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Statistical properties of the eigenvalue spectrum of the three-dimensional
Anderson Hamiltonian
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A method to describe the metal-insulator transition (MIT) in disordered systems is presented.
For this purpose the statistical properties of the eigenvalue spectrum of the Anderson Hamiltonian
are considered. As the MIT corresponds to the transition between chaotic and nonchaotic behavior,
it can be expected that the random matrix theory enables a qualitative description of the phase
transition. We show that it is possible to determine the critical disorder in this way. In the
thermodynamic limit the critical point behavior separates two different regimes: one for the metallic
side and one for the insulating side.

It is now well established that the Anderson Hamilto-
nian, which is a widely used model to describe electronic
states in disordered solids, exhibits a metal-insulator
transition (MIT) in three-dimensional (3D) space. There
are di8'erent ways to show this but the usual way to de-
termine this transition quantitatively is to calculate the
decay length of the transmission probability using the
transfer matrix method (TMM). In this paper a quanti-
tative method which is no longer based on the TMM but
on the statistical properties of the energy spectrum will
be presented.

The study of the energy spectrum has already pro-
vided very important results about the localization of
the states ' and about the kind of transport one can
expect, e.g. , superdifFusive, diffusive, or localized. On
the other hand, using the mathematical equivalence be-
tween the kicked rotator Hamiltonian and the Anderson
Hamiltonian it was shown that the MIT corresponds to
a transition between a chaotic and a nonchaotic system.
Here chaotic and nonchaotic mean, in the language of
the random matrix theory (RMT), that the fluctuations
of the energy spectrum will obey the Gaussian orthog-
onal ensemble (GOE) and the Poisson ensemble (PE),
respectively. Similar results were obtained by study-
ing the Quctuations of the number of levels in an energy
band of given width for electrons moving in a random
impurity potential. It has to be mentioned that recently
Shklovskii et a/. have also considered the spacing distri-
bution in order to study the MIT. Moreover, the study of
the spectral Buctuations of the Lyapounov exponents in
the framework of the TMM gave analogous results and
provided an explanation for the universal conductance
Huctuations.

The purpose of the present paper is to describe the
transition &om the metallic side that features the chaotic
quantum spectrum to the insulating side where, due to
the large disorder, the quantum interferences lead to the
appearance of a nonchaotic quantum spectrum. The
chaotic or nonchaotic behavior is given by the local prop-
erties of the spectrum, i.e. , the Buctuations of levels
around the average density of levels p(E). But if p(E)

is not constant it will be impossible to compare the Huc-
tuations in di8'erent parts of the spectrum in a straight-
forward way. In order to get rid of this problem one has
to unfold the spectrum by means of the map E, m e,.
where

e, = N(E;) = N(E, )
—Ns(E, ).

Here N(E;) is the integrated density of levels and Ns(E;)
denotes the fluctuations around the averaged integrated
density of levels N(E;).

For s; = e; —e, i one can see easily that (s;) = 1 which
means a constant density. Using the unfolded spectrum
e; the Huctuations can be appropriately characterized by
ineans of the spacing distribution P(s) and the Dyson-
Metha statistics L3. The erst entity gives the distribu-
tion between consecutive levels and thus measures the
level repulsion. P(s) is normalized

P(s) ds = 1

and it satisfies

P(s)s ds = 1

due to definition (1). The second quantity As measures
the deviation of a given sequence of levels from a perfectly
uniform sequence, as a function of the average number
of levels in the sequence. Thus it reHects the spectral
rigidity. It is given by

1
As(1) = —min

L x,a

where () means that we average over difFerent parts of
the spectrum.

Using the RMT it is possible to calculate P(s) and As
for the two limiting cases of the spectrum, namely the
GOE and the PE. For the metallic side one obtains
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2Pr OE(s) —s exp ——s
2

L
b, ,(L) =, (L' —2L'r + r')Z'(r) dr,

0
(6)

where Z2(r) is the variance of the number of levels in a
spectral window of width r. For the GOE it is given by

= 2 1 2Z (r) = In(2vrr) + p + 1+ —[Si(7rr)] ——Si(~r)
7r2 2 2

PpE(s) = e ', (8)

L
As(L) = —.

15

In this case there is no longer any level repulsion but level
clustering. As the localized states in diAerent parts of the
sample do not overlap and therefore cannot hybridize,
their energy levels can become arbitrarily close.

