
PHYSICAL REVIEW B VOLUME 48, NUMBER 23 15 DECEMBER 1993-I

Calculated band structure of zinc-blende-type SnGe
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The band structure of SnGe in the zinc-blende structure is calculated using the scalar-relativistic
linear-mufBn-tin-orbital method in conjunction with the density-functional scheme. The local-density
approximation is empirically corrected by means of an external potential. Special emphasis is placed
on the effects of inversion asymmetry, such as ionicity and spin splittings. An equilibrium volume is
found at a lattice constant of ao =6.0630 A, which is very close to the average of the lattice constants
of Ge and o.-Sn. At the corresponding volume, the calculated direct gap is +0.085 eV. For a slightly
larger lattice constant, corresponding to the average volumes of the two constituents, SnGe should
have a "negative" gap of nearly the same magnitude, and thus have an inverted band structure
similar to o.-Sn. The polarity of the Ge-Sn bond is calculated to be o.„=0.2. The transverse
efFective charge is eT ——0.47, Sn being positive ("cation").

I. INTRODUCTION

The band structures of Sn Geq alloys are of inter-
est because of the possibility of varying the band gaps
by varying the Sn concentration. Thus a transition from
an indirect to a direct gap is expected when the con-
centration x of Sn is varied between 0 and 1. SnGe
in the zinc-blende structure is the the second noncen-
trosymmetric group-IV compound for which the spin
split tings have been investigated. Earlier calculations
were presented for another noncentrosymmetric IV-IV
compound, namely, GeSi. Here we compare the calcu-
lated spin splittings and ionicities of SnGe and GeSi.

The SnGe compound can be regarded as a prototype
for all noncentrosymmetric Sn /Ge (n, m odd) super-
lattices; however, its cubic structure is unaffected by the
internal strain built into Sn /Ge superlattices as a re-
sult of the large lattice mismatch. This means that the
band structure is not complicated by the eKects of uni-
axial strains at the diferent layers under various condi-
tions of pseudomorphic growth, and that relativistic spin
splittings can be easily interpreted. Thus, a word of cau-
tion is in order when comparing our results with other
calculations or with experiments. Alloy films of SnGe
with x=0.5 should be comparable to our calculations, but
these films have thus far been grown on substrates with
other lattice constants ao than that obtained from our
total-energy calculation (ap =6.0630 A). As a result, the
films will usually have a noncubic unit cell (tetragonally
strained), as well as a diferent unit-cell volume. The gap
Eo is very sensitive to changes in unit-cell volume, just
as it is sensitive to a change in alloy composition. On the
one hand this indicates the possibility of large tunability
of the optical properties for applications. On the other,
one expects that the optical properties will be extremely
sensitive to inhomogeneities in the samples. In this paper
we have restricted ourselves to the ordered alloy x = 0.5
and to cubic unit cells at diferent volumes.

baulk ci-Sn (grey tin) is unstable at temperatures above
13.2'C, where a transition to P-Sn (white tin) takes
place, and so bulk o,-Sn is not suited to many appli-

cations. By epitaxial growth of thin SnGe layers
or Sn /Ge„superlattices the phase transition can
be inhibited and the zinc-blende structure can exist at
higher temperatures. The band structures of the SnGe
alloys have been studied with a tight-binding model in
the virtual-crystal approximation. Because of the under-
lying assumption of identical average atoms in the unit
cell, i.e. , the assumption of a diamond lattice, a virtual-
crystal approximation applied to a zinc-blende semicon-
ductor cannot give the spin splittings related to the ab-
sence of inversion symmetry. To date, no self-consistent
calculation of the SnGe compound has appeared in the
literature.

In this paper we present ab initio total-energy calcula-
tions performed with the full-potential linear-muon-tin-
orbital (LMTO) method, ' as well as band-structure
calculations within the atomic-sphere approximation
(ASA). The total-energy calculations are used in Sec. II
to predict the equilibrium unit-cell volume for the SnGe
compound. Section III is devoted to the evaluation of
effective masses and matrix elements of the momentum
p, and in Sec. IV the spin-orbit (SO) parameter 4 (for
coupling between the I'is conduction and valence states)
is calculated both with the LMTO method and with a
simple tight-binding expression. The cubic and linear
terms of the inversion-asymmetry spin splittings calcu-
lated along diferent lines in k space are presented in
Sec. V, together with estimates obtained with the k-p
method. In Sec. VI we report calculations of the ionicity
and transverse efFective charge in SnGe. Finally, Sec. VII
contains a summary of the results.

