. ZnS AND ZnSe UNDER PRESSURE

To perform the electronic band-structure calculations
for the strained-layer superlattice, it is necessary to know
the lattice and elastic constants of the constituent materi-
als. For zero pressure the situation is rather simple, be-
cause we can take the values known from experiments.
The situation is much more complicated, when we want
to get the pressure-volume relation for the superlattice.
For each value of pressure, the values of lattice and elas-
tic constants of constituent materials must correspond
exactly to this value of pressure. There are some experi-
mental data on the pressure dependence of the required
parameters, but due to the scatter of the reported values 9

obtained by different methods and with different accura-
cy, it was necessary to perform consistent first-principles
calculations of the total energy for bulk materials being
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FIG. 1. Total energy per atom vs relative volume for ZnS. FIG. 2. Total energy per atom vs relative volume for ZnSe.

constituents of the superlattice in order to get the
pressure-volume relations for both sides of heterojunction
with similar accuracy and by the same method as later
calculations for the superlattice. Also it is interesting to
compare the pressure behavior of the electronic structure
of superlattice with that of constituent materials.

The electronic-band-structure and total-energy calcula-
tions were performed for ZnS for 10 and for ZnSe for 13
volumes. The volume dependences of the total energies
are shown on Figs. 1 and 2 for ZnS and ZnSe, respective-
ly. From these calculations we have obtained the
volume-pressure relations, the equilibrium lattice con-
stants, the bulk moduli, and their pressure dependences.
The results, together with the pressure coefficients of the
main energy gaps, are summarized in Table I. Compar-
ison with the experimental data is made, and we see that
there is good agreement. The value of bulk modulus is
smaller for ZnSe than for ZnS, but its pressure coefficient
is larger. At a pressure of about 15 GPa the two bulk
moduli become equal, and for higher pressures the bulk
modulus of ZnSe is larger than that of ZnS. This is illus-

trated in Fig. 3. The lattice-constant —pressure relation
for ZnS is compared with the experimental data' up to
10 GPa, and again, as one can see from Fig. 4, there is
very good agreement between our calculations and exper-
iment.

The obtained values of bulk moduli are starting points
for the calculations of the electronic structure of super-
lattice for diAerent values of pressure. Here we need the
values of elastic constants c»(p) and c,z(p) for both sides
of the heterostructure. We are taking the values that cor-
respond to our calculated bulk moduli Bo(p), assuming
experimental values' '" of the ratios c»/c&2 and experi-
mental values' '" of the ratios (dc&& /dp)/(dc&2/dp).

IV. ZnS/ZnSe SUPERLATTICE UNDER PRESSURE

In order to study the pressure dependence of the elec-
tronic structure of ZnS/ZnSe superlattice, the band-

TABLE I. Equilibrium lattice constants a, bulk moduli Bo, their pressure derivatives Bo, and pres-
sure coefficients of the main energy gaps dEg /dp, for ZnS and ZnSe.

ZnS

ZnSe

5.399 5.4093'

5.698 5.6676'

a (A}
Present

calc. Expt. Expt.

81.2

60.9

78.4'
77.1'
75.O'

60 7'
62.4'

B, (GPa)
Present

calc.

Bo
Present

calc.

4.05

5.5

Expt.

4.0 '

4.8'

Expt.

64"
63 5

63 71.7'
75
60'

dEg /dp (meV/GPa)
Present

calc.

'Reference 9.
Reference 12.

'Reference 10.
'Reference 13.
Reference 14.
Reference 15.



48 ZnS/ZnSe STRAINED-LAYER SUPERLATTICES UNDER PRESSURE 17 205

200 5.5

ZnS

100

0

50
CQ

U

O
O

5.3

0 I i & i i I & « i I i i » I ~ & i i I

10 -5 0 5 10 15 20

Pressure (GPa)

~ 2 i i I i i i I & i I & & i i & i i t t I i i & i & i i & i I & i & & i I i i & I5.
0 2 4 6 8 10

Pressure (GPa)

FIG. 3. Bulk moduli; dependences on pressure for ZnS and
ZnSe.

FIG. 4. Lattice constant of ZnS as a function of pressure in a
comparison with the experimental data.

structure and total-energy calculations were performed
for some values of hydrostatic pressure. The calculation
of energy-volume and pressure-volume relations is much
more complicated for the superlattices than for the bulk
constituents where the volume alone is a free variable and
the structure unchanged. For the superlattice we must
treat the pressure as the variable and optimize the struc-
ture. Energy volume relations are presented in Figs. 5 —7
for the strain modes 3, B, and C, respectively. From the
volume dependence of the total energy, we have obtained
the volume-pressure relation, the equilibrium average lat-
tice constants, the bulk mod uli, and their pressure
coefficients. The calculated band structures are used to
derive the pressure coefficients of the energy gaps and the
pressure dependence of the valence-band offset AE„
defined as the difference between the energies of the
highest occupied states in ZnSe and ZnS. All the results
are summarized in Table II. In strain case B, the calcu-
lated bulk modulus and its pressure coefficients are "in-
termediate" in the sense that they are between the ZnS
and ZnSe bulk values. For strain modes 2 and B, the
calculated values of Bo and Bo are clearly outside the
range spanned by the bulk values.

