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The collective plasmon-polariton excitations in finite Fibonacci semiconductor superlattices, which
are subjected to a static magnetic field applied parallel to the interfaces, are studied by using local-field
theory with retardation. We find that for a given in-plane wave vector, the discrete modes are composed
of pseudobands and show rich self-similar patterns. The dispersion relations of the modes are obviously
modified by the application of the magnetic field, and the propagation of the surface waves shows re-
markable nonreciprocal behavior in the field. A number of coupled guided modes are found when the
retardation effects are taken into account. We plot the profiles of the amplitudes to investigate the local-
ization properties of the polaritons. The results show that those modes isolated from the pseudobands
are localized, the modes located in the pseudobands are extended, while those located at the edges of the

bands are critical.

I. INTRODUCTION

In recent years, much effort has been undertaken in the
studies of the electronic and optical properties of super-
lattices. Because of the multilayered characteristic,
knowledge about the interface excitations in the superlat-
tices is of fundamental importance. It is known that the
disturbances at individual interfaces coupled by the tails
of the evanescent field can give rise to collective excita-
tions of the whole system. The coupling of different lay-
ers depends critically upon the configuration of the super-
lattices. By changing the geometry of the structures, one
can obtain various plasmon modes with different disper-
sion features.

The bulk plasmons of a periodic layered electron gas
were extensively studied both theoretically' % and experi-
mentally.*~® The results show that the collective
behavior in electron plasmas of the layered system is
quite different from that either in a three-dimensional
plasma or in a two-dimensional electron gas. A kind of
surface polariton that can be supported by a semi-infinite
layered electron gas, and which depends on the difference
of the dielectric constants of the superlattice and the ad-
joining bulk insulator, was introduced in a previous
theoretical work of Giuliani and Quinn’ and was investi-
gated experimentally by Dumelow et al. through mea-
surements of attenuated total reflection spectroscopy.®
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For a periodic structure stacked by alternating dielectric
slabs, Camley and Mills have given a systematic review
on the collective excitations of the superlattices® and ex-
amined the dependence of the plasmons on the ratios of
the thicknesses of alternating materials. The theoretical
studies were extended by Constantinou and Cottam,!°
who included the effects of the charged sheets at the in-
terfaces between the slabs and took the retardation into
account. With the removal of the translational symmetry
of the superlattices, as in a superlattice with a nonregular
layer,!! or a quasiperiodic region,'? some new interface
plasmon modes appear. The effects of an applied magnet-
ic field on the plasmons are of great interest!> ! because
it changes the frequency of the collective excitations
without changing the concentration of the carriers.

The quasiperiodic superlattices, which are generated
with thicknesses mapping self-similar geometries, such as
the Fibonacci sequence,16 the Cantor sequence,” and so
on, have attracted considerable attention in past years.
As a result of the special geometries of the quasiperiodic
systems, the electron energy spectra,'®~2° collective exci-
tations,??? and optical properties®>»2*17 reveal rich self-
similar structures and scaling properties which are very
different from those in the periodic systems. Recently,
Johnson and Camley?® and Albuquerque et al.?%?" have
investigated the magnetoplasmon of Fibonacci superlat-
tices which are subjected to an external magnetic field ap-
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plied parallel to the interfaces. They found that the num-
ber of the bands of the bulk modes for the quasiperiodic
superlattice increases compared to the simple periodic
system because the quasiperiodic unit cells become more
complex. They also found the striking nonreciprocal
propagations of the surface modes due to the application
of the external field. However, they did not make further
explorations on the properties resulting from the quasi-
periodicity. For example, they did not examine the
behavior of the modes when the generation becomes large
and they did not discuss the important characteristic of
self-similarity of the quasiperiodic system.

As an extension of the previous theoretical work, we
investigate the magnetoplasmon-polariton excitations in
this paper by considering a finite model of the Fibonacci
superlattice and taking the retardation effects into ac-
count. In the finite case, the Bloch ansatz cannot be
used, the dispersion equation is no longer of the form of
[1TrX | <1 as that of infinite periodic structures, and the
frequencies of the modes for a given in-plane wave vector
consist of a discrete spectrum rather than a series of con-
tinuous bands.