II. LMTO TOTAL-ENERGY AND
BAND-STRUCTURE CALCULATIONS

The calculations presented here are closely related to
those for GeSi in Ref. 7, but with the gap-correcting pro-
cedure modified as described for o.-Sn in Ref. 15. Thus
the values presented for the p-s (valence-band top to the
first s-like conduction band) and p-p (valence-band top
to the first p-like conduction band) gaps at k = 0 are
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P = (F"„ lp lI' ),

it is necessary to specify the positions chosen for the
two constituent atoms, and also the phase of the wave
functions. ' Because of time-reversal symmetry we can
conveniently choose them to be real, as depicted in Fig.
1. The Ge atom has been chosen to lie at the origin,
while Sn is located at ao(4, 4, 4) where ao is the lat-
tice constant. This convention is consistent with the one
used earlier, ' provided we call the Ge atom the "an-
ion." This choice results in a positive sign for P and Q,
which can easily be veri6ed &om Fig. 1 by replacing p by
—id/dx. (We use atomic units such that h = m, = e = I,
i.e., the hartree is the unit of energy, unless otherwise
stated. )

As is well known, the energy gaps across the Fermi
level calculated within the LDA are smaller than the
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to be regarded as the experimmentally obtained values.
In Ref. 7 and earlier LMTO calculations, ~ the p-p gaps
obtained were too small due to the well known inadequa-
cies of the local-density approximation (LDA) to provide
a good description of the excited states. Because of this
we have also recalculated energy gaps, matrix elements,
and masses for Ge; the most important ones appear in
this paper. We treat the 3d levels of Ge as "frozen"
corelike states (except in the full-potential LMTO total-
energy calculations), whereas the Sn 4d levels are treated
as fully relaxed band states. The splittings that we want
to examine for the SnGe compound are due to inversion
asymmetry and the SO interaction.

In order to obtain a consistent de6nition of the sign of
the SO parameter A and the matrix elements P, P', Q,
and P'", which are de6ned as

experimentally measured values. This is compensated
by adding external potentials which are included self-
consistently in the iteration procedure in the density-
functional formalism. The extra potentials are chosen
such that the important energy gaps in bulk n-Sn and Ge
reproduce well the experimentally known values. These
external potentials are then transferred, without modi-
fication, to the self-consistent calculations for the SnGe
compound. This assumed transferability has been empir-
ically justified by several examples. ' ' Table I shows
the parameters used to correct the LDA gaps. In trans-
ferring these parameters to the calculations for the SnGe
compound, we take the external potentials localized in
the empty spheres of the two materials to be the same.
In the empty spheres located at interstitial positions in
the SnGe lattice the norm of the external correcting po-
tential (defined as the potential integrated over the vol-
ume of the sphere) is to be regarded as a parameter com-
mon to a certain class of materials (such as semiconduc-
tors), whereas the correction potentials inside the occu-
pied spheres are characteristic of the individual atoms.
Although the procedure of lumping self-energy efFects
into a potential is not rigorous, we can still obtain signif-
icant improvements in the excitation energies by such an
approach. ' Both local and dynamical efFects are im-
portant for the explanation of the observed gaps. We
can only do justice to these efFects in an average way
here. The LDA potential is explicitly corrected as de-
scribed in Ref. 15. Details of how the external potential
is parametrized are given in Table I. Since we have
used the ASA formulation in our band-structure calcula-
tions, the external potential must have spherical symme-
try inside the spheres. Thus we are led to consider two
types of potential, Vj and V2, centered at occupied and
empty spheres, respectively. Note that the mechanism
bringing about the shift between valence and conduction
states is the same as that responsible for the shift in the
GTV approximation; in a similar but more sophisticated
way than our correction potental, the self-energy term
exploits the difFerence in spatial localization of conduc-
tion and valence states and thereby leads to large shifts
between these bands. (See, e.g. , Ref. 23, in particular,
the discussion of the Coulomb-hole term. )

In its present form, the correction in the unoccupied
spheres is only appreciable within the outer 20% of the
sphere radius, and in occupied spheres it is concentrated
near the sphere center. We know2 that the LDA wave

V
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TABLE I. External correction potential parameters V, V
(hartree) and R, R2 (bohr) [at the equilibrium sphere radius
of 2.821 bohr (lattice constant ao ——6.0630 A)].

Atomic site
V R

Empty sphere
V R2

FIG. 1. Schematic diagram demonstrating the phase con-
vention of the I'~5, I'z5, and I'q wave functions. The Ge atom
is taken to lie at the origin and corresponds to the anion (A).
The cation (Sn) is labeled C. In the figure, the z' direction
corresponds to (111).

Sn
Ge

142
185

0.015
0.015

Vi(r ) = V (R /r) exp[ —(r/R ) ].
Vz(r) = V, (r/R2)' .

0.0613
0.0613

2.52
2.52
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functions are already very close to those obtained us-
ing the GW approximation, and our correction proce-
dure does not alter this fact. The virtue of the method
used here is simplicity, an advantage which is very conve-
nient when considering larger systems such as Sn„/Ge
superlattices. Our total-energy calculations were done
within the LDA, i.e., without the adjusting potentials. It
is of little relevance to calculate the ground state prop-
erties with these potentials included. We have, however,
done that in a number of cases, and in general the correct-
ing potentials increase the electronic pressure at a given
volume. This produces an increase of 2—4% of the calcu-
lated equilibrium volume. The LDA causes an "overbind-
ing, " the volumes being too small by a few percent. Thus,
the correcting potentials tend to compensate for this. In
view of the nature of our correction we consider this to be
"accidental, " and of little physical significance. But for
the calculation of optical properties it is of importance
to note that the occupied states are only slightly shifted
by the external potentials.

