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The collective plasmon-polariton excitations in finite Fibonacci semiconductor superlattices, which
are subjected to a static magnetic field applied parallel to the interfaces, are studied by using local-field

theory with retardation. We find that for a given in-plane wave vector, the discrete modes are composed
of pseudobands and show rich self-similar patterns. The dispersion relations of the modes are obviously
modified by the application of the magnetic field, and the propagation of the surface waves shows re-
markable nonreciprocal behavior in the field. A number of coupled guided modes are found when the
retardation effects are taken into account. We plot the profiles of the amplitudes to investigate the local-
ization properties of the polaritons. The results show that those modes isolated from the pseudobands
are localized, the modes located in the pseudobands are extended, while those located at the edges of the
bands are critical.

I. INTRODUCTION

In recent years, much effort has been undertaken in the
studies of the electronic and optical properties of super-
lattices. Because of the multilayered characteristic,
knowledge about the interface excitations in the superlat-
tices is of fundamental importance. It is known that the
disturbances at individual interfaces coupled by the tails
of the evanescent field can give rise to collective excita-
tions of the whole system. The coupling of different lay-
ers depends critically upon the configuration of the super-
lattices. By changing the geometry of the structures, one
can obtain various plasmon modes with different disper-
sion features.

The bu1k plasmons of a periodic layered electron gas
were extensively studied both theoretically' and experi-
mentally. The results show that the collective
behavior in electron plasmas of the layered system is
quite different from that either in a three-dimensional
plasma or in a two-dimensional electron gas. A kind of
surface polariton that can be supported by a semi-infinite
layered electron gas, and which depends on the difference
of the dielectric constants of the superlattice and the ad-
joining bulk insulator, was introduced in a previous
theoretical work of Cxiuliani and Quinn and was investi-
gated experimentally by Dumelow et al. through mea-
surements of attenuated total reQection spectroscopy.

For a periodic structure stacked by alternating dielectric
slabs, Camley and Mills have given a systematic review
on the collective excitations of the superlattices and ex-
amined the dependence of the plasmons on the ratios of
the thicknesses of alternating materials. The theoretical
studies were extended by Constantinou and Cottam, '

who included the effects of the charged sheets at the in-
terfaces between the slabs and took the retardation into
account. With the removal of the translational symmetry
of the superlattices, as in a super1attice with a nonregular
layer, " or a quasiperiodic region, ' some new interface
plasmon modes appear. The effects of an applied magnet-
ic field on the plasmons are of great interest' ' because
it changes the frequency of the collective excitations
without changing the concentration of the carriers.

The quasiperiodic superlattices, which are generated
with thicknesses mapping self-similar geometries, such as
the Fibonacci sequence, ' the Cantor sequence, ' and so
on, have attracted considerable attention in past years.
As a result of the special geometries of the quasiperiodic
systems, the electron energy spectra, ' collective exci-
tations, ' and optical properties ' ' reveal rich self-
similar structures and scaling properties which are very
different from those in the periodic systems. Recently,
Johnson and Camley2s and Albuquerque et al. 2 ' have
investigated the magnetoplasmon of Fibonacci superlat-
tices which are subjected to an external magnetic field ap-
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II. THEORY

The system under consideration, which was regarded
as a unit cell of an infinite array in Ref. 25, is composed
of two alternating blocks L and S along the z axis and
following the rule of Fibonacci sequence, that is,
IC„}= IC„,C„2I with IC0) = ISI and IC, I =IL).
Each block contains two different materials A and B with
thicknesses d ~L, d&L for block L and d „s, d~s for block
S, respectively. We neglect the quantization effects as in
Ref. 25, and assume that the properties of the slabs can
be described by macroscopic dielectric functions. The
external magnetic field is taken to be parallel to the y
axis, thus the dielectric tensor for a given layer can be ex-
pressed as

0 lE2p

0 e3„ 0

l E2p 0 E'ip

where

e,„—e„„[1+coI,„/(co, —co )],
E2&

—e ~&cop&co~ /co(co~ co )

c3„=e„„(1 cop„/co ), —

p= A, B, (4)

plied parallel to the interfaces. They found that the num-
ber of the bands of the bulk modes for the quasiperiodic
superlattice increases compared to the simple periodic
system because the quasiperiodic unit cells become more
complex. They also found the striking nonreciprocal
propagations of the surface modes due to the application
of the external field. However, they did not make further
explorations on the properties resulting from the quasi-
periodicity. For example, they did not examine the
behavior of the modes when the generation becomes large
and they did not discuss the important characteristic of
self-similarity of the quasiperiodic system.