The Inethod described above will be applied now to
the study of the Anderson model. The Hamiltonian is
given by

II = ).e*l~)(~l+ ) .&I~)(jl

where it is generally assumed that the sites i are dis-
tributed regularly in 3D space, e.g. , on a simple cubic
lattice. As usual we consider interactions only with the
nearest neighbors and choose V=1 to define the energy
scale. e; is the site energy and is described by a stochas-
tic variable. In the present investigation we use a box
distribution

p(e) = W-'e(W/2 —l.l)

with variance o2 = W /12. W represents the disor-
der and will be our critical parameter. It was shown
previously that the critical behavior at the MIT is in-
dependent of p(e) at least for even distributions with well-
defined momenta.

For very large disorder the diagonal element will be
dominant and the spectrum will essentially be given by
the random site energies which means that the Huctua-
tions of the spectrum will obey the PE and the particle
will be localized on one site. This reHects the fact that
for large disorder the quantum interferences lead to the

—cos(2zr) —Ci(2zr) + rr r
l

1 ——Si(2z r)
l)
(7)

The formula (5) for P~oE(s) is exact only in the case of
2 x 2 matrices but remains a good approximation for the
other cases. Important is the prefactor s which shows
the repulsion between the levels. For L3 there is no ana-
lytical solution and the integral (6) has to be calculated
numerically.

For the localized case we have

Pph, (s) = As~ (1 + CPs) f ~ exp Ps——
7r (' p)

2) (12)

with f(P) = 2~(1 —P/2)/P —0.16874, where A and C
are normalization constants, so that Eqs. (2) and (3) are
fulfilled.

This formula is an approximation for the extrapolation
between our two limiting regimes GOE and PE. When

suppression of the difFusive processes. For very small dis-
order the interaction term will be dominant and will give
rise to hybridization and thus to the repulsion between
the energy levels. The particle will be delocalized. The
problem is studying the transition between these two lim-
iting regimes. For this purpose we calculated numerically
the eigenvalues of the Anderson Hamiltonian. Due to the
fact that we have interaction only with the nearest neigh-
bors the Hamiltonian defines a very sparse secular ma-
trix. Therefore we employ the Lanczos algorithm, which
is suited to diagonalize such matrices. This was done for
systems of size M x M x M with M ranging from 13 up to
21 and disorder W &om 2 to 40. We need to mention that
the erst attempt, to our knowledge, to describe numer-
ically the evolution of the spacing distribution and the
rigidity through the transition between the two regimes
in a finite system was performed by Alt'shuler et al.
For M = 5 they obtained a Poissonian tail of P(s) at the
transition.

We are interested in the critical behavior at the band
center (E = 0). But for the box distribution it was
shown that even far from the band center (up to
lEl = 5) localized and extended states are separated by
nearly the same critical disorder TV, as for E = 0 and so
are expected to be equivalent to the states at E = 0 as far
as the determination of the critical behavior is concerned.
In order to improve the accuracy of the calculation we
will therefore consider a band of energy around E = 0
containing 50% of all levels, which corresponds to ener-
gies up to lEl 1.8, 4.5, 10.2 for W = 2, 16.5, 40, respec-
tively. The calculation was performed for many diferent
realizations of the disorder. The number of realizations
was chosen so that 10 eigenvalues were obtained for
every pair of parameters (M, W) which means between
25 and 90 realizations, for which the spectrum has been
computed.

Using the set of eigenvalues (E,) obtained, we derive
the average integrated density of levels N(E, ) in order to
unfold our spectrum as already explained above. N(E, )
is determined by means of cubic spline interpolation as
follows. A subset of the level spectrum consisting of
points [E,, N(E;)] with i = 1, 101,201, . . . is chosen and
the cubic splines through these points are applied in the
interpolation. In this manner we get the unfolded spec-
trum (e,). This allows us to study now the level fluctu-
ation of our spectrum according to the spacing distribu-
tion P(s) and the Dyson-Metha statistics Es. In order
to quantify the change of the distribution as a function
of the disorder and the size of the system we introduce a
phenomenological formula for P(s),~s
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FIG. I. Spacing distribution
P(s) for M = 21 and diferent
disorders TV. The histograms
are the numerical results and
the full lines are the fits ac-
cording to the phenomenolog-
ical formula (12). The distri-
bution corresponds to the GOE
for small R' and to the PE for
large TV.
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P = 1 then Pzh, (s) PG~E(s). It has to be noted
that Eq. (12) gives a better approximation of the exact
P~~E(s) (Ref. 19) than the usual signer surmise distri-
bution [Eq. (5)], which is exact only for 2 x 2 matrices as
mentioned. For P ~ 0 one has to perform an expansion
of Asi (1+Cps)f(p) to see that Pph, (s) -+ PpE(s).