To evaluate the equilibrium volume of the SnGe com-
pound we also performed full-potential LMTO total-
energy calculations. The results are depicted in Fig. 2. A
negative deviation of 1.1% from the experimental equi-
librium volumes of n-Sn and Ge was observed (cf. Table
II). For the SnGe compound we therefore added the same
deviation to the volume predicted by total-energy calcu-
lations and thus arrived at a lattice constant ap = 6.O63

A, which is close to the average of the Ge and n-Sn lat-
tice constants. The calculations represented in Fig. 2
predicts that the energy change accompanying a decom-
position of SnGe into bulk Sn and Ge (at their equilib-
rium volumes) is positive. A confirmation of this sur-
prising result, though, requires improved accuracy of the
total-energy calculations. (The decomposition enthalpy
of GeSi is ——2 mRy/f. u. , i.e. , GeSi is not stable. )

We have also calculated the band structure at other
unit-cell volumes. The most interesting result is that an
inversion in the band structure at I' takes place approxi-

TABLE II. Theoretical (from full-potential LMTO to-
tal-energy calculations) and experimental equilibrium vol-

umes for a-Sn, Ge, and SnGe. Vo is the experimental equilib-
rium volume of o-Sn (ao —6.490 A).

V/ Vo

Theory
Expt .

0.989
1.000

Ge

0.653
0.662

SnGe

0.803

1 p

mately midway between the equilibrium lattice constant
given above and a somewhat larger one corresponding
to the average unit-cell volume of Ge and o,-Sn. The
p-s gap is negative in the latter case (—0.72 eV) and the
band structure is therefore similar to that of o.-Sn. Usu-
ally a lattice constant (ao ——6.101 A for the zinc-blende
SnGe alloy) corresponding to the average unit-cell vol-
ume is taken at the equilibrium value (Vegard's Law),
but our total-energy calculations show that this cannot
be

justified

for SnGe, and our band-structure calculations
indicate that the bands are qualitatively different in the
two cases.

The LMTO band structure of SnGe at the predicted
equilibrium volume is shown in Fig. 3. Since the dia-
mond structure has inversion symmetry, all bands of Ge
and o.-Sn are at least twofold degenerate. In the zinc-
blende structure the bands split as described in Refs. 7,
18, 25, and 26. As expected, the splittings along the
low-symmetry Z direction, [110], are quite large. The
reader is directed to Figs. 4—8 in Sec. V, where the pure
splittings along the [110] and [ill] directions are shown.
Table III displays the main energy gaps and the S0 split-
t ings of the three materials at three points of high sym-
metry, I', I, and X . The SO splitting L2 at X is also
due to the lack of inversion symmetry in the zinc-blende
structure and does not occur in diamond-type materials.
The same holds for the gap between the Xg-Xg lowest va-
lence states, which is calculated to be O.798 eV in SnGe.
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FIG. 2. Total energies (in mRy per atom) of o-Sn (+), Ge
(s), and SnGe (o) as obtained from the full-potential LMTO
calculations. Vo is defined to be the experimental equilibrium
volume for n-Sn. The calculations use two energy panels. The
Ge 3d as well as the Sn 4d states are treated as fully relaxed
"band" states.

-14
X K

FIG. 3. Relativistic band structure of SnGe (including the
correction potential) at the predicted equilibrium lattice con-
stant of ap =6.063 A.
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TABLE III. Calculated and experimental energy gaps and
SO splittings at points of high symmetry. All energies are in
eV.

Within the fitting range the following equation, derived
from Kane's few-band model, should be valid:

LMTO
Sn

Expt. LMTO Expt.
SnGe

LMTO c,(k) = —k
2

+ EG + 4KP2k2
(4)

Ap
gl a

p
~/

b

C

-0.406
0.726
2.055
0.555

0
1.681
0.472
3.590

0

-0.413
G.8
1.98

0.3-0.5
0

1.798
0.482
3.681

0

0.868
0.311
2.932
0.243

0
2.275
0.199
4.171

0

0.89
0.297
3.01
0.200

0
2.25,2.222

0.18
4.49

0

0.0851
0.480
2.504
0.474
0.294
1.577
0.325
3.61

0.133

.E,' = E(r;) —E(r",).
Ei = E(As) —E(A4 s).

'E2 ——E(Xs) —E(Xs ) or E(Xs ) —E(X~ ).
At L.

