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Electronic properties of twin boundaries and twinning superlattices in diamond-type
and zinc-blende-type semiconductors
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The electronic properties of twinning boundaries, stacking faults, and a recently proposed structure,
the twinning superlattice, in group IV and III-V diamond-type and zinc-blende-type semiconductors are
calculated and discussed.

I. INTRODUCTION

With the advent of modern technologies of crystal
growth, it has become possible to make high-quality
semiconductor layered structures, with novel electronic
properties. Of the most famous representatives of those,
superlattices, two classes have traditionally been grown,
based on periodic changes of either composition or dop-
ing patterns. For making high-quality compositional su-
perlattices, the closeness of the lattice constants of con-
stituent semiconductors is a prerequisite. When the lat-
tice constants of the semiconductors differ by a finite
amount, as is usually the case, great care has to be taken
to obtain a good interface, which may involve rather
complicated chemistry, tightly controlled growth condi-
tions, etc. Failure to meet this condition results in a large
number of defects and dangling bonds in the vicinity of
the interface, thus degrading their electronic properties,
due to the large amount of incoherent electron scattering
introduced. This leaves a limited number of semiconduc-
tor materials for superlattice growth. Problems of a simi-
lar nature may also appear in the case of doping superlat-
tices.

The periodic variation in material composition gives
rise to miniband formation through the coherent admix-
ture of states of the constituent materials. In the case of
the doping superlattice, it is the coherent scattering due
to the periodic electrostatic potential which performs the
same function. However, a spatially varying potential is
not the only way to introduce electron scattering in semi-
conductors. The possibility also exists to make a single
semiconductor material behave as an inhomogeneous
structure. This can be done in at least two other ways, as
follows.

Some semiconductors naturally show polytypism, i.e.,
the face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) crystalline forms may coexist, because the forma-
tion energies of the two phases differ by a very small
amount (SiC and ZnS being typical examples). A consid-
erable amount of work has been done on these systems,
and the formation energies, as well as electronic and oth-
er properties of these structures, have been rather
thoroughly studied. ' In such materials the fcc and hcp
phases may be interleaved, so as to make a rather long
period unit cell. It is thus possible to conceive of poly-
type (or heterocrystalline) superlattices, which show a

specific polytypic sequence of the constituent semicon-
ductor, containing both fcc and hcp portions of the same
material, periodically repeated. Polytype superlattices
were studied within simple models some time ago, and
interest in them was very recently renewed, with the use
of more sophisticated methods of calculation.

Viewed as a periodic stack of layers with different crys-
tal structures, such systems introduce electron scattering
at interfaces and the formation of superlattice states, be-
cause the Bloch wave functions in the two adjacent layers
are quite different. We should note, however, that many
of the properties of this kind of superlattice may still
qualitatively be understood and treated by simple
effective-mass methods, since fcc and hcp phases have,
inter alia, different band gaps. Indeed, such an approach
has been adopted in Ref. 6. It is also important to note
that although the two crystal phases are different, they
are essentially perfectly lattice-matched at the interface,
and all the bonds are preserved.

Another method of introducing periodic "scattering
centers" in a semiconductor is to vary the crystal orienta-
tion. To be useful, this has to be done in such a way that
no stress and/or dangling bonds appear at the interface
of the two differently oriented semiconductors. These
ideas bring us to the field of a class of planar defects in
semiconductor crystals, known as stacking faults, that we
shall first briefly discuss.

Stacking faults are one of the most common types of
defects in crystalline diamond-type and zincblende-type
semiconductors (Si, Ge, GaAs, ...), as well as in many
face-centered-cubic metals. They are created when
changes of the atomic plane stacking sequence in the
[111]direction, as compared to the perfect crystal, take
place, without breaking any bonds, and have very low
formation energies. The most elementary stacking fault,
which is at the same time the building block for all other
types, is the twin stacking fault (or twin boundary, 180'
twist boundary). It comprises the reversal of the stacking
sequence at some plane, i.e., instead of the
33 'BB'CC' 2 3 'BB'CC' sequence of the perfect crystal,
one now has

A A 'BB'CC' 2 i A 'CC'BB' A A ',
where 3 A ' (or BB',CC') denote the two basis atoms of
the primitive unit cell. Formally, a twin stacking fault
can be constructed by cutting the [111]directed bonds in,
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say the AA' layer, rotating half of the crystal at 180'
about the bond axis and then reconnecting all cut bonds
of two crystal halves. The junction of the two crystal
halves is perfect in the sense that all the bond lengths and
angles are preserved and no dangling bonds are generat-
ed. The other two common types of stacking faults are
intrinsic and extrinsic, having one missing or one extra
layer, respectively, in an otherwise unperturbed crystal.
Thus, along the [111]direction the intrinsic and extrinsic
stacking faults have the stacking sequences

A A 'BB'CC'iiBB'CC'A A 'BB'

and

A A 'BB'CC'EBB'I A A 'BB'CC',

respectively. They may also be viewed as two twin stack-
ing faults separated by one (intrinsic) or two (extrinsic)
atomic bilayers of reversely oriented material (note that
one monolayer of a zinc-blende crystal has two atoms, as
mentioned above).