As an extension of the previous theoretical work, we
investigate the magnetoplasmon-polariton excitations in
this paper by considering a finite model of the Fibonacci
superlattice and taking the retardation effects into ac-
count. In the finite case, the Bloch ansatz cannot be
used, the dispersion equation is no longer of the form of

~
—,'TrX~ ~ 1 as that of infinite periodic structures, and the

frequencies of the modes for a given in-plane wave vector
consist of a discrete spectrum rather than a series of con-
tinuous bands.

The paper is organized as follows. In Sec. II we derive
the dispersion relation of the magnetoplasmon modes by
using local theory with retardation and the transfer-
matrix method. Some numerical studies are presented in
Sec. III, where we show the pseudoband structure of the
discrete modes with self-similar patterns, we investigate
the effects of an applied magnetic field and retardation on
the dispersion relations, and we discuss the localization
properties of the polaritons. In Sec. IV we give a brief
summary of the numerical results.

with co, denoting the cyclotron frequency, co~„ the plas-
ma frequency of the relevant material, and the subscript
~ referring to the background dielectric constant.

We consider p-polarized modes propagating in the
direction of the x axis with wave vector q. The electric
and magnetic fields of the modes are written as

E=(E„,O, E, ), H=(O, H, O) .

After solving Maxwell equations for a general layer, we
find that the electric and magnetic fields at any two posi-
tions in the layer satisfy the following matrix equation:

(6)
& .+~.

=M„(hz )
z

P =E„, Q=— i p0cH—

and the elements of matrix M„(b,z) are given by

q E2p
m

&&
=cosh+„hz+ sinhn„hz,

CXpE'(p

2
CXpCO

c(q~ —a„')
q E2p

CKpEip
sinho. '„M,

c(q —a„)
m2, = " sinho;„hz,

p

q E'2p
m 22

=cosh'„Az — sinhcz„hz,
CXpE'ip

p= A, B,

(1O)

where

a =-
p 2

c

~v„~
~ 'f q ~v„+O

C C
1/2

if q
— ez„(0

C

and ev„= (e,„ez„)/(e,„) is—the so-called Voigt dielectric
function.

If we omit the presence of charged carriers at the inter-
faces, as in Ref. 25, then the tangential components of the
electric and magnetic fields are continuous across the in-
terfaces according to the standard boundary conditions
of the electromagnetic field. The continuity of the fields
enables us to connect any two positions of the fields in the
superlattice by a product of matrices. Obviously, the
electric and magnetic fields can be connected by the fol-
lowing transfer-matrix relation:N-=X

where

where the functions P and g are related to the tangential
components of the electric and magnetic fields and are
defined as
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d =F„1(d„L+dm. )+F„—2(d&S+daSn

is the total thickness of the superlattice,
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III. NUMERICAL EXAMPLES
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wave vector has obvious interface characteristics com-
pared to the other. The amplitudes of the next four
acousticlike modes are shown in Fig. 3. One can see the
different localization features of the polaritons for
different branches.

With increasing the generation of the Fibonacci se-
quence, the polariton modes become more and more rich.
Generally, the number of the branches, both acousticlike
and opticlike, is equal to F„,the total number of blocks in
the Fibonacci superlattice. For a given wave vector
Q = 10 we show in Fig. 4 the discrete frequencies vs the
generation number n. One can clearly see that when n
becomes large, the discrete modes form a series of
quasicontinuous bands and only a few isolated modes ap-
pear in the gaps. The pseudobands have distinct edges
which are not variable with n. By plotting the ampli-
tudes, as shown in Fig. 5, we find that the isolated modes
located in the gaps are localized surface states [see Fig.
5(a)] and those located in the middle of the bands are ex-
tended states [see Fig. 5(b)]. Those located at the edges of
the bands become critical [see Fig. 5(c)]; they are neither
extended states nor localized states. In the larger gap
around 0=O. 3, as shown in Fig. 4, there are some modes
which exist only if n is even, and the similar modes occur

1 th hi h frequency region. In fact, whether these
tion of themodes appear or not depends on the configuration o t e
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FIG. 4. Pseudobands of polaritons for the given wave vector
Q = 10 in the case without an applied magnetic field.
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B. In the external magnetic field

Now we turn to consider the effects of the applied mag-
netic field on the polaritons. It is known that the striking
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FICx. 7. Self-similar patterns of the pseudobands of polari-
tons. The relevant parameters are the same as in Fig. 4.

in the other bands the density fluctuate rapidly. In fact,
this Auctuation originates from the self-similar structure
of the frequency spectrum. Due to the self-similar con-
struction of the system, the frequency of the polaritons
presents well defined self-similar patterns. In Fig. 7, we
show two typical pictures of the self-similar modes. The
upper plan corresponds to the generation numbers
n =5—12 with the frequency interval of 0=0.344—0.390.
The region closed by the dashed line in plan (a) is en-
larged in the lower plan (b), which corresponds to
n =7—14 with 0=0.3466—0.3530. One can clearly see
the invariability with changing the scale of the frequency.