III. EFFECTIVE MASSES
AND MATRIX ELEMENTS

A. LMTO calculations

(2)

To determine P, we can use the expression

In order to study the finer structure around k=O, we
divide the Brillouin-zone symmetry lines along the [100],
[ill], and [110]directions into a dense k mesh. By fitting
a straight line to the calculated electronic energies versus
k in the immediate vicinity of the point I', the size of the
parabolic region can be checked, and the slopes yield the
effective masses for the different directions. The effective
masses of the s-like conduction band I'8, m, and of the
SO-split I'7 valence bands mso are isotropic, whereas the
mass of the heavy-hole (hh) band shows strong warping.
The light-hole (lh) band represents an intermediate case.
The matrix element Q was calculated from Ref. 27,

with EG. =Ec, —2P k /(Ep —Ep) and

1 ( E.+EG —-', k'l
K = 1 ——

I
1+

Ep )
EG is the p-s gap and s, (k) is the s-conduction-band
energy referred to the bottom E of the band. In Kane's
version, K = 3. For a sufficiently small fitting range of
k it will not vary much, and since we roughly know the
value of E~ + E, (taken to lie somewhere in the middle
of the energy range we are fitting as seen from the band
plots) it is now possible to move slightly away from the
noise in the region near k=0, reevaluate K (we used the
value K = 0.726), and from the least-squares procedure
obtain a simultaneous determination of P and the p-s gap
E~. From the fit with Eq. (4) with P' determined with
the tight-binding expression (see below) we obtained P =
0.583 and EG ——0.085 eV, whereas P = 0.588 was found
from Eq. (3). The values of the efFective masses and the
momentum matrix elements obtained by this procedure
are listed in Table IV together with the corresponding
parameters for o.-Sn and Ge. Note that the experimental
values of m, and mso in the table are somewhat lower
than the calculated ones.

B. Tight-binding estimate of P'

P can be estimated with a simple tight-binding ar-
gument. It is zero by symmetry in diamond semicon-
ductors, but nonzero for zinc-blende materials. Assum-
ing that the I'&5 and I"~5 wave functions are obtained as
bonding and antibonding linear combinations of the Ge
and Sn p states, we can write

~r»& =~~Ge&+P~Sn&, ~r»& =P~Ge& —~~Sn&. (6)

mso

2P2 4Q2= —1+ +
3(Ep + 4p) 3(Ep + siA'p + Ap)

(3)

Because of the small p-s gap, the lowest s-conduction
band has a very small mass and a pronounced non-
parabolicity. Due to the k.p coupling between this band
and the lh band, the latter should have a very small
mass. Accordingly, the region of k space around I' where
simple k p perturbation expressions for the masses (and
the spin splittings) are valid now becomes drastically re-
duced. This means a rather small fitting range (closer to
I') for the k p expressions used in the parameter extrac-
tion from the LMTO calculations. When we have to fit
the expressions closer to I', enhanced numerical noise due
to the diverging s-structure constants is also a problem.

These diKculties can be overcome, however. All our
fits were carried out employing a least-squares procedure.

Sn
LMTO Expt. LMTO

Ge
Expt.

SnGe
LMTO

mc
mso
g
g
P

~l

0.087
0.051

0.12737
-0.1925
0.588
0.494

0

0.058
0.041

0.050
0.128

0.07297
-0.2623
0.576
0.46

0

0.037,0.042
0.095

G.655
G.607

0

0.078

0.583
0.51
0.194
0.52

Average of Sn and Ge values taken from Refs. 34 and 35.

TABLE IV. Effective masses in units of the free-electron
mass, self-consistent term energies for Sn and Ge E„and E
(in hartee) in the SnGe compound, and matrix elements of p
in a.u. .
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If we assume the same for the s states, which we distin-
guish from the p states with a prime,

given by

V„=—5.28d (14)
~Fi) = P'~Ge') —n']Sn'),

P;„„,= i(Sn~p ~Ge') = i(Ge~p ~Sn') (8)

P,„t, ——i(Sn~p ~Sn') = i(Ge~p ~Ge')

we find two limiting cases in which it is possible to ob-
tain P' without having to say more about the magnitudes
«Pl~~er and Pl~tra-

(i) The coefficient of P;„t„is negligible,

P' nn' + PP' gg' + 1

P nP' —n'P rI —rI'
(10)

(ii) The coefficient of P;„t, is negligible,

we can calculate P' via Eq. (1). Defining the matrix
elements

This time, however, the discrepancy between Harrison's
value and the LMTO value is negligible (1.20 versus 1.19,
respectively) and the I'i conduction electrons reside more
on the Sn side ("cationlike"). In Ref. 7, the I'i conduc-
tion electrons for GeSi were found to reside more on the
anion side, a situation which is not observed in III-V corn-
pounds (also not in SnGe, according to the above calcu-
lations), and seems to be unique to GeSi. From Fig. 1 [or
perhaps more clearly by inserting our calculated values
for rI and g' into Eqs. (10) and (ll)], we see that SnGe is
likely to correspond to case (ii), where the effect of P;„t,
can be neglected. Thus our LMTO parameters produce
P'/P = 0.33, which also gives us the sign of P'. We used
this value to fft the spin splittings (see later sections) and
found, contrary to the case of GeSi, no cause for further
adjustments.