In Fig. 1 we have plotted P(s) for M = 21 and difFer-
ent disorders. The histograms are the numerical results
and the full lines show the fit for P&h, (s) with s C [0; 5].
For small disorder the Quctuations are described, as ex-
pected, by the GOE and for large disorder by the PE. We
can nicely see the transition &om one regime to the other
as a function of the disorder. The phenomenological for-
mula gives a good description for P(s) although in the in-
termediate regime we can see some discrepancy between
the numerical results and P~h, (s) for s ) 2. In order to
take this into account P(s) was fitted, for the subsequent

calculation of P, A, and C, by Pph, (s) with s 6 [0.1;2.0].
The results are shown in Fig. 2 for P(M, W). For W
from 2 to 15 we observe P(M, W) 1 independent of
the size of the system. Then it begins to decrease and
finally reaches P(M, W) = 0 for large disorder. It has to
be noted that when M is larger P(M, W) decreases more
slowly for 14 & TV ( 17, but faster for 8 & 17. So in
the thermodynamic limit we expect a step function for
P(oo, W). This means P = 1 for W ( 17 and P = 0
for TV ) 17. The value R™17 is the critical disorder
W . The rough estimation of W, is in good agreement
with previous results obtained within the framework of
the TMM. The value P(M, W ) is a fixed point, i.e. ,
independent of M. This implies that for M —+ oo we
will have three difFerent distributions for P(s): one for
TV ( TV, one for TV = 8, and one for W ) 8 . Similar
results have been found by Shklovskii et aL for P(s).
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FIG. 2. Values of the fitted

parameter P(M, W). P = 1 cor-
responds to the GOE case and
P = 0 to the PE case.
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FIG. 3. Values of the nor-
malization parameters A and C
for M = 21 and difFerent dis-
orders TV. The vertical dashed
line is the expected value of
W = 16.5. On the left-hand
side of this separating line the
horizontal dashed lines repre-
sent the values of A and C for
the GOE and on the right-hand
side the respective values for
the PE.

They showed that this intermediate distribution between
GOE and PE features the small-8 behavior of the first en-
semble and the large-s behavior of the second ensemble,
respectively, in contrast, for the large-s behavior, with
our results.

In Fig. 3 the values of the normalization parameters
A and C for M = 21 are given. The vertical dashed line
is the expected value of TV~ = 16.5. On the left-hand
side of this separating line the horizontal dashed lines
represent the values of A and C for the GOE. These val-
ues are numerically computed using the results of Dietz
and Haake. On the right-hand side the dashed lines
re8ect the respective values for the PE which can be cal-
culated analytically. We see that the normalization con-
stants give very interesting information about the phase
transition in particular for the critical disorder W, . The
accuracy of C is not as good as that of A due to numer-

ical problems during the Gt but even so t remains an
indicator for the critical disorder.

We enlarge the transition regime of Fig. 3 to study the
behavior of A in more detail in Fig. 4. We observe that
the values of A decrease from the value at the critical
disorder to the two limiting values of A. Except at the
critical disorder and (due to numerical inaccuracies also)
in the close vicinity of TV this decrease becomes faster
when M increases. This indicates that in the thermo-
dynamic limit we will have only three diferent values of
A and so three difFerent distributions of P(s) as already
mentioned above. Analogous results are obtained &om
the analysis of C.

In Fig. 5 we report the results obtained for the Dyson-
Metha statistics. Again we clearly see the transition be-
tween the chaotic and the nonchaotic regime as a function
of the disorder W. If we now investigate what happens as
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FIG. 5. Dyson-Metha statis-

18
ties As(L) for M = 21. The
transition from GOE to Poisson
statistics occurs as a function of
the disorder W (denoted on the
right-hand side).
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a function of the system size M for W = 14, 16.5, and 20
we observe in Fig. 6 that for TV ( R' the 43 curve moves
in the direction towards the GOB case when M increases.
For R' & R' we have the opposite behavior, this time
the curve moves in the direction of the PE case. Finally
for R" = R we have the same curve independent of the
system size. This reHects the three different regimes ex-
pected in the thermodynamic limit as already seen for
P(s).