It is interesting to compare the pressure dependence of
the energy gaps derived for bulk ZnS and ZnSe crystals
with those of ZnS and ZnSe being constituents of hetero-

structure. We consider central layers of both sides of het-
erostructure. The results are presented in Table II and in
Figs. 8 —10 for the three strain modes considered. Strain
mode A corresponds to unstrained (bulklike) ZnS and
strained ZnSe, so the pressure coefficient of E equal to
55 meV/GPa obtained for the ZnS side can be compared
with the value 62 meV/GPa obtained for bulk ZnS.
Similarly, for strain mode C, the ZnSe side corresponds
to bulk ZnSe and the pressure coefficient of E, 61
meV/GPa, is very close to the bulk value, 63 meV/GPa.
As we can see from Figs. 8 —10, the pressure behavior of
the energy gaps for superlattice is strongly nonlinear for
all cases and sensitive to strain condition.

The calculated VBO's are even more sensitive to the
strain conditions. As we can see from Table II and Fig.
11, the VBO increases rapidly with pressure for strain
mode A, slightly less for B, and it is almost constant for
mode C. As in the case of energy gaps, the pressure
behavior of VBO's is strongly nonlinear and about 15
Gpa (region of phase transitions in ZnS and ZnSe) they
become almost pressure independent.

In agreement with the experiment, " we find that the
conduction-band offset at zero pressure has the opposite
sign of the VBO, i.e., the superlattice is of type I. Ac-
cording to the recent experimental data, a conversion
from type I to type II is observed at about 3 GPa. We

TABLE II. Bulk moduli Bp, pressure derivatives Bp, valence-band offsets AE„ their pressure deriva-
tives dhE„/dp, and pressure coefficients dEg /dp of the main energy gaps in the central layers of both
sides of the ZnS/ZnSe heterostructure, for different strain modes: A, pseudomorphic growth of ZnSe
on a ZnS substrate; B, "free-standing" case; C, pseudomorphic growth of ZnS on a ZnSe substrate.

Strain
mode

Bp
(GPa)

Bp dEg /dp
(me V/GPa)

ZnS ZnSe

AE,
(eV)

dAE, /dp
(me V/GPa)

A
B
C

102
74
50

1.8
4.9
8.6

55
63
70

41
52
61

0.66
0.56
0.22

54
29
10
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FIG. 5. Total energy per atom vs relative volume for
ZnS/ZnSe superlattice strain mode 3, i.e., pseudomorphic
growth of ZnSe on a ZnS substrate.

FIG. 8. Pressure dependence of the main energy gaps for
both sides of ZnS/ZnSe heterostructure strain mode 3, i.e.,
pseudomorphic growth of ZnSe on a ZnS substrate.
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FIG. 9. Same as Fig. 8, but for strain mode B, i.e., "free-
standing" case.
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also observe the I -I conduction-band crossover between
the ZnSe well layers and ZnS barrier layers for A and 8
cases. The situation in case A is schematically presented
in Fig. 12. To perform more detailed comparison with
experiment we have, at first, to adjust the obtained
values of the energy gaps to their experimental values for
zero pressure (LDA, as is well known, underestimates
considerably values of energy gaps) taking into account
strain effects caused by lattice nonmatching. To this pur-
pose we use the deformation potentials of the energy gaps
obtained for the bulk materials. Next, we determine the
conduction-band offset AE, at zero pressure as hE, =E
(ZnS) Es (ZnSe) ——b,E, . The resulting pressure depen-
dence of the conduction-band edges for the strain mode
A is presented in Fig. 13. Our value of critical pressure
P, for conduction-band crossover is about 4.5 GPa,
somewhat more than the experimental value 3 GPa, but
we consider our value as a rough estimate due to the ap-
proximate method used to obtain the energy gaps at zero
pressure (and due to the uncertainty in the experimental
gap data). With the deformation potentials of the band
gaps obtained for bulk materials (

—4. 5 and —3.7 eV for
ZnS and ZnSe, respectively), and deformation potentials
of the valence bands obtained previously' (

—3. 5 and

P=0, Type I P &0, Type I I
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h. h.
I.h. hE

FIG. 11. Pressure dependence of the valence-band offset for
ZnS/ZnSe superlattice.

FIG. 13. Pressure dependence of the conduction-band edges
for both ZnS and ZnSe layers for strain mode 2, i.e., pseu-
domorphic growth of ZnSe on a ZnS substrate. The vertical
dashed line indicates the crossover pressure.

—1.2 eV) we find the deformation potentials for the con-
duction bands: —8.0 eV for ZnS and 0.9 eV for ZnSe.
Consequently, the pressure coe%cient dhE, /dp is equal:
—18 meV/GPa neglecting the pressure dependence of
VBO. Now taking into account the values db, E, /dp for
the strain modes considered, we get the following values
of the pressure coefficients dAE, /dp: 35, 12, and —8
meV/GPa for A, 8, and C cases, respectively. In case A,
our estimated value of AE, for zero pressure is 160 meV
and again we get P, =4.5 GPa. In case B, the estimated
value of P, is much higher. In case C, there is no type
conversion at all. On the other hand, the experimental
situation described in Ref. 4 is close to our case A, since
the ZnS layers are twice as thick as the ZnSe layers.

V. SUMMARY

In conclusion, the self-consistent supercell calculations
show that the valence-band offset depends on hydrostatic
pressure and in turn is strongly affected by the internal
strain. For the three cases considered, thin layer of ZnSe
on ZnS substrate ( A), equal thickness (8), and thin layer
of the ZnS on the ZnSe substrate (C), we find that AEl
increases with hydrostatic pressure. On the other hand,
the conduction-band offset AE, decreases for strain
modes A and B (leading to the type conversion), and in-
creases in case C. The estimated value of the crossover
pressure (P, =4.5 GPa) obtained for strain A is in
reasonable agreement with the experiment (P =3 GPa).
Thus, our calculation confirms the experimental observa-
tion of a pressure-induced type conversion in ZnS/ZnSe
superlat tice.
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