The essentials of the physics of the stacking fault that
we exploit is that although the interface between the two
crystal orientations is perfectly lattice-matched, the wave
functions are highly symmetry-mismatched. This makes
the twin stacking fault in a sense a junction of two essen-
tially diferent materials, even though the material is of
the same composition and lattice type on both sides.
This symmetry mismatch must give rise to rather large
electron scattering at the interface, and it has indeed been
observed in single stacking faults, especially for energies
not so high above the band edge. '

Stacking-fault defects in semiconductors usually occur
unintentionally, e.g. , due to strain. They can have a con-
siderable effect on bulk semiconductor devices, acting,
e.g. , as scattering centers and lowering the electron mo-
bility, or as recombination centers, etc. However, stack-
ing faults may also be produced intentionally.

We have recently proposed a superlattice, namely the
twinning superlattices, ' based upon the concept of a
periodic combination of two differently oriented semicon-
ductors. Thus, twinning superlattices would comprise
periodic reversal of atomic stacking sequence, i.e., period-
ically distributed twin boundaries, in a semiconductor
which is otherwise, in terms of material composition or
doping, homogeneous. Limited efforts seem to have been
directed towards the fabrication of various stacking
faults, and the most important report on growing a high-
quality, possibly large-area, single twin boundary, has ap-
peared quite recently. " In this experiment, by depositing
a submonolayer of boron during the molecular beam epi-
taxy (MBE) growth of silicon, Headrick et al. were able
to incorporate in it an essentially perfect plane stacking
fault. In view of this successful growth'of a single twin
boundary in Si, fabricating a superlattice structure now
seems quite feasible.

Given the two possible orientations of the constituent
diamond-type or zinc-blende-type semiconductor (if the
interface is to remain perfect), one period of a twinning
superlattice, in its simplest version, might include n and
m atomic bilayers of oppositely oriented material. (Of

course, more complicated structures are also possible,
where the two crystal orientations are distributed over a
number of alternating layers within the superlattice
period. ) Among the general (m, n) twinning superlat-
tices, special cases (n, n), (n, 1) with n ) 1, and (n, 2) with
n )2 may, in accordance with the existing terminology
for isolated stacking faults, be called the twin, intrinsic,
and extrinsic stacking-fault superlattices, respectively.

The proposed twinning superlattices can be readily dis-
tinguished from the polytype superlattices discussed pre-
viously. In twinning superlattices no change of the un-
derlying crystal structure is involved: it is only the crystal
orientation that alternates periodically. In view of the
fact that the class of crystals allowing for twinning' is
much larger than the class of crystals showing polytyp-
ism, there is, in principle, a considerably wider choice of
materials for making twinning superlattices than there is
for polytype superlattices. Except in SiC and
(Zn, Cd)(S,Se), where even "natural" superlattice struc-
tures may appear, polytypism is not expected to be a fre-
quently found phenomenon, because fcc and hcp energies
usually differ too much. On the other hand, a wide
variety of crystals show twinning, which is enabled by the
crystal symmetry,

' not its composition, and indeed it
may be found in a large number of minerals. ' ' In this
paper, however, we concentrate only on diamond- and
zincblende-based twinning superlattices.

The recent success in the growth of a single twin
boundary in silicon" indicates the potential for fabrica-
tion of twinning superlattices. However, we are not
presently aware of any attempt in this direction. Interest-
ingly, twinning superlattices are the only type of superlat-
tice structures that may be found among natural
minerals. In mineralogy they are known as polysynthetic
twins and may appear in a number of (unfortunately insu-
lating, not semiconducting) crystals, notably the pla-
gioclase feldspars, such as albite. ' In natural specimens
the periodicity may not be perfect, and layers are wider
than is usual in the field of quantum microstructures, but
they still exhibit interesting optical effects. ' Also worth
mentioning is that pure single crystals of calcium mesodi-
germanate, laboratory grown from melt, display regular
twinning, ' constituting an "unintentionally" made twin-
ning superlattice. The possibilities of fabricating such
structures will be further discussed in more detail in Sec.
IV.

In this paper we first analyze the electronic properties
of single stacking faults in a few of diamond-type and
zincblende-type semiconductors (Si, Ge, GaAs, A1As),
thus somewhat extending the work of previous authors to
difFerent semiconductors. We then calculate and discuss
the electronic properties of twinning superlattices, based
on these four semiconductors.

II. THE METHOD AND SOME
PHYSICAL CONSIDERATIONS

As discussed in the Introduction, any stacking-fault
structure comprises at least one planar defect, i.e., the
junction of two misoriented crystal halves. The 180' ro-
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tation used to make the twin boundary has nontrivial
consequences on the stacking-fault electronic structure.
However, many of these cannot be understood within the
"continuum" models, such as the effective-mass method,
because neither the potential nor the effective mass
change across the boundary, and these techniques do not
explicitly recognize the cell-periodic part of the wave
function. Only the more sophisticated, microscopic
methods that do may be used for this purpose, e.g. ,
empirical pseudopotential, tight-binding, ab initio pseu-
dopotential, and similar techniques.

All calculations ' performed on stacking faults in
semiconductors until now have been exclusively for sil-
icon. Most have considered their formation energy, pho-
non spectra, and the existence of interface bound states,
while a few ' have dealt with electron transmission
through them. There is also a number of papers on
stacking faults in face-centered-cubic metal crystals (e.g. ,
Refs. 24 —26) such as Al and Cu, most of which dealt with
their formation energy and mechanical properties, but
not electronic properties (with the noteworthy exception
of Ref. 24, where the electron transmission through
stacking faults in copper was calculated).