Another interesting point to consider is the shape of
As(L) for W ( W, which is presented in more detail in
Fig. 7. We see that for every R' a critical value I can be
defined up to which As(L) coincides with the GOE case.
As already seen, for larger I the L3 —curves move away
in the direction of the W case. For W -+ TV we observe
I ~ 0. The meaning of I, can be directly related to

the Thouless energy E, (Ref. 21) in the following way.
It was shown that for an energy bandwidth E ( E
the fi.uctuation in the number of levels is described by
the GOE case. For E ) E, the Quctuations are larger
than expected for the GOE. This can be seen by the
calculation of

where Z2 is the variance of the number of energy levels
in a spectral window of width E as in Eq. (7) except
that in Eq. (7) we consider the rescaled energy of the
unfolded spectrum instead of the energy. The Thouless
energy E can be explained in the following way. In a
chaotic system the particle can di8'use in the whole sys-
tem and so it can reach the edges of the sample. Because
of this the particle will be very sensitive to any change
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FIG. 6. Dyson-Metha statis-
tics As(I) for various system
sizes M and W = 14, 16.5, and
20. With increasing M the A3
curve moves towards the GOE
limit for W & W and towards
the Poisson limit for lV ) R', .
For W = W, the curve is inde-
pendent of the system size.
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a characteristic quantity o. which can be expressed by a
scaling function f as n(M, W) = f[M/( (W)], where

(W) is the correlation length for an infinite system.
A possible choice for o. would be to calculate the area
between P(s) and the s axis for s C [0, oo]. But one has
to remember that P(s) is normalized according to Eq.
(2) so that we will obtain a constant for the respective
integral. In order to find the supposed finite-size scaling
behavior we "need" a new boundary except s = 0 and
8 = oo for the integration. This is naturally provided by
the appearance of the fixed point so 2. Now two pos-
sible regions can be considered, namely from 0 to 80 and
&om so to oo. Preliminary investigations show that the
supposed finite-size scaling is indeed possible. Respective
results will be published elsewhere.

In conclusion the study of the statistical properties
of the energy spectrum gives a suitable method to de-
scribe the MIT. The calculation of the spacing distribu-
tion P(s) and the spectral rigidity As(L) yields three
difFerent regimes for finite systems. For W & W and
W ) W, the results depend on the system size M and
tend towards the GOE, and to the PE, respectively, when
M increases. For W = W the results are independent
of the system size. This gives a criterion to determine
the critical disorder W . The estimation of W is in good
agreement with previous calculations using the TMM.
Another consequence of this behavior is that in the ther-
modynamic limit three diferent regimes of the system are
expected, for W ( W the GOE regime, for W = W
an intermediate case between GOE and PE, and finally
for W ) W the PE regime. We would like to mention

in this context that although three difI'erent regimes have
been found only two of them, namely the GOE and the
PE, have a physical meaning. The intermediate case is
defined only for one peculiar value of the disorder, the
critical disorder, and thus cannot be measured because
the point W will never be reached with an absolute accu-
racy. For infinite systems we will always be in the GOE
or in the PE regimes. The intermediate case can be con-
sidered as a marginal case without physical significance.

It will be interesting to include 100% of the levels into
the present investigation. Until now it was very difIicult
to study the critical behavior in the band edge of the
spectrum so the comparison between the here presented
case in which 50% of the levels around the band center
were considered and the 100% case could provide some
information about this problem. It should be realized,
however, that localized and extended states would be in-
cluded in such an analysis simultaneously which might
render the investigation even more complicated.

The size-dependent behavior of the results with the
fixed point at W suggests some finite-size scaling behav-
ior and the possibility defining characteristic quantities,
based on P(s) or As, described by a finite-size scaling
function. This supposition is supported by the results for
P(s) in Fig. 8. The computation of this finite-size scaling
function should allow a better determination of the crit-
ical disorder W as well as the calculation of the critical
exponents for the MIT without needing the correlation
length for a finite system as in the TMM. The rough es-
timates of these critical values obtained by Shklovskii et
al. are in agreement with our results.
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