0.0
—15 —10 —5 0 5 10 15

FIG. 8. Dispersion curves for the fourth Fibonacci superlat-
tice, which is subjected to an applied magnetic field with the cy-
clotron frequency Ac=0. 5. The region between the straight
dash-dotted line of co=Qcoz„+co& and the lower dash-dotted
line of a„=0corresponds to coupled guided modes.

result caused by the application of the external field is the
nonreciprocal propagation of the surface modes. The
nonreciprocal propagation, as indicated in Ref. 25, could
be important for device applications.

In Fig. 8, we show the dispersion curves also for the
fourth Fibonacci superlattice, but it is now put in an
external magnetic field with the cyclotron frequency
Qc =0.5. Obviously, the dispersion relations are
modified by the applied field, as shown in the figure. On
the positive wave vector side, all of the modes remove to-
wards higher and lower frequencies due to the applica-
tion of the field. As we reverse the propagation direction,
that is, let Q ~—Q, the dispersion curves for the corre-
sponding surface modes become quite different. In Fig. 9,
we plot the curves of frequency vs the cyclotron frequen-
cy to show the dependence of the polariton on the ap-
plied magnetic field. The real lines and open circle lines
in the figure represent the modes with negative and posi-
tive wave vectors, respectively. As shown in the figure,
the two kind of modes with opposite propagation direc-
tions in the field have very different behaviors: the one
with positive Q increases or decreases monotonically, but
the other with negative Q has two branches of surface
modes in the middle which tend to move closer to each
other at first, but separate in the situation of strong mag-
netic field. Only the frequencies of the surface modes are
altered apparently by reversing the propagation direc-
tion. As we have seen from Fig. 9, the frequencies of the
other interface modes are almost invariable with chang-
ing Q for —Q.

For the surface modes, not only the frequencies are
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guided modes with the same wave vector but with dift'erent fre-
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FIG. 14. Self-similar patterns of the pseudobands of polari-
tons in the applied magnetic field with the cyclotron frequency
Oc =0.5 and the given wave vector Q = 10.

IV. SUMMARY

pled guided modes. At the frequency co, the dielectric
e&z =0 and az becomes singular. When the frequency
approaches co from the lower side, the function defined by
the left-side of the dispersion equation (16), that is,

f(~~9) PNx 11 +Co 22 CNko 12 x21

rises and falls rapidly though the frequency axis, as
shown in Fig. 12, which gives a number of solutions for
the coupled guided modes. These modes are not shown
in Fig. 8 because they are too close to the dash-dotted
line of co to be resolved. Three amplitudes of these modes
are shown in Fig. 13. From the figure we can see that the
guided modes are coupled by the tails of the evanescent
field out of the active layers and have different localiza-
tion behaviors though the differences in frequency are
very small. It should be indicated that this case is omit-
ted in the nonretardation approximation.

Finally, we show the pseudobands of the polaritons in
the external magnetic field in Fig. 14, with the range of
frequency corresponding to the acousticlike modes except
for the surface modes that are far from the bands. As
shown in the figure, the applied field shifts the frequen-
cies, but does not change the self-similar structure. The
reason is that the self-similarity of the frequency spec-
trum is the characteristic of geometry of the quasiperiod-
ic system, which cannot be changed by the external field.

We have extended the theoretical work on the collec-
tive magnetoplasmon polariton excitations to the case of
finite quasiperiodic Fibonacci superlattices. The disper-
sion relations and the localization properties of the modes
are investigated by using numerical examples. It is found
that the polariton modes are composed of pseudobands
with rich self-similar structures and the self-similarity is
not destroyed by the external magnetic field. The applied
magnetic field obviously modifies the dispersion relations
and localization features of the polaritons and gives rise
to the remarkable nonreciprocal propagations of the sur-
face waves. Because the effects of retardation are taken
into account, we found a number of coupled guided
modes. The plasmon-polariton excitations, as we know,
can be observed experimentally by, for example, inelastic
light scattering, far infrared attenuated total refIection
spectroscopy, or electron-energy-loss spectroscopy.
We hope that our theoretical results stimulate the in-
terest of exprimentalists.