In the well-studied case of stacking faults in silicon,
both the empirical-pseudopotential' ' and more sophis-
ticated self-consistent methods of various types '
have been employed. Results of these two classes of cal-
culations show a remarkable degree of mutual agreement.
The formation energy of the intrinsic stacking fault in Si
(55 erg/cm ) calculated in Ref. 16, for instance, is within
the spread of values given in Refs. 19—21 (33—145
erg/cm ), and incidentally is closer to the experimental
data, although the charge redistribution and lattice relax-
ation were ignored. Similarly, energy locations of the in-
terface states above the valence-band and below the
conduction-band edges at the center of the Brillouin zone
calculated by all these methods ' ' do not differ very
much. In the case of the interface state in the vicinity of
the conduction-band X-valley bottom, however, disagree-
ments on its existence and energy location do appear, but
they seem to be uncorrelated with the sophistication of
the method and probably reflect the sensitivity of this
state to the parameters used. Self-consistent calcula-
tions' ' of atomic relaxation and charge redistribution
in stacking faults show that these effects are not very
strong, and thus do not have a great deal of infIuence on
their electronic properties. This can be understood when
one remembers that the nearest-neighbor surrounding in
stacking faults is just the same as in perfect crystals, with
differences appearing in the next-nearest neighbors only.
With this in view, we employed in our calculations the
empirical pseudopotentials, which describe the eigen-
states and energy bands of the semiconductor quite well.
Our method should be adequate for the purpose of calcu-
lating electronic properties of stacking faults, and super-
structures based upon them, with reasonable accuracy.
Even though quantitative discrepancies might be expect-
ed if more elaborate schemes were used„ the empirical-
pseudopotential-based method, as discussed above,
should reveal all the major physical efFects and their
trends.

A. Details of the calculations

The method used in our calculations is an empirical-
pseudopotential-based layer method. It uses the bulk
band-structure data to find properties of more complex
(micro)structures. Basically, we first calculate the com-
plex band structure and eigenfunctions of both the propa-
gating and evanescent states of the two bulk semiconduc-
tors on either side of the interface. The in-plane (g~~)
Fourier components of the eigenfunctions are then
matched at the interface(s) and functions propagated
along the layers. The wave-function propagation and
matching is performed using the S-matrix approach,
which guarantees high stability against the evanescent
states (see Ref. 27 for details).

Thus, this method does not belong to the class of su-
percell methods. All the results obtained within it are
subject to interpretation via the bulk band-structure con-
cepts. Yet, along with the advantage of simplicity, such a
calculation may be expected to reveal all the band-
structure-related properties of single stacking faults and
twinning superlattices arising from band mixing and bulk
Brillouin zone folding. It is only the possible charge
redistribution around the interface that would remain un-
described, but, as mentioned above, this is not expected
to be very significant. '

For the interface between two different materials, the
set of wave functions and their derivatives at a given en-
ergy (E) and parallel wave vector (k ) on either side are
matched across the whole planar interface. In effect, this
corresponds to matching the components at each lattice
vector of the surface reciprocal lattice (g~~). For a twin
boundary the materials are the same but of a different
orientation. Thus, in practice, with an incident-electron
state specified by its transverse wave-vector k~~ value,
eigenfunctions on one side are calculated in the conven-
tional way, and to obtain the eigenfunctions for the oppo-
sitely oriented material, the calculation is repeated for
kl —

k~~ (but with the same "normal" crystal orienta-
tion) and then

g~~
and —

g~~
components of the wave func-

tion are interchanged. The matching then proceeds in
the usual manner.

Calculation of the twinning-superlattice miniband
structure goes along the lines described in our earlier pa-
per. In brief, the S matrix of a superlattice period is
first calculated, taking advantage of the high stability of
the technique. Upon finding the full S matrix, it is recast
into the T matrix, the Bloch conditions are imposed, and
the eigenequation is solved.

B. Electron behavior at the twin boundary

In order to get a physical insight, within the frame-
work employed, in the phenomena occurring at the twin-
ning boundary and related structures based on it, we shall
first give a brief description of relevant bulk band-
structure details. The first Brillouin zone of bulk IV and
III-V semiconductors is the well-known truncated oc-
tahedron, depicted in Fig. I, with the important points,
I, X, and L, also denoted. When a bulk crystal is rotated,
the first Brillouin zone corresponding to it (albeit in k
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FIG. 1. The first Brillouin zone of the zinc-blende lattice
(left) and the (111) interface Brillouin zone with mapping of
some important points of the bulk Brillouin zone denoted
(right).

they arise from two different valleys. There is no direct
match for the X, state in the b layer, and vice versa, just
as at the junction of two completely different crystal
structures.

For the above reasons a considerable scattering and/or
band mixing may be expected to occur at the twin bound-
ary, clearly much more so at the M than at the I point.
Also, the band mixing is expected to be more pronounced
here than in the conventional heterostructures, such as
GaAs/A1As, where the wave functions in the two layers
are "symmetry similar, " because the two semiconductors
are crystallographically aligned. Certainly, mixing is
generally favored by the proximity of energy of the
relevant states involved.

