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We report a self-consistent linear-combination-of-Gaussian-orbitals study of the electronic states and
ground-state geometry of an undoped and doped single, infinite chain of trans-polyacetylene using the
density-functional theory in the local-density approximation. We find a dimerized ground state for an
undoped chain with a dimerization amplitude of about 0.01 A, which is lower than the experimental

0
value of 0.023 —0.03 A. A pure Hartree calculation neglecting all exchange and correlation gives a much

0
smaller dimerization amplitude of less than 0.005 A. The local exchange-correlation energy thus
significantly favors the dimerization although its e6'ect is not strong enough. In the calculations of the
doped chains, the dopant ions were approximated by a uniform background charge. We find that the un-
dimerized state becomes energetically more favorable than any uniformly dimerized state at a critical
doping level of about 0.04 (0.03) extra holes (electrons) per CH unit. The band structures and total ener-
gies of polaron and soliton lattices at a higher doping level of 0.2 holes per CH unit are calculated and
compared with those of the uniformly dimerized and undimerized lattices, and possible models of the
metallic state of trans-polyacetylene are discussed. According to our study, the bonds become increas-
ingly similar with increasing doping. The undimerized chain model seems to be a good approximation
for the metallic state of trans-polyacetylene at high doping levels although the possibility for a marginal
soliton lattice cannot be fully excluded.

I. INTRODUCTION

Trans-polyacetylene is the prototype of all quasi-one-
dimensional conducting polymers. ' The experimental
gap of undoped trans-polyacetylene consisting of interact-
ing chains is about 1.4—1.5 eV. An undoped single
trans-polyacetylene chain is expected to have a gap of
about 1.7—1.8 eV. Trans-polyacetylene differs from
three-dimensional symmetric inorganic semiconductors,
such as silicon, in that the anisotropic lattice structure of
trans-polyacetylene is easily modified by electron-phonon
coupling leading to a dimerized ground state with alter-
nating single and double bonds and to self-localization of
extra charges into solitons and polarons. ' Although
trans-polyacetylene is an insulator in its undoped form,
the conductivity increases with increasing doping. At a
doping level of about 6% per CH unit, trans-
polyacetylene undergoes a transition into a metallic state
characterized by a high density of states (DOS) at the
Fermi level. The conductivity of highly doped, well-
ordered trans-polyacetylene may exceed 10 S/cm at
room temperature.

The studies of trans-polyacetylene and other conduct-
ing polymers are motivated by their interesting physical
phenomena and the potential conducting polymers may
have to applications that range from electromagnetic in-
terference shielding to molecular electronics. Theore-
tists have favored trans-polyacetylene over other con-
ducting polymers because of its simple molecular struc-
ture. Although trans-polyacetylene itself is probably not
going to become commercially important because of its

poor stability, there are already commercial applications
of some other conducting polymers. Many biologically
important macromolecules such as P-carotene also have
conjugated structures.

Experiments using the x-ray diffraction technique '

and nutation NMR spectroscopy' have shown that un-
doped trans-polyacetylene has a dimerized ground state.
Although the dimerization is a very basic phenomenon, it
is still not fully understood. The dimerization has been
mostly discussed in the context of simple tight-binding
models, but there is no general agreement of the relative
importance of the electron-pho non and the electron-
electron interactions (see Ref. 11 and references therein).
Confusion has also arisen because the self-consistent (SC)
first-principles Hohenberg-Kohn-Sham (HKS) density-
functional (DF) calculations using the local-density ap-
proximation (LDA) for the exchange-correlation energy
have given conAicting results for the dimerization of an
undoped infinite trans-polyacetylene chain. These results
range from a dimerization close to experiments' ' to a
weak dimerization' ' or no dimerization at all. '

Contrary to the undoped case, there are no direct mea-
surements of the chain geometry in the highly doped me-
tallic state. Theoretical considerations and experiments
have shown that the charge in lightly doped trans-
polyacetylene is mostly stored into spinless localized soli-
tons, ' but, on the other hand, the chain geometry in the
highly doped metallic state is not known. The measured
abrupt increase in the Pauli spin susceptibility at a dop-
ing level of about 6% per CH unit is the most dramatic
change. ' The same characteristics are found for p-type
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doping (C104 ions) and for n-type doping (Na ions).
The experimental Pauli spin susceptibility ' and the elec-
tronic specific heat of the highly doped samples indicate
a high metallic DOS at the Fermi energy:
g (E~)=0.08—0. 12 states/eV/carbon atom. The remark-
able conductivity of about 10 S/cm in the best samples
suggests a mean free path of about 100 A. The temper-
ature dependence is still mostly nonmetallic, the conduc-
tivity decreasing with decreasing temperature, but still
remaining large when approaching zero temperature.
Transport models considering conducting metallic islands
separated by thin barriers have been successful for ex-
plaining these characteristics. However, some samples
have even shown signs of metallic temperature depen-
dence at high temperatures, suggesting that there is a
contribution from the intrinsic optical-phonon-
scattering-limited conductivity in the metallic chains. '

The optical (infrared) spectra of highly doped trans
polyacetylene ' ' resemble those of a simple metal. On
the other hand, the infrared active vibrational (IRAV)
modes indicating the presence of localized defects (e.g.,
solitons or polarons) at low doping levels, persist up to
the highest doping levels, thereby suggesting nonunifor-
rnities in the electron density at the highest doping levels,
too. The metallic state has been actively studied theoreti-
cally and the following models explaining the physical
properties have been suggested: a soliton lattice or an in-
commensurate Peierls state (the latter corresponding to a
dense soliton lattice), ' a polaron lattice, ' ' and an
undimerized chain.