IV. ESTIMATES OF A IN SnCe

P' —nP' —n'P g + q'

P —nn' + PP' gg' —1

We have defined the parameters g = n/P and rI' =n'/P'.
Referring to Eq. (6) and Fig. 1, we point out that ~Sn)
and ~Ge) are chosen to have the positive lobe to the right,
so that the coefficients satisfy n) 0 and P(0. The ratio
of n and P can be obtained from

—2H
~12~@Ge @Sn + [(@Pe ESn)2 + 4II2 ]1/2

'

Here, E " and E„' are the atomic term values that ap-
pear on the diagonal of the tight-binding Hamiltonian.
H, the composite overlap matrix element, is a func-
tion of the bond length d, and can be written for the
zinc-blende structure as

A. LMTO estimate

We define the SO coupling parameter L as

= 3((2 2)-l~»l(2 2).) (15)

where
~ (2 2)„)represents the eigenvector of the I'is eigen-

states. Taking the phase convention of Fig. 1 (both eigen-
states are chosen real), A is real. The magnitude of 4
can be determined by performing calculations for the I'i5
and I'i5 states, both with and without the inclusion of
SO interaction. 4 is responsible for the fact that the
ratio of the upshift of the I'8 states to the downshift of
the I 7 states is not 1:2, the interband value &om first-
order perturbation theory, but deviates slightly from it.
Second-order perturbation theory yields, for these shifts,

ulE15 ~

H = 1.28d (13)
(16)

In the above equation. we have actually used the param-
eters of the sp s* model. We calculated g from Eq.
(12) to be —1.20 using the term values of Harrison. i

This results in an antibonding wave function I'i5 which is
more cationlike, as shown in Fig. 1. Note that Harrison's
term energies are free-atom-like, not self-consistent, and
not dependent upon crystal volume. When we use the
self-consistent term energies extracted from the LMTO
calculations for the SnGe compound, however, we find
a somewhat different value, g= —1.65. It is possible that
the large magnitude of g should be viewed as a screening
effect of the Sn 4d electrons; they screen the Sn valence
5p electrons which move up and transfer a large amount
of charge to the Ge valence 4p electrons. The difference
observed here clearly emphasizes the importance of self-
consistent calculations.

The ratio rI' =n'/P' (both have the same sign) for the
s states follows from an expression equivalent to Eq. (12)
if we replace the respective E~'s by E, 's and H by V„

2
ulEi5

B. Tight-binding estimate

Again, the minimum-basis tight-binding method is a
reliable tool, in particular, to determine the sign of L
Prom the SO Hamiltonian we find

= nP[Ap(Sn) —Ap(Ge)],

A p
——n Ap (Sn) + P Ap (Ge), (18)

where Ei5 represents the appropriate gap between the
upper and lower I'i5 states. Lo is the SO splitting that
one would have if A = 0. Inserting into Eq. (16) the
values b(z) =153.6 rneV and h(2) = —326.7 meV, we find
for Lo and L the values listed in Table III. Ao is only
9.68 meV smaller than the splitting 8(2) —8(2).
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Ap = P Ap(Sn) + n b, p(Ge). (»)
Equations (17)—(19) give A = 183.8 meV, Ap ——0.422
eV, and Az ——0.615 eV, a moderate deviation &om the
the LMTO results. It must be emphasized here that the
mixing in of d states has not been included in the above
expressions.

V. INVERSION-ASYMMETRY SPIN SPLITTING
IN SnGe

A. Cubic terms along [110]

All bands are split along the Z direction in zinc-blende-
type materials. The splitting energy can be written for
small k as

AE =pk, (20)

where we define the sign to be positive if the E4 state is
above the Z3 state. To denote the splittings of the I'&,

r;, r7 I8 and I'7 bands we shall use p with the sub-
scripts c (s conduction), hh, lh, sh (split hole), he (heavy
electron), le (light electron), and sc (split conduction).
Figures 4—7 show the splittings near I'. (See Fig. 3.) The
jumps in the LMTO results in the figures are indicative
of small numerical errors.

We have extracted the difFerent p's from our LMTO
data by fitting the energy difference LE of the split bands
to k, using a very dense k mesh close to I'. When re-
quired by theory, we added a linear term in k whose
coefBcient is fitted as discussed in the Sec. IVA1. In
Table V, the extracted p's (in units of eV A.s) are listed.
Also given in the table are values we calculated using ex-
pressions derived kom third-order (in k p) perturbation
theory &om states that include exactly Lo, Lz, and L
The signs of the splittings are taken to be those given by
perturbation theory.