III. RESULTS

space) also rotates, since both the real and k spaces are
"tied" to the same coordinate system. In many cases this
rotation has no physical significance whatsoever, but in
the case of twinning stacking faults, or more complex
structures of this type, the situation is different: just as
the two crystal halves are rotated relative to each other,
the same holds true for their Brillouin zones. The first
Brillouin zone is not mirror symmetric with respect to
the (111)plane, which has important consequences on the
coupling of various bulk states at the twin boundary (in-
terface).

In order to get some insight into the state coupling and
mixing involved, it is useful to relate the bulk Brillouin
zone points (especially the low-energy ones, I, X and L)
to points of the interface Brillouin zone, also given in Fig.
1. The bulk Brillouin zone points I and two out of the
eight L (those "directed" along the [111] and [111]
directions, symmetrically situated with respect to I ) are
projected onto I, while all the six X, and six "tilted" L
points (in pairs, one of each kind) project onto six M
points of the interface Brillouin zone. Therefore, I and
M are the most important k~~ points of the interface Bril-
louin zone to be explored (Fig. 1).

Upon 180 rotation in real space, the wave functions
and band structure at any general k~~ point change, fol-
lowing the real-space crystal structure. The exception to
this rule is the dispersion along the [111] line passing
through the I point, which, being symmetric, remains
unchanged. However, even here the transverse structure
of the wave function in the [111]plane is not invariant
under the 180' rotation. At any one of the six equivalent
M points, the bulk band structure is asymmetric, due to
unequally situated X and L valleys with respect to the
[111]plane. Specifically, taking an X and an L valley that
are projected to the same M point, if the L valley is at kL,
then the X valley is at kz= —2kl away from the [111]
plane ([kL =+(I/2Y3)](2'/a), a is the cubic lattice
constant), the sign depending on the particular M point
chosen. In the two oppositely oriented crystal halves on
either side of the twin boundary (call them a and b), the
signs of kL and kz at the same M point are reversed.
Consequently, the X (L) states on the opposite sides are
really different states, say X, and Xb (L, and Lb), since

Numerical calculations of the electronic properties
have been performed using the empirical-pseudopotential
form factors from Refs. 29, 30, and 31 for Si, Ge, and
(Ga, A1)As, respectively. Only the conduction-band states
have been considered, and no spin-orbit interaction has
been included (calculation of the valence-band properties
will be performed at a later stage). As the results for the
stacking faults and twinning superlattices are directly in-
terpreted in terms of bulk band structure, it is important
to have reasonably accurate results for the bulk. With
the above form factors, the L valley in Si is 1 eV above X,
and I is another 1 eV above L. Furthermore, at the ex-
act X point the X& and X3 states are degenerate, but at
the X& valley minimum —the bottom of the conduction
band —it is 460 meV below X3 [this happens at
k~~=0. 87k'(M)]. In G«he X ~alley is only 180 meV
above L, and I is 280 meV above L. GaAs, the only
direct-band-gap semiconductor among the four studied,
has its L and X valleys 320 and 490 meV above I, and,
finally, in AlAs the L and I valleys are 280 and 600 meV,
respectively, above the X valley. These are well within
the results of other calculations and experiments (in any
case, the main features of our results are independent on
precise positions of the minima). With these values of
conduction-band edges, band mixing is obviously likely to
be more important in stacking faults and twinning super-
lattices based on Ge, GaAs, and A1As, rather than in Si
where various conduction-band extrema are widely
separated.

In the pseudopotential layer method we used a total of
19 in-plane Fourier components (g~~ values) in interface
matching, corresponding to a total of 59 three-
dimensional (3D) reciprocal-lattice vectors, up to and in-
cluding the (222) star. Some critical points were also test-
ed with 31

g~~
values [the equivalent of 89 3D vectors, in-

cluding the (331) star], and no significant difference could
be detected.

A. Isolated stacking faults

1. Electron transmission

In calculating the electron transmission, the incident
state energies were taken in a limited range, starting from
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the conduction-band edge at the corresponding point of
the interface Brillouin zone, up to 200—300 meV above it,
to cover the range that thermal or hot electrons normally
acquire. The results for the electron transmission
through a twin, intrinsic, and extrinsic stacking fault at I
and M interface Brillouin-zone points are given in Figs.
2(a) —2(d). In all cases where there is just one valley in the
energy range displayed, the others being well away, the
transmission versus incident energy dependence is
reasonably smooth for all the three structures. Intrinsic
and extrinsic stacking faults are essentially two closely
coupled twin boundaries. It can be seen that although
there is certainly (geometrical) interference of waves scat-
tered from the two interfaces, their wavelengths are
much too long to bring about any fast modulation of the
transmission if only one valley is involved. On the other
hand, in the case of closely spaced valleys, the interplay
of intervalley and geometrical interference effects pro-
duces severe modulation of the transmission coefficient.
Specifically, Cre and GaAs are very prominent examples
of this latter type of behavior. At the M point their L
and X valleys are quite close, and Figs. 2(c) and 2(d) indi-
cate that the L-X mixing at the interface is very strong
indeed (in accordance with the physical considerations
given in Sec. II). An important point to note, with
respect to the discussion of twinning-superlattice band
structure presented later in this section, is that this mix-
ing appears to be strong in the energy range where one of
the two states is evanescent and the other propagating.
In contrast, the I Lmixing at the-I point (Fig. 2) is rath-
er weak even in G-e, where I and L valleys are closest to
each other.