The purpose of this paper is to present a cornprehen-
sive study of various electronic and structural properties
of undoped and doped trans-polyacetylene. Some parts
of this paper have appeared in other works. ' ' %'e use a
SC linear-combination-of-Gaussian-orbitals (LCGO)
method in the HKS DF theory in the LDA. This paper
has the following format. In Sec. II we present our
methods. The results are presented and discussed in Sec.
III. The conclusions are drawn in Sec. IV.
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(the non-spin-polarized case is assumed). The 4 's are
calculated from Eqs. (2) and (3) by using SC iteration. E
is then given by the expression
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where we use for E„,[p(r)] and for the effective
exchange-correlation potential V„,=5E„,[p(r)]/5p(r) in
Eq. (2) the LDA model based on the calculations by
Ceperley and Alder and parametrized by Perdew and
Zun ger.

The density is divided into two parts

p po+ ~p

where p0 consists of fixed spherically symmetric pseudoa-
tornic densities compensating the nuclear charges
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where Z is the charge of the nucleus at r~, E„,[p(r)] is
the total exchange-correlation energy of the HKS forrnal-
ism, and the eigenfunctions %' determine further the den-
sity

II. METHODS

A. Formalism

and the deformation density Ap is neutral

f hp(r)d r =0 . (8)

The HKS DF formalism ' is based on the fact that
the total energy of the interacting electron-nuclear sys-
tem can be written in the form

E[p(r)]= J V,„,(r)p(r)d r+G[p(r)],

where p(r) is the electron density, V,„,(r) is an external
potential including the electron-nuclear and internuclear
interactions, and 6 [p(r)] is a universal functional of
p(r), independent of V,„,. The functional E [p(r)] attains
its minimum value for the true ground state p(r). Varia-
tion of E[p(r)] with respect to p(r) leads to effective
one-electron Schrodinger equations (Hartree atomic units
are used throughout)

V= V0+AV . (10)

The pseudoatomic part V0 consists of spherically sym-
metric functions

V0(r)=gv&0(~r —r~~) .
P

Ap is relatively smooth and has the symmetry of the crys-
tal. Therefore, Ap is expanded in terms of plane waves

b,p= g hp(G)e
G (WO)

where Cr denotes reciprocal-lattice vectors.
The division of p [Eq. (5)] divides the effective crystal

potential V = V&+ V„, [Vc is the Coulombic part consist-
ing of the second and third terms in Eq. (2)] into the cor-
responding parts
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The V~~(r)'s are calculated from the expression

+4m—. f "r' g(r')dr'+ f r'pro(r')dr'
0 r

y;(r r;—)=pa,'G(P,', I,', m,', n,', r', ), (21)

nucleus i in the primitive unit cell, and the y; s are fur-
ther expressed as linear combinations of Gaussian orbit-
als

+ V„[g(r)]
and are further expanded in terms of Gaussians

(12)
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b, V(r) =gb, V(G)e
G

(14)

The Coulombic parts of the Fourier coefficients are ob-
tained from Poisson's equation

The relatively smooth 6 V having the symmetry of the
crystal is expanded in terms of plane waves

The index i of g; labels these functions inside one primi-
tive unit cell and with each i there is associated one
specific center ~; which always also coincides with one of
the positions of the nuclei.

Substituting Eq. (19) in Eq. (2) and using the Rayleigh-
Ritz variational principle gives the matrix eigenvalue
equation

(23)

b. Vc(G) = hp(G), G&0
G2

(15) where the column Ck contains the expansion coefficients
Cki &

and from the approximation

EVc(G=O)= — f bp(r)r d r,
0 0

(16)

Hk;J=ge (g;(r r;)~Hy —(r —R r, ))—.

[H denotes the eff'ective Hamiltonian of Eq. (2)], and

(24)

where Qo is the volume of the primitive unit cell. The
Fourier coefficients

Ak;~=pe (y;(r —r,. ) y (r —R r)) . —(25)

bp(G) = f [p(r) —po(r)]e' 'd r
1

Q Qo

and

b V„,(G)= f V„,[p(r)]XC

(17) The analytic or semianalytic expressions for the matrix
elements between Gaussians G (P, l, m, n, r) are given in
Ref. 41.

The total energy is calculated as the difference between
E [Eq. (4)] and the total energy of the noninteracting
pseudoatoms. b.E consists of the following parts. The
Coulombic part in AE can be written in the form

—QV„,[pro(~r —r ~)] e' 'd r (18)

are calculated using a fine regular mesh in the primitive
unit cell.