The paper is organized as follows. In Sec. I we derive
the dispersion relation of the magnetoplasmon modes by
using local theory with retardation and the transfer-
matrix method. Some numerical studies are presented in
Sec. III, where we show the pseudoband structure of the
discrete modes with self-similar patterns, we investigate
the effects of an applied magnetic field and retardation on
the dispersion relations, and we discuss the localization
properties of the polaritons. In Sec. IV we give a brief
summary of the numerical results.

II. THEORY

The system under consideration, which was regarded
as a unit cell of an infinite array in Ref. 25, is composed
of two alternating blocks L and S along the z axis and
following the rule of Fibonacci sequence, that is,
{C}={C,—1C,—2} with {Co}={S} and {C,}={L}.
Each block contains two different materials 4 and B with
thicknesses d 4; , dp; for block L and d 45, dgg for block
S, respectively. We neglect the quantization effects as in
Ref. 25, and assume that the properties of the slabs can
be described by macroscopic dielectric functions. The
external magnetic field is taken to be parallel to the y
axis, thus the dielectric tensor for a given layer can be ex-
pressed as

€, 0 —ie,
=10 e 0 ’ (D
i€y O €1
where
em=ewu[l+w§”/(wf—w2)] , 2)
€2 =€ 0 0,0, /(02— 00 , (3)

€3, = €qopl1 —a)%ﬂ/coz) s

u=A4,B ,
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with @, denoting the cyclotron frequency, wp, the plas-
ma frequency of the relevant material, and the subscript
oo referring to the background dielectric constant.

We consider p-polarized modes propagating in the
direction of the x axis with wave vector g. The electric
and magnetic fields of the modes are written as

E=(E,,0,E,), H=(0,H,,0). (5)

After solving Maxwell equations for a general layer, we
find that the electric and magnetic fields at any two posi-
tions in the layer satisfy the following matrix equation:

¢ ¢
¥ 4

where the functions ¢ and ¢ are related to the tangential
components of the electric and magnetic fields and are
defined as

¢=E, , —:‘_i.u'OCHy ’ )

=M, (Az)
z+Az = z

, (6)

z

and the elements of matrix M, (Az) are given by

€
m; =cosha, Az + A sinha, Az , (8)
11 u (Z
Q€
a,w €
m12=72“ 5 | sinha, Az , (9)
C(q _a#) ap.ely
c(qg?—a?
m21=—(-]————y—sinha”Az , (10)
a,o
€
ma = cosha, Az — —— sinha,Az , (11
@€y
u=A4,B ,
where

2

2
2_ @ 172 ¢ 2 @
lg 2 €yl if g 2 €y, >0
a,= " 172 ) (12)
—i| %€, —q° if g2—Z¢,,<0
o2 e 4 2 v

and ey, =(e7,—€3,)/(€,,) is the so-called Voigt dielectric
function.

If we omit the presence of charged carriers at the inter-
faces, as in Ref. 25, then the tangential components of the
electric and magnetic fields are continuous across the in-
terfaces according to the standard boundary conditions
of the electromagnetic field. The continuity of the fields
enables us to connect any two positions of the fields in the
superlattice by a product of matrices. Obviously, the
electric and magnetic fields can be connected by the fol-
lowing iransfer-matrix relation:

¢ ¢
4 4

where

=Xy , (13)

z=d, z=0
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d,=F,_(d, +dg )+F,_,d s+dps) (14)
is the total thickness of the superlattice,
N
‘XN= H Mu(d]) (15)
j=1

is the product of matrices with the order mapping the
thicknesses of the superlattice, and the nth Fibonacci
number is defined as F,=F, _+F,_, with F|=F,=1,
while N =2F, is the total number of the layers.

We assume that the superlattice rests on a substrate of
dielectric €y and is adjoined by a vacuum at the top.
After taking the solutions which fall to zero exponential-
ly as one moves away from the surfaces at the top and the
bottom, and matching the boundary conditions across the
two surfaces, we obtain the dispersion relation of the
modes as

Enx11H60xn —EnEox 12— %5 =0, (16)

where x;; is the element of the matrix X,y and

t=Sal—q%/d?) . (17)
w
Here
wz
a,= |¢*——€,|, v=N,0 (18)
c

and the subscripts N and O correspond to the substrate
and vacuum, respectively.