1. I'g band, along /110]

According to fourth-order k-p perturbation theory,
is given by

~. = A + 8+ C + 17, (21)

where

A = PP—'Q
3 3Eo(Eo + Ap) ( Eo Eo + Ao

1

&o —Eo

~l
g PPI Q 3(Eo —Eo)(Eo + &o —Eo)

'

4 PQA
3 Eo2(Eo —Ep)

'

P"QA
3 Ep(Ep —Ep)2

(22)

g. I'&& band along f110]

As mentioned in earlier sections, the region where sim-

ple perturbation expressions for the splittings are valid
shrinks considerably when energy gaps become small. In
the I'z band, the nonparabolicity starts very close to I'
and conspires with numerical noise to make an accurate
parameter extraction difficult (Fig. 4). These problems
lead to the failure of our numerical fitting procedure, and
the extracted p, (Table V) is based upon geometrical fits
and judgement. A similar problem occurred for the lh

band. With the parameters of Table III, we calculated
= —272.67 a.u. (

—1104 eVA. ), in rather good agree-
ment with our LMTO estimate (approximately —1094 eV
A.').
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The second-order k p interaction with I'q via the

matrix element P (isotropic) plays an important role
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FIG. 4. Spin splitting along [110], close to I', of the first
s-like conduction band. The LMTO results are shown as the
circles The solid c.urve (PT) represents the results of third-
order perturbation theory. Note the effect of nonparabolicity
when comparing the results of perturbation theory with those
of the LMTO calculations.
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FIG. 5. Spin splitting along [110], close to I', of the hh
band and the split-off band. The symbols denote the data for
the hh and sh states as follows: A =hh and + =sh.
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FIG. 6. Spin splitting of the lh band along [110]aud close
to I'. The results of LMTO calculations are represented by the
symbol x. The solid line represents the results of perturbation
theory (PT) underlying the linear and cubic k terms. The
dashed line, corresponding to the linear terms, illustrates the
opposite signs of the linear and cubic terms.

FIG. 7. Detail of the spin splitting of the lowest p-like
conduction bands along [110],very close to the point I'. The
terms linear and cubic in A: for the le band can easily be
discerned by eye, and their relative signs determined. The
symbols denote the data for the se, le, and he states as follows:
O=se, a =le, and *=he.

for these bands, and the assumption of pure angular-
momentuin wave functions (j, m~) with [110]as the quan-
tization axis can be justified. Fourth-order k.p pertur-
bation theory predicts phh to be zero, but a splitting due
to higher-order terms can be observed in Fig. 5. The
coefFicient for the lh band is given by

4pplq 4p'qa- 2Q'a-
3EoEo 3EoEo+o 3E' Lo

(23)

8. I'&& band along (110J

The I'& bands are given by (2, +2) wave functions,
with [110] being the quantization axis. We take for
P'" the average (0.52 a.u. ) of the Sn (Ref. 34) and Ge
(Ref. 35) values; 0.48 a.u. and 0.57 a.u. , respectively. It
is not necessary to fix the sign of this parameter, since it
does not inBuence our calculations. According to Ref. 18,

The lh curve is shown in Fig. 6. Extracting yah from the
LMTO calculation is difFicult due to numerical noise, and
the value 891 eVAs is the best possible estimate. We
note the presence of a negative linear coefBcient in the
same curve. The p, h coefEcient for the split-ofF band can
be obtained from Eq. (23) by adding the corresponding
SO splitting Lp to the energies in the denominator, and
reversing the sign. For values, see Table V.

we have

4PP'Q
3(Eo —Eo) (Eo + 2Ao/3)

4P' QA
3(E,' —Ep) (E,' + 2Ap/3) Ao

2Q A

3(Eo +»o/3)'&o
4PI I/2

Q+—
3(Eo" —Eo) (Eo +»o/3) &o

(24)

(25)

Here, the fourth term is due to the interaction with the
I"i band (the I'i conduction band just above I"is).

If the 18 wave functions closely corresponded to pure
angular-momentum states, pi, would be obtained from
Eq. (24) by adding Eo to Eo and reversing all signs. As
can be seen kom Table V, the agreement between pertur-
bation theory and LMTO results is not bad for p„and
pi . We note especially that the huge discrepancy found
for the two values of pi, in GeSi (Ref. 7) does not appear
in our table. For GeSi it was postulated7 that there was
a strong mixing of the (2,j2) and (2, + 2) states which
gave the large value for pi, and introduced a nonzero cu-
bic coefficient pi„= —6.5 a.u. (—26.3 eVA. ) in the he
bands. Since the discrepancy is much smaller for SnGe,
and the LMTO splittings pi, and p„are close to the
"experimentally adjusted" splittings of GeSi, we should

TABLE V. Values for the linear-splitting coefficients along [ill] (Ct, s, in meV A. ) and the cubic
splittings along [110] (p's, in eVA ). The pure LMTO results are compared to those obtained by
perturbation theory or by the semiempirical formula of Eq. (27).