If the incident state is not the bulk I state, then the
transmission rises comparatively slowly with energy and
the transmission of low-energy electrons is very poor.
However, the I state with energy in excess of a couple of
meV is very well transmitted (a consequence being that
stacking faults hardly have any impact on electron trans-
port in GaAs). Being highly symmetric, both in terms of
its position in the interface Brillouin zone and its wave-
function transverse structure, the bulk I state is obvious-
ly least affected by the rotation of one-half of the crystal
with respect to the other.
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2. Interface bound states and resonance 0.6— 0.6

We have made calculations for all k~~ points along the
I -M line of the interface Brillouin zone in search for the
existence of interface bound states and/or resonances in
all the three types of stacking faults. The results are
given in Figs. 3(a)—3(d). Bound states and resonances are
found to be entirely related to L valleys, and tend to be
some tens of meV below the L valley edge at the corre-
sponding k~~ point. They are almost purely L in charac-
ter, the admixture of other bulk states being very low.

We did not find either bound states or resonances close
to the interface Brillouin-zone edges in contrast to Stiles
and Hamann, who found resonance states in Si at the M
point. This is not a result of the limited basis set used,
but may be related to the method [Stiles and Hamann

r
r

0.2 -~

0.4— 0.4

0.2

0
0 0.05 0.1 0.1 5 0.2

E (ev) (d) E (eV)

FIG. 2. Electron transmission coefficient vs incident electron
energy for twinning (solid lines), intrinsic (long-dashed lines),
and extrinsic (short-dashed lines) stacking faults at I and M in-
terface Brillouin-zone points, for (a) Si, (b) Ge, (c) GaAs, and (d)
AlAs. In all cases energy is measured from the loca(
conduction-band edge at either the I or the M point (their abso-
lute positions are different, except in Ge).
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FIG. 3. Interface bound states and/or resonances along the
I -M line of the interface Brillouin zone (Fig. 1) for twinning
(thin solid lines), intrinsic (long-dashed lines), and extrinsic
(short-dashed lines) stacking faults in (a) Si, (b) Ge, (c) GaAs,
and (d) AlAs. The heavy solid line denotes the conduction-band
edge, as seen from the appropriate k~~ point along the I -M line.
(The M point is at ~kt~~ =0.8165.2n /a away from the I point. )

Note that the GaAs interface resonance is at the same energy
for all three types of stacking faults.

used the linearized-augmented plane-wave (LAPW)
density-functional theory] or with the definition of what
constitutes a resonance state. At the I point, however,
we did find a bound state in the Si twin stacking fault at
precisely the same energy as Stiles and Hamann, i.e., 90
meV below the local conduction-band edge. An ab initio
calculation by Chou, Cohen, and Louie, ' with lattice re-
laxation and charge redistribution taken into account,
however, gives a value of -200 meV for the state at I,
and also a real bound state somewhat below the
conduction-band edge at the M point. The agreement be-
tween these results, with various uncertainties involved in
the three computational schemes, may be considered as
acceptable.

In Ge, where the I. valley is the lowest at both I and
M points of the interface Brillouin zone, bound states
could be tracked from I almost up to M, but finally
disappeared. In contrast, in A1As and Si, which are both
the X-type indirect-gap semiconductors, bound states ex-
ist along a part of the I -M line, until the point where the
L valley comes in the "shadow" of the X valley. The I.
valley in Si, Ge, and A1As is below I at I, so real bound
states could be found. In GaAs, however, the I valley is
the lowest one, and here a strong interface resonance
above the I valley, but below the I. valley, was found. In
spite of being predominantly L, in character, the bound
state is weakly coupled to the I continuum it is im-
mersed in, and so forms a strong interface resonance.

As a single twin boundary is capable of supporting
bound states, the presence of two interfaces (in intrinsic
and extrinsic stacking faults) makes the two bound states
interact in the conventional textbook manner, to form a
symmetric and antisymmetric pair. In the extrinsic
stacking fault, where the two interfaces are spaced by two
crystal monolayers, we indeed found a pair of bound
states in Si and A1As, one above and the other below the
twin stacking-fault bound-state energy. In an intrinsic
stacking fault, however, the interfaces are closer and in-
teraction between the states much stronger, so only the
lower of them remains bound. The upper state seems to
be pushed into the continuum, which is also I. in charac-
ter, making it completely disappear, or at most remain as
a very weak, hardly detectable resonance (in the case of
Ge, this applies to the extrinsic stacking fault as well).
The interface resonance in GaAs, on the other hand,
turns out to be independent of the structure —all three
stacking faults considered have just one resonance state
at exactly the same energy [Fig. 3(c)]. Interestingly, in-
trinsic and extrinsic stacking faults, but not a single twin
stacking fault in GaAs, have bound states in a limited
range of k~~ values approximately midway between the I
and M points, well away from any of its valleys. Howev-
er, their energies are so high that it is unlikely that they
are of any importance.