ACKNOWLEDGMENTS

We gratefully acknowledge useful conversations with
Professor Yu-mei Zhang and Professor Hong Chen. Part
of this work was supported by the Chinese National Ad-
vanced Technology Foundation through Grant No. 040-
144-05-085.



17 162 NIAN-HUA LIU, WEI-GUO FENG, AND XIANG WU

'Permanent address: Department of Physics, Ji An Teachers
Training College, Ji An, Jiangxi 343009, People s Republic of
China.

~Permanent address: Pohl Institute of Solid State Physics,
Tongji University, Shanghai 200092, People s Republic of
China.

&Permanent address: Pohl Institute of Solid State Physics,
Tongji University, Shanghai 200092, People s Republic of
China.

A. L. Fetter, Ann. Phys. (N.Y.) 88, 1 (1974).
2S. Das Sarma and J.J. Quinn, Phys. Rev. B 25, 7603 (1982).
J. K. Jain and P. B. Allen, Phys. Rev. Lett. 54, 947 (1985);

Phys. Rev. B 32, 997 (1985).
4D. Olego, A. Pinczuk, A. C. Gossard, and W. Wiegmann,

Phys. Rev. B 25, 7867 (1982).
~A. Pinczuk, M. G. Lamont, and A. C. Gossard, Phys. Rev.

Lett. 56, 2092 (1986).
G. Fasol, N. Mestres, H. P. Hughes, A. Fischer, and K. Ploog,

Phys. Rev. Lett. 56, 2517 (1986).
7G. F. Giuliani and J. J. Quinn, Phys. Rev. Lett. 51, 919 (1983).
T. Dumelow, T. J. Parker, D. R. Tilley, R. B. Beall, and J. J.

Harris, Solid State Commun. 77, 253 (1991).
R. E. Camley and D. L. Mills, Phys. Rev. B 29, 1695 (1984).
N. C. Constantinou and Cottam, J. Phys. C 19, 739 (1986).
W. L. Bloss, J. Appl. Phys. 69, 3068 (1991);Phys. Rev. B 44,
1105 (1991)~

N. H. Liu, W. G. Feng, and X. Wu, J. Phys. Condens. Matter
4, 9823 (1992)~

B.L. Johnson and R. E. Camley, Phys. Rev. B 38, 3311 (1988).
E. L. Albuquerque, P. Fulco, G. A. Farias, M. M. Auto, and
D. R. Tilley, Phys. Rev. B 43, 2032 (1991).

~~Manvir S. Kushwaha, Phys. Rev. B 40, 1692 (1989); 41, 5602

(1990).
R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K.
Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985); J. Todd, R.
Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, ibid. 57,
1157 (1986).

X. Wu, H. S. Yao, and W. G. Feng, Proc. SPIE 1519, 625
(1991);W. G. Feng, N. H. Liu, and X. Wu, ibid. Proc. SPIE
1928, 286 (1993);N. H. Liu, W. G. Feng, and X. Wu, J. Phys.
Condens. Matter 5, 4623 (1993).

8S.-R. Eric Yang and S. Das. Sarma, Phys. Rev. B 37, 4007
(1988).
Y. Y. Wang and J. C. Maan, Phys. Rev. B 40, 1955 (1989).
D. Toet, M. Potemski, Y. Y. Wang, and J. C. Maan, Phys.
Rev. Lett. 66, 2128 (1988).

~~P. Hawrylak and J. J. Quinn, Phys. Rev. Lett. 57, 380 (1986);
P. Hawrylak, G. Eliasson, and J. J. Quinn, Phys. Rev. B 36,
6501 (1987).
D. H. Huang, J. P. Peng, and S. X. Zhou, Phys. Rev. B 40,
7754 (1989).
W. G. Feng, N. H. Liu, and X. Wu, Phys. Rev. B 43, 6893
(1991).

W. G. Feng, W. Z. He, D. P. Xue, Y. B. Xu, and X. Wu, J.
Phys. : Condens. Matter 1, 8241 (1989).

2~B. L. Johnson and R. E. Camley, Phys. Rev. B 44, 1225 (1991).
E. L. Albuquerque and Cottam, Solid State Commun. 81, 383
(1992).
G. A. Farias, M. M. Auto, and E. L. Albuquerque, Phys. Rev.
B 38, 12 540 (1988).
B. L. Johnson, J. T. Weiler, and R. E. Camley, Phys. Rev. B
32, 6544 (1985).
M. Rocca, M. Lazzarino, and U. Valbusa, Phys. Rev. Lett. 69,
2122 (1992).