LMTO
k p (PT)

—1094
-1104

891
884.2

Qsh

-173.4
-125.9

fsc

-19.08
-35.72

+le

23.33
36.54

3.81 -7.72
-5.91

C
-3.22
-4.03
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expect a correspondingly smaller magnitude for ph in
SnGe. The value obtained, +0.94 a.u. (3.81 eVA. s),
seems satisfactory. Prom the discussion of the linear-
splitting coeFicients below it will become clear that the
angular momentum assumption is not particularly good
for the p-like conduction bands. Also, it is likely that the
value of P"', which is very important for the cubic terms,
taken &om the older literature ' does not refIect the
LMTO value of P"' very well.

)
(D

E

CI

6 —
hh——he

Discussion

We obtain a reasonable agreement between the values
of the parameters derived &om our LMTO calculations
and those obtained with k p perturbation theory (Table
V). The calculations are therefore consistent and support
our estimates of 4 and P'. The LMTO results include
contributions &om 8, p, and d levels. From the agree-
ment between LMTO and k p perturbation theory we
conclude that the approximations made (pure J, eigen-
states, the value of L,P', and P"', fourth-order per-
turbation theory, and the number of terms included) are
valid. Some caution must, however, be "xercised when
considering parameters pertaining to the I &5 bands. A
correct parameter extraction for these bands is diFicult,
due to the shortcomings of the k.p expressions available.

B. Terms linear in k

The existence of energy-level split tings linear in
k in zinc-blende-type materials has been known for
quite some time. These split tings can be mea-
sured using magneto-optical and polariton-scattering
techniques. ' We shall consider the splittings along
[111] and [110] directions. For the sh, sc, and s-
conduction (c) bands there are no linear terms, whereas
the lh and le bands only show a linear splitting along
[110). We designate the coeKcients by CA, for the valence
bands and Cq for the conduction bands.

In Ref. 18 it was demonstrated that the main con-
tribution to CI, is the second-order interaction, bilin-
ear in k p and the SO operator Hs~ between the I'8
states and the uppermost d core levels (I i2 intermediate
states), and that the contribution &om the k-dependent
SO Hamiltonian, which follows from first-order pertur-
bation theory, can be neglected. In Fig. 8 we present
the splittings of the hh and he bands along [111]. The
symmetries are A5 and A4, respectively. For small A:, the
splitting along [ill] is linear, and is related to the Ci, 's

Vla 5'

E(As) —E(A4) = 2v 2Cgk. (26)

E(Z4) —E(Es) = Cgk,

E(~4) —E(~s) = ~3
2

(27)

Along the [110]direction we have for the hh and lh bands,
assuming pure (2 j 2) and (2, +2) symmetries and that
we are in a region where the quadratic, efFective-mass
splitting dominates,

FIG. 8. Spin splittings of the hh (solid) and he (dashed)
1 8" bands in SnGe for k along [111]as calculated with the
LMTO method.

+d,c +d,a

E(i,") —E„.+ E(r;) —E,. (28)

Here Ag and Lg are SO splittings of the core d lev-
els and Eg and Eg their energies. Taking the tabu-
lated values &om Ref. 41 and A = j3 = 220 meVA, as

We see &om Eq. (27) a 3:1 rule for the splitting of the
hh band to the splitting of the lh band along [110]. Pro-
vided that j and mz are still good quantum numbers for
he and le conduction bands, their splittings will be given
by the same relationship. Since we have both cubic and
linear terms present along [110] it is possible to find out
by inspection in Figs. 5 and 7 the relative sign of CA. and
C& with respect to the corresponding cubic coefIicients
p. Moreover, with the signs of the p coefricients already
determined in Sec. V A, it is now straightforward to de-
termine the absolute signs of CA, and C&.

The numerical fitting procedure failed for the lh split-
ting along [110] (Fig. 6). The linear part was therefore
estimated &om the splitting of the hh's, while the cu-
bic part was determined as described in Sec. VA2. If
the approximation of pure angular-momentum states is
valid, the Cg's obtained from the splitting along [111]
and along [110] using Eqs. (26) or (27) should be equal.
This holds true for the hh band (7.72 meVA versus 7.86
meV A. , respectively).

Fitting linear terms in the I 8 bands gave the ratio
0.75/1 for the he to le linear splittings. This is com-
parable to the values found for III-V compounds. The
agreement between C&'s obtained &om the splittings of
the he bands along [ill] and [110] is not very good (3.22
meVA. versus 1.83 meVA), indicating that the use of
pure angular-momentum wave functions is not particu-
larly appropriate for these bands. Values of CA, and C&

(in units of meV A) &om the fit for small k are presented
in Table V.