B. Twinning superlattices

In this section we consider the electronic structure of
twinning superlattices. Calculations were performed for
the M and I points of the interface Brillouin zone only,
since it is only here that the low-energy part of the mini-
band spectrum is to be expected. As discussed in Sec. II,
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tually occur not only at M, but in fact at any general k~~

point of the interface Brillouin zone, and are a manifesta-
tion of the screw symmetry characterizing the unit cell
(period) of this type of superlattice. Among all (m, n)
twinning superlattices, and any other type of superlat-
tices, the (n, n) twin stacking-fault superlattice is unique
in that it possesses the screw symmetry, i.e, the transla-
tion by d /2 and rotation by 180', both with respect to the
superlattice axis, applied together leave the structure un-
changed. It is well known from group theory that the

screw symmetry leads to zero gaps at the Brillouin-zone
edges. Zero energy gaps of a different, physically
significant nature may also be found in conventional su-
perlattices, especially the effective-mass ones, and are
then usually restricted to some specific values of electron
transverse wave vector, i.e., points in the interface Bril-
louin zone.

The plot of the envelope of the wave functions, given in
Fig. 5(b), indicates that the I, state dominates, as expect-
ed, but contributions from X3 and L states are again not
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FIG. 6. (a) Miniband structure of the Ge-based (n, n) twin stacking-fault superlattice at the M point of the interface Brillouin zone.
The energy is measured from the conduction-band edge at M, which coincides with the bulk L-valley bottom. The solid lines connect
the edges of minibands with normal dispersion, dashed lines those with "anomalous" dispersion, and dotted lines connect the zero en-
ergy gaps, at ks„=~/d. Examples of energy ranges spanned by the lowest two minibands in (4,4) and (5,5) superlattices are also
given, represented by heavy vertical bars. Unlike the first two, the third miniband behaves normally, beginning at ksLd =0, ending at
m (in brackets). (b,c) Dispersion of the lowest two minibands in Ge (5,5) and (6,6) twinning superlattices. (d,e) Envelope wave func-
tions and current components resolved into bulk L, X„X3contributions [solid, dashed, and dotted lines, respectively, for the wave
function, and arrows for the current, as in Fig. 5(b)], calculated at points [A] and [C] in the (6,6) superlattice above, the situation at
[B]being quite similar to that at [A].
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negligible. The same applies to current components (cal-
culated slightly off the exact miniband extrema).

Calculations of the electronic structure of Ge-based
twinning superlattices show that they share a few corn-
mon features with Si-based ones, but also display some
remarkable differences, to an extent that is almost quali-
tative. These differences clearly stem from the fact that
valleys, L, X&, and X3 are much closer to each other in
Ge than is the case in Si, and all contribute to the super-
lattice state.

The electronic structure of Ge-based ( n, n ) twin
stacking-fault superlattices at the M point, shown in Fig.
6(a), is significantly different from the one in Si. On an
energy scale it appears to have "embedded, " or "over-
lapped, "minibands [Fig. 6(a)]. A closer look at the mini-
band dispersion [Figs. 6(b) and 6(c)], however, reveals
that pairs of minibands, one with normal and the other
with "anomalous" dispersion, are joined (via zero energy
gaps) at the superlattice Brillouin-zone edges (the term
"anomalous" denoting comparatively low dispersion,
with a local extremum somewhere inside the superlattice
Brillouin zone). In the unfolded zone picture, allowing
for the screw symmetry, the miniband dispersion has lo-
cal extrema not only at the superlattice Brillouin-zone
center and edges, but also at some inner points. Of the
two adjacent minibands, it is the lower one that has
anomalous dispersion for (odd, odd), and the higher one
for (even, even) superlattices [cf. Figs. 6(b) and 6(c)]. The
effect of anomalous dispersion disappears at higher ener-
gies, and minibands III and IV in Fig. 6(a) behave nor-
mally, as in Si. The corresponding calculations per-
formed for GaAs and A1As (not displayed) show that this
is related to energy, rather than to the miniband index.

The wave-function plots at some characteristic points,
displayed in Figs. 6(d) and 6(e) are generally similar to
those in Si, but with grossly enhanced intervalley mixing
effects. In particular, we note that the X states, although
evanescent, are highly excited, contributing a larger part
of the overall charge density than the only propagating, L
state(). The evanescent X states are also responsible for a
considerable fraction of the total current [Figs. 6(d) and
6(e)]. Extrema of minibands with "anomalous" disper-
sion, being inside the superlattice Brillouin zone, are
characterized by two large X and L state current
counterAows that cancel at the exact extremum point,
underlining again the strength of the L-X mixing. In
contrast, the current at ksL=0 vanishes because all the
current components vanish. The wave function and the
total current [even slightly off the exact extrema, at
k, ~0] have very different compositions in the two
halves of the superlattice period, which is very clearly
seen here, but is also noticeable in Si superlattices [Fig.
5(b)]. This is caused by the asymmetry of the underlying
single-layer bulk dispersion. At —k„ the wave functions
and currents displayed in Figs. 6(d) and 6(e) are reversed.

Germanium-based twinning superlattices with mWn
are qualitatively similar to Si-based ones, except that X-L,
mixing is again much more pronounced. From the exam-
ples given in Fig. 7 one can see that these superlattices,
unlike any conventional superlattices, may have indirect
mini band gaps. Furthermore, the envelope wave-
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function components, as well as current components, are
now grossly discontinuous. Discontinuity of different
bulk states at the interface applies to some extent in any
superlattice, but in Ge-based twinning superlattices at the
M point this effect is drastic because, as discussed above,
states in one layer have no direct match in the other lay-
er, as a consequence of the 180' rotation, and at the same
time they are very close in energy, allowing for substan-
tial mixing. A similar situation can also be found in con-
ventional type-II superlattices, e.g. , GaSb/InAs, where
conduction-band and valence-band bulk states both con-
tribute to the superlattice state, due to the appropriate
band alignment, and the component bulk states are high-
ly discontinuous at the interface.