III. NUMERICAL EXAMPLES

In this section, we present some numerical studies of
the dispersion relation and the localization properties of
the plasmon-polariton modes for the finite Fibonacci su-
perlattices. Following Johnson et al.,'*?>?® we choose
the model system as a GaAs superlattice in which only 4
layers are doped with the plasma frequency
©p,4=0.04075 eV and the material B and substrate are
both undoped GaAs. The background dielectric con-
stants are taken as €, =€,p =€y =13.13. For simplici-
ty, we introduce dimensionless quantities Q=w/wp,,
Q=gqc/wp,y, and D;=d;wp,/c. The dimensionless
thickness D ,; is chosen as 0.1, which means d ,;, =484
nm, and the other parameters are Dpg; =0.5D ,,
Dps=0.5D 5, and (D, +Dpg.)/(D s+Dpg)=(V'5
+1)/2 (golden mean). All of these ratios are the same as
in Ref. 25.

A. Without the applied magnetic field

Let us first examine the case without the external mag-
netic field. In Fig. 1, we show the dispersion curves of
the plasmon-polariton modes for the fourth generation
Fibonacci superlattice. The dashed line in the figure
represents the light line of w=gc/V €y. As we have
seen from the figure, there are ten dispersion curves cor-
responding respectively to five acousticlike and five optic-
like branches. The highest acousticlike modes rise from
the original with a slope almost identical to the light line
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FIG. 1. Dispersion curves for the fourth Fibonacci superlat-
tice in the case without an applied magnetic field.

and approach the asymptotic limit of the surface plasma
frequency wgy =wp,/V'2 at a large wave vector. The
polaritons in this branch behavior very similarly to pho-
tons at a small wave vector but like surface plasmons at
the other limit. In Fig. 2, we have plotted the amplitudes
of electric field E, for two modes in this branch with
different wave vectors Q =1 and Q =10. The modes, as
shown in the figure, are mainly located at the bottom
(note that the last interface, in fact, means nothing since
we assume that the materials of the substrate and B lay-
ers are both undoped GaAs), but the one with a larger

vacuum substrate

PoX: SR P

0:3 0.6

n=4 H (b)
01=0.6941

Q=10
Q=0

vacuum substrate

Amplitude of E , ( arbitrary unit)

A

=X A U

03
Dimensionless thickness
FIG. 2. Amplitudes of the electric field for two acousticlike

surface modes with a different wave vector. The relevant pa-
rameters are shown in the figure.
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wave vector has obvious interface characteristics com-
pared to the other. The amplitudes of the next four
acousticlike modes are shown in Fig. 3. One can see the
different localization features of the polaritons for
different branches.

With increasing the generation of the Fibonacci se-
quence, the polariton modes become more and more rich.
Generally, the number of the branches, both acousticlike
and opticlike, is equal to F,, the total number of blocks in
the Fibonacci superlattice. For a given wave vector
Q =10, we show in Fig. 4 the discrete frequencies vs the
generation number n. One can clearly see that when n
becomes large, the discrete modes form a series of
quasicontinuous bands and only a few isolated modes ap-
pear in the gaps. The pseudobands have distinct edges
which are not variable with n. By plotting the ampli-
tudes, as shown in Fig. 5, we find that the isolated modes
located in the gaps are localized surface states [see Fig.
5(a)] and those located in the middle of the bands are ex-
tended states [see Fig. 5(b)]. Those located at the edges of
the bands become critical [see Fig. 5(c)]; they are neither
extended states nor localized states. In the larger gap
around =0.3, as shown in Fig. 4, there are some modes
which exist only if #n is even, and the similar modes occur
also in the high frequency region. In fact, whether these
modes appear or not depends on the configuration of the
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Amplitude of E, ( arbitrary unit)
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FIG. 3. Amplitudes of the electric field for four acousticlike
interface modes with the same wave vector but with different
frequencies. The relevant parameters are shown in the figure.
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FIG. 4. Pseudobands of polaritons for the given wave vector
Q=10 in the case without an applied magnetic field.

superlattice; they appear only if the last block is S.