As mentioned earlier, CI, results mainly &om bilinear
perturbation terms, including Hg. & and Hs~, with the
I i2 (core d levels) as intermediate states. In Ref. 40 the
following interpolation formula was suggested:



17 136 BRUDEVOLL, CITRIN, CHRISTENSEN, AND CARDONA

VI. IONICITY AND TRANSVERSE EFFECTIVE
CHARGE IN SnGe

Ionicity is a somewhat qualitative concept. Harrison
has de6ned a polarity o.& &om tight-binding parameters
of the p-valence orbitals [c.f. , Eq. (12)],

E„—E„
[(@c @a)2 + II2 ]1/2

' (29)

Here E„' and E„are the term energies of cation and an-
ion, respectively. One finds the value o.„=0.200—larger
than the value found for GeSi (0.07), but much smaller
than the value (0.54) found for SiC, the only group-
IV zinc-blende compound that exists in nature. Accord-
ing to both symmetry and the considerations discussed
above, SnGe is an in&ared-active material with respect
to one-phonon as well as no-phonon processes; the opti-

suggested for group-IV materials, we And |p
———5.91

ineV A, which is in reasonable agreement with the LMTO
result (—7.72 meV A). In Ref. 7 the corresponding GeSi
calculation with A=220 meV A. (Si has no core d levels)
gave a result more than a factor of 2 o8' the LMTO value.
Therefore, it was speculated that A, which is taken &om
the average of the cation and anion parameters for III-
V and II-VI materials, may be smaller than 220 meV

for group-IV compounds in general. Our SnGe re-
sults do not support this assumption. Alternatively, it
was suggested that the lack of occupied d states in the
Si cores could have unexpected effects on the splittings
which could not be described by Eq. (26) with A = 220.
In view of our SnGe calculations, the latter conclusion
seems to be more reasonable, although it does not solve
the quantitative problem posed by GeSi.

C& was found to have a negative sign. Due to the par-
tial breakdown of the angular-momentum approximation
and 3:1 rule pertaining to he and le states along [110],
C&, as defined in Eqs. (25) and (26), will vary with direc-
tion and band. Along [111]it lies close to the correspond-
ing GeSi value; —3.22 (SnGe) versus —3.07 meV A (GeSi,
with a p-p gap in significant error ). It is not immediately
apparent how to relate the value for Ck in GeSi and SnGe
to those of other zinc-blende-type materials. In Ref. 18 it
was suggested that only the d levels of the anion (A 0)
are important when considering the linear splittings of
the I z5 bands. If that is a general rule, we would have
difhculties in explaining the sign observed here. Using
Eq. (27) with A = B = 165 (which is the average value
of A and B used for the zinc-blende materials ), and
experimental gaps and d-core SO splitting, the follow-
ing linear coe%cients are obtained: C& ———4.03 meV A. for
SnGe and —2.67 meV A for GeSi. These are in reasonable
agreement with the LMTO values. With the exception
of ph, the respective splitting coeKcients in SnGe and
GeSi have the same signs.

cal phonon at I' is associated with an electric dipole mo-
ment which can be represented by the transverse effective
charge e&. It is of interest to estimate e& because it can
give some insight into the in&ared activity of phonons
in Sn /Ge superlattices and also into that of the local
modes in Ge and Sn. The transverse effective charge e&
is given by [cf. Eq. (49) of Ref. 32]

( dn„)e~=4( n„+ din V) (30)

With dn„/din V = —0.834, we obtain eT ——0.47, a value
much larger than that found for GeSi (0.09), but smaller
than that of the II-VI and III-V compounds, and of SiC
( 2.7). Hence the phonon-induced infrared absorption,
proportional to eT, should be small in SnGe and in
Sn„/Ge superlattices for the local vibration modes of
Ge in Sn.

VII. CONCLUSIONS

We have studied the band structure of zinc-blende-type
SnGe using the LMTO ASA method and an empirically
corrected LDA. Full-potential LMTO total-energy calcu-
lations were used to calculated the equilibrium volume,
and also to investigate the stability of the SnGe com-
pound. For technical reasons it is at present dificult to
achieve sufBcient accuracy in the very small total-energy
differences, but preliminary results suggest, quite surpris-
ingly, that SnGe is stable with respect to a decomposition
into Ge and o.-Sn. This result is tentatively supported
by the recent observation of a SnGe layer in the zinc-
blende structure several monolayers thick at the Sn-Ge
interface in milled Sn-Ge powders. The important band
parameters for states around I' were evaluated, the prob-
lem of parameter extraction from the highly nonparabolic
8-conduction band receiving due attention. Inversion-
asymmetry-induced spin splittings have been discussed,
and described in terms of parametrized k p and tight-
binding perturbation theories. We point out that the k
terms should give rise to linear splittings in Sn /Ge su-
perlattices, provided that both n and m are odd. 4 The
ionicity and effective charge e& were calculated, and the
role of Sn as cation firmly established. With eT ——0.47
there should be very weak one-phonon in&ared absorp-
tion (local modes excluded) for sample thicknesses com-
patible with molecular-beam-epitaxy growth techniques
(a few pm).
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