In GaAs-, or A1As-based twinning superlattices at the
M point, no essentially new features appear that have not
already been discussed. Thus, e.g. , the miniband struc-
ture of the GaAs (n, n) superlattice looks very much the
same as in Ge, except that the "anomalous" dispersion
continues to higher energies than is the case in Ge, i.e.,
minibands III and IV also show this feature for larger n

values.

2. I point

At the I point of the interface Brillouin zone, as dis-
cussed in Sec. II, it will be the bulk L, and I states that
take part in forming the twinning-superlattice miniband
structure. However, the I -L, mixing is not expected to be
very large, especially not in Si. On the other hand, a
feature that was absent at the M point —the existence of
bound states or resonances —will here take part in mini-
band formation.

The calculated miniband structure of twinning super-
lattices at the I point of the interface Brillouin zone for
(n, n) twin stacking-fault superlattices made of Si and of
Ge are shown in Figs. 8(a) and 8(b), respectively. There is
a lot of similarity between the two materials now, in spite
of the fact that the I -L separation in Si is very much
larger than the one in Ge. The only real difference be-
tween the two is that the minibands in Si-based superlat-
tices are —1 eV above those at M, and thus will not have
a large inhuence on most electronic and optical proper-
ties of these structures. The miniband structure of the
corresponding Ge-based superlattices is set at lower ener-
gies. Since bulk Ge is an L-type indirect-gap semicon-
ductor, the minibands at both the I and M points have
energies in the same range, and are therefore equally im-
portant and experimentally accessible.

The most important point to note here is the existence
of minibands derived from bound (evanescent) states,
partly or fully below the bulk conduction-band edge at
the I point. As the superlattice period increases, these
minibands collapse into the single twin stacking-fault
bound state from which they originate [Figs. 2(a) and
2(b)]. The energy range spanned by these minibands is at
least partly (fully for longer periods, n «6) below the
lowest conduction-band edge (i.e. , l. valley) at this point
of the interface Brillouin zone, and in such cases the cor-
responding wave functions clearly cannot contain any
propagating bulk state. Yet, due to the periodicity of the
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stacking-fault superlattice at the I point of the interface Bril-
louin zone, from which the energy is measured (the bulk I-
valley bottom). The notation is the same as in Fig. 5(a). Since
two kinds of minibands are present, they are denoted by the cor-
responding subscript, according to their character (I or L).

twin boundary array, they are of Bloch type. This is, to
our knowledge, the only superlattice with some of its
rninibands formed entirely from the evanescent bulk
states. The nearest analog are the interface phonon
bands found in the GaSb-InAs superlattice.

Minibands arising from the interface states exhibit al-
most purely L character (I Lm-ixing is very low). The
miniband wave functions are then composed of pairs of
growing and decaying evanescent L states, an admixture
of I being significant for higher energies only. In the
corresponding energy range the current is also entirely
carried by coupled pairs of evanescent states. The wave-
function plots, given in Fig. 8(c), show that for lower-
lying minibands, they tend to be piled up at interfaces
(this holds true even at energies higher than the L-valley
edge), but for higher minibands, additional peaks of the
wave function appear inside the layers.

In III-V-semiconductor-based twinning superlattices
(GaAs, A1As) the situation is rather similar to that in
group-IV-based ones. Consider first the GaAs (n, n) su-
perlattice at I: since the I valley in bulk material is the
lowest, the first miniband, which is predominantly I in
character, has its bottom only slightly elevated from the
bulk conduction-band edge and is extremely broad (Fig.
9). This is consistent with the fact that electron transmis-
sion at the I point is almost equal to unity for energies
exceeding a couple of meV. Immersed in this I miniband
are the pair of interface-resonance-related minibands,
which are essentially L in character. Somewhat higher,
above the L conduction-band edge, but also inside the
broad I miniband, is an L-valley-related miniband.

Finally, A1As-based twinning superlattices do not show
any new features other than those already discussed
above. At the I point the miniband structure is similar
to that of Si or Ge, and at M to that of GaAs (although
its X and L valleys are oppositely ordered), displaying the
"anomalous dispersion" phenomena in the lowest two
miniband pairs. As an example of the electronic struc-
ture in this case, we give the lowest four minibands at the
I point of AlAs-based (n, 6) twinning superlattice with
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L CB edge
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-0.1
4

FICx. 10. Miniband structure of the AlAs-based (n, 6) twin-
ning superlattice at the I point of the interface Brillouin zone,
from which the energy is measured (the bulk L-valley bottom).
Note the coalescence of the lowest miniband pair (i.e., the ap-
pearance of a zero energy gap) for n =6.

4~n +8 in Fig. 10. Coalescence of miniband pairs at
n =6 may be clearly seen.