In Fig. 6, we show the density of modes for n =12
(note the logarithmic scale for the density of the modes).
It is found that the distribution of the modes in the bands
near the surface frequency wg, is uniform relatively, but

(a)

n=8
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" - N
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1
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U:D 1:5 310 4:5
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FIG. 5. Three typical amplitudes of polaritons for the eighth
Fibonacci superlattice in the case without an applied magnetic

field: (a) the localized state, (b) the extended state, and (c) the
critical state. The relevant parameters are shown in the figure.
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FIG. 6. Density of modes of the 12th Fibonacci superlattice
for the given wave vector Q =10. Note the logarithmic scale for
the density of modes.

in the other bands the density fluctuate rapidly. In fact,
this fluctuation originates from the self-similar structure
of the frequency spectrum. Due to the self-similar con-
struction of the system, the frequency of the polaritons
presents well defined self-similar patterns. In Fig. 7, we
show two typical pictures of the self-similar modes. The
upper plan corresponds to the generation numbers
n =5-12 with the frequency interval of Q=0.344-0.390.
The region closed by the dashed line in plan (a) is en-
larged in the lower plan (b), which corresponds to
n=7-14 with 1=0.3466-0.3530. One can clearly see
the invariability with changing the scale of the frequency.

B. In the external magnetic field

Now we turn to consider the effects of the applied mag-
netic field on the polaritons. It is known that the striking
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FIG. 7. Self-similar patterns of the pseudobands of polari-
tons. The relevant parameters are the same as in Fig. 4.
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FIG. 8. Dispersion curves for the fourth Fibonacci superlat-
tice, which is subjected to an applied magnetic field with the cy-
clotron frequency Q.=0.5. The region between the straight
dash-dotted line of &=V 054+ w% and the lower dash-dotted
line of a , =0 corresponds to coupled guided modes.

result caused by the application of the external field is the
nonreciprocal propagation of the surface modes. The
nonreciprocal propagation, as indicated in Ref. 25, could
be important for device applications.

In Fig. 8, we show the dispersion curves also for the
fourth Fibonacci superlattice, but it is now put in an
external magnetic field with the cyclotron frequency
Q-=0.5. Obviously, the dispersion relations are
modified by the applied field, as shown in the figure. On
the positive wave vector side, all of the modes remove to-
wards higher and lower frequencies due to the applica-
tion of the field. As we reverse the propagation direction,
that is, let Q — —Q, the dispersion curves for the corre-
sponding surface modes become quite different. In Fig. 9,
we plot the curves of frequency vs the cyclotron frequen-
cy to show the dependence of the polariton on the ap-
plied magnetic field. The real lines and open circle lines
in the figure represent the modes with negative and posi-
tive wave vectors, respectively. As shown in the figure,
the two kind of modes with opposite propagation direc-
tions in the field have very different behaviors: the one
with positive Q increases or decreases monotonically, but
the other with negative Q has two branches of surface
modes in the middle which tend to move closer to each
other at first, but separate in the situation of strong mag-
netic field. Only the frequencies of the surface modes are
altered apparently by reversing the propagation direc-
tion. As we have seen from Fig. 9, the frequencies of the
other interface modes are almost invariable with chang-
ing Q for —Q.

For the surface modes, not only the frequencies are
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FIG. 9. Frequency of the magnetoplasmon polaritons in the
opposite propagation directions vs the cyclotron frequency.
The solid lines are for the modes with a negative wave vector
and the lines with open circles are for the modes with a positive
wave vector.

shifted when we reverse the propagation direction, but
also the localization features are changed. In Fig. 10, we
plot the amplitudes of the uppermost acousticlike surface
modes with opposite wave vector. It is found that the lo-
calization features of the modes are quite different: the
one with Q =10 is localized at the bottom and the other
with Q= —10 at the top. Although the frequencies of
the other interface modes are not so obviously altered by
reversing the propagation direction as that of the surface
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FIG. 10. Amplitudes of the electric field for two acousticlike
surface modes in the applied magnetic field with opposite wave
vector. The relevant parameters are shown in the figure.
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FIG. 11. Amplitudes of the electric field for two acousticlike

interface modes in the applied magnetic field with opposite
wave vector. The relevant parameters are shown in the figure.

modes, the localization features of the modes are not the
same, as shown in Fig. 11, where the two amplitudes cor-
respond to a pair of modes with the same frequency but
with opposite wave vector. From the figure one can see
that the two corresponding modes are located at different
interfaces. Comparing Fig. 11(a) with Fig. 3(c), the am-
plitudes in the figures stand for two corresponding modes
in the second acousticlike branch in the cases with and
without the applied magnetic field. We find that the po-
lariton is more strongly localized at the interfaces by the
applied field.