IV. DISCUSSION

As a summary of the results presented above, we note
that interminiband separation in twinning superlattices is
in the 100-meV range, similar to that observed in their
conventional counterparts. The minib and electron
effective masses are also in the range obtained for conven-
tional superlattices. As an example, the effective masses
(in free-electron mass units) of the lowest miniband of Si-
based (n, n) superlattices at the M point are m = l. 18 for
(3,3), m =1.50 for (4,4), m =0.47 for (5,5), and m =0.86
for (6,6) superlattices, respectively (note that the values
oscillate between the even-even and odd-odd cases; see,
for example, Fig. 5(a). In (n, 1) intrinsic stacking-fault
superlattices [Fig. 4(a)] the lowest miniband masses are
m =2.0 for (3,1), m =0.73 for (5,1), m =0.53 for (6, 1),
and m =0.41 for (8,1). Thus, miniband parameters that
are normally generated by the built-in potential in con-
ventional superlattices may also be obtained by the inter-
face scattering alone in twinning superlattices.

We should also note that, unlike the conventional het-
erostructures, twinning alone cannot be used for making
single quantum wells, since it does not have the asymp-
totic binding properties that confining potentials have
(actually, twinning superlattices may behave as barriers
for electron energies corresponding to their stop bands,
but the usefulness of such an application is rather dubi-
ous. ) However, if combined with the classical hetero-
structure quantum well, e.g., by making twin boundaries
coincident with heterointerfaces, twinning might provide
a means of barrier "wall hardening, " especially for bound
states not too high in energy. This would primarily be of
use in Si-(SiGe) systems where the conduction bands are
entirely X derived [but certainly not for I -valley elec-
trons, e.g., in GaAs-(AlGa)As and similar systems, for
which the twinning boundary is almost fully transparent].

As mentioned in the Introduction, we are not presently
aware of any experiment in growing twinning superlat-
tices. This, however, should not be discouraging, since
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the technology has been mostly directed towards the
reduction of the number of defects in growing various mi-
crostructures, and not in the enhancement of their pro-
duction. As for the single stacking faults, it is well
known that they may be found in stress deformed mono-
crystals, not only in Si but in III-V crystals as well, and
may have quite large areas. However, this method is
probably too crude for making superlattices. There has
also been a report on fabrication of a single low angle
twist boundary in Si that in principle allows for making
multiple stacking faults, but it is not certain if the
method could be extended to growing ultrathin layer
structures. One approach, at least for some classes of
twinning superlattices, might include the application of
indentation technique, used by Pirouz et al. Other,
perhaps somewhat speculative and naive, ideas would in-
clude the application of an appropriate stress (adjustable
in direction and magnitude) during the crystal growth
and/or —in the case of semiconductors with some
amount of ionicity —an electric field that would favor
particular stacking sequences. The most encouraging re-
port, however, is on the successful (homoepitaxial)
growth of twinning boundary (twin stacking fault) in sil-
icon, with the help of boron-submonolayer-induced sur-
face reconstruction. " The method seems very promising,
and might, in our opinion, be extended towards growing
twinning superlattices. As noted in Ref. 11, the role of
boron is only temporary, and once the twinning boundary
is made, it can be removed and/or compensated by some
other dopant.

Another point to discuss is the stability of twinning su-
perlattices. Due to the positive formation energies of
stacking faults, these superlattices would be essentially
metastable structures. It may turn out that those with
very low (m, n) indices are not sufficiently stable to really
exist under normal conditions (similar problems may
occur in polytype superlattices). However, in the case of
larger (m, n) values, the energetically favorable single or
multiple 33 'BB'CC' sequences of diamond-type and
zincblende-type structure may be found within a super-
lattice period, and such superlattices should be
sufficiently (meta)stable, just as are single stacking faults
or twins that, once made, show no tendency to relax to
energetically more favorable perfect crystal. The special

case of an (n, n) twinning superlattice may in principle
show an additional instabiiity, known to occur in po-
lyacetylene molecular chains. Since the polyacetylene
molecule also has the screw symmetry, as does the (n, n)
twinning superlattice, it turns out that the electronic
pressure makes it "reconstruct, " so as just to remove the
screw symmetry and lower the Fermi level. Yet, this
need not happen in (n, n) twinning superlattices —for in-
stance, hcp zirconium bulk crystal, where such a possibil-
ity also exists, really shows no tendency towards recon-
struction. Specifically, some preliminary physical con-
siderations indicate that undoped or lightly doped twin-
ning superlattices are stable, but very heavily doped ones
might undergo Peierls reconstruction. These problems,
however, can only be investigated by making total-energy
calculations, analogous, e.g. , to those in Refs. 2 —5, and
are beyond the scope of this paper.

V. CONCLUSION

The electronic structure of single stacking faults and
the recently proposed twinning superlattices were ana-
lyzed within the empirical-pseudopotential framework.
As one can see from the results presented, twinning su-
perlattices would offer almost as much versatility in
tailoring the electronic miniband structure as there exists
in ordinary heterostructure-based superlattices. Certain-
ly the two principles of building the superlattice periodi-
city (crystal orientation and material composition or dop-
ing) may be combined to extend the possibilities of
"band-structure engineering" even more, once the means
of fabricating twinning superlattices are devised. In view
of the recent advances" in fabricating a high-quality sin-
gle twin boundary, which is the elementary "building
block" of twinning superlattices, we may expect this to
occur quite soon.
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