Now we return to examine Fig. 8. The dash-dotted
lines in the figure divide the Q-Q plane into the regions of
interface modes and guided modes according to whether
the decay factor a 4 is real or imaginary. In the region
between  the  straight dashed-dotted line of
@=1Y wb,+o%: and the lower dash-dotted line of
a =0, the polaritons are propagating instead of the
evanescent field in the A4 layers because a 4 is an imagi-
nary number, that is, the collective excitations are cou-

DO

&
p(ﬂ#
(8]

F (2,Q)
o
D

1.1170 1.1180

Q

FIG. 12. The function defined by Eq. (19) vs frequency. The
zero points of the function correspond to the solutions of the
coupled guided modes.

1.1160 1.1165 1.1175
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FIG. 13. Amplitudes of the electric field for three coupled
guided modes with the same wave vector but with different fre-
quencies. The relevant parameters are shown in the figure.

pled guided modes. At the frequency @, the dielectric
€,4=0 and a, becomes singular. When the frequency
approaches @ from the lower side, the function defined by
the left-side of the dispersion equation (16), that is,

flo,q)=Cnx 11 T 80X —EnboX 12— %21 » (19)

rises and falls rapidly though the frequency axis, as
shown in Fig. 12, which gives a number of solutions for
the coupled guided modes. These modes are not shown
in Fig. 8 because they are too close to the dash-dotted
line of @ to be resolved. Three amplitudes of these modes
are shown in Fig. 13. From the figure we can see that the
guided modes are coupled by the tails of the evanescent
field out of the active layers and have different localiza-
tion behaviors though the differences in frequency are
very small. It should be indicated that this case is omit-
ted in the nonretardation approximation.

Finally, we show the pseudobands of the polaritons in
the external magnetic field in Fig. 14, with the range of
frequency corresponding to the acousticlike modes except
for the surface modes that are far from the bands. As
shown in the figure, the applied field shifts the frequen-
cies, but does not change the self-similar structure. The
reason is that the self-similarity of the frequency spec-
trum is the characteristic of geometry of the quasiperiod-
ic system, which cannot be changed by the external field.

17 161
Q=10 iy
0.45 0c=0.5 - . : =! B
L
0.40 |- .o -
. .::i
. v e st
Q0.35— DEERE -
EEEEENEN
R EEERER
030 L . e bbb
0.25 -
. A ] L] [ I ] L]
Trraiiidy
0.20 T T T T L

. . . —— .

2 4 6 8 10 12 14
n

FIG. 14. Self-similar patterns of the pseudobands of polari-

tons in the applied magnetic field with the cyclotron frequency
Q=0.5 and the given wave vector Q =10.

IV. SUMMARY

We have extended the theoretical work on the collec-
tive magnetoplasmon polariton excitations to the case of
finite quasiperiodic Fibonacci superlattices. The disper-
sion relations and the localization properties of the modes
are investigated by using numerical examples. It is found
that the polariton modes are composed of pseudobands
with rich self-similar structures and the self-similarity is
not destroyed by the external magnetic field. The applied
magnetic field obviously modifies the dispersion relations
and localization features of the polaritons and gives rise
to the remarkable nonreciprocal propagations of the sur-
face waves. Because the effects of retardation are taken
into account, we found a number of coupled guided
modes. The plasmon-polariton excitations, as we know,
can be observed experimentally by, for example, inelastic
light scattering,*° far infrared attenuated total reflection
spectroscopy,® or electron-energy-loss spectroscopy.?’
We hope that our theoretical results stimulate the in-
terest of exprimentalists.
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