The eigenfunctions of Eq. (2) are expanded in terms of
Bloch basis functions as follows:

AEc=A +8+C
where

2 =4vrNQ g hp(G)
G (%0) G

(26)

f e ' 'po(r)d r —Z,

(27)
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In this equation

accounts for the Coulombic interactions between —Ap
and the pseudoatom charge densities —

po( ~r —~, ~
)+Z,

(t labels here the nuclei inside one primitive unit cell),
ik R—ge y;(r —R —~;),

N
(20) bp(G)bp( —G)B —2~NQo 2

G(~0) 6 (28)

where X is the number of primitive unit cells in the re-
gion defined by the periodic boundary conditions, R is a
primitive lattice vector, v.; is the position vector of the

accounts for the Coulombic interactions between the
charge densities —Ap and —Ap, and

[po( ~
r —

ri, ~ ) —Zi, 5(r —
ri, ) ][p$( ~

r' —r~ ~
) —Z~5(r' —

r~ ) ]
(29)

accounts for the Coulombic interactions between different pseudoatom charge densities. The kinetic-energy difference
becomes



48 DENSITY-FUNCTIONAL STUDY OF UNDOPED AND DOPED. . . 16 951
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where n is the band index and n„,(i) is the radial occupa-
tion number for y;(r r; —

) [each radial density po(r r, —)
is a sum of the terms n„,(i)g, (r .r; —) which contribute
to po(r ~, ) o—nly when v; coincides with r, ].

The exchange-correlation energy difference is calculat-
ed from the expression

4E„,=N f p(r)e„,[p(r)]

gpo( Ir —r~ I )E„,[po( ~r —r~ ~ )] d'r, (31)

where c„,is the exchange-correlation energy density from
Refs. 37 and 38. The total-energy difference is then

DE=DE +AT+DE„. (32)

As is obvious from the above derivations our SC LCGO
method uses a fully general all-electron crystal potential
(no pseudopotential or muffin-tin approximation is used).

B.Doped case

Extra charges are most commonly introduced into the
polymer chain by doping the polymer with suitable ac-
ceptor or donor atoms/molecules in the p-type or n-type
doping, respectively, although extra carriers may also be
photogenerated or injected in electronic devices. The
dopant counterions reside beside the polymer chains
maintaining the charge neutrality of the crystal. In the
calculations, we study the effect of doping by changing
the number of electrons in the band states. The Fermi
level, up to which the electron density p(r) is integrated,
is shifted so that the desired amount of extra doping
charge is obtained. The absolute value of the coefficient
bp(G =0), calculated from p(r), then equals 5N/Qo (5N
is the number of extra electrons per primitive unit cell of
a dimer C2H2 having the volume Qo). The number of m

electrons per CH unit becomes 1 —y (1+y) in the case of
hole (electron) doping, where y =~5N~/2 is the doping
level per CH unit. The extra electron charge Mt has to
be balanced by background charges. In our approach, we
approximate the dopant ions by a uniform background
charge density 5N/Qo, which neutralizes the system.
With this small modification the equations above are still
valid. The approximation should be reasonable at high
doping levels because of the strong screening in the me-
tallic state ' and the overlap of the dopant poten-
tials. "4'

the dimerization amplitude, u =uo, giving the displace-
ment u„= —

(
—1)"uo of the carbon atoms parallel to the

polymer axis (x axis), and the dimerization stabilization
energy per primitive unit cell, Es =EE(u =0)

b,E(u =—uo). The polymer plane defines the x-y plane.
The experimental dimerization amplitude u 0 (Exp. )

equals 0.023—0.03 A and the experimental bond
lengths are rc c(Exp.) = 1.36 A and rc c(Exp.)

=1.44—1.45 A. ' Here rc c and rc c are the bond
lengths of the double and single bonds, respectively. In
our calculations the C—C—C bond angles were fixed to
120', the C—H bonds (rc H

= 1.09 A) pointed perpendic-
ularly to the polymer axis, and the unit cell dimensions
were fixed to a =2.434 A, b =6.350 A, and c =4.233 A.
The length of the unit cell a was obtained usiny the bond
lengths rc=c 1 36 A and rc—c= l. 5 A derived
from the experimental results of Ref. 9 and our fixed
C—C—C angle. The carbon atoms move approxi-
mately parallel to the polymer axis, the projected
displacements of the two CH units in the unit cell being
+u and —u from the undimerized sites with xI = —a/4
and x2=+a/4, respectively. The dimensions b and c
were chosen to be wide enough to make the interchain in-
teractions practically vanishing. Although, strictly
speaking, the interactions are not totally suppressed, they
are very small as p(r) is practically zero in the middle be-
tween adjacent chains. The average density of m. elec-
trons in our unit cell is less than 60% of that in a normal
trans-polyacetylene crystal, which has about 5X10 m.

electrons/cm . The interchain efFects decrease strongly
with increasing interchain distance. '

D. Geometry of polaron and soliton lattices

We have also calculated, although with lower accura-
cy, the band structures and total energies of polaron and
soliton lattices by using a large unit cell of C~OH~p with
the unit cell dimensions a'=Sa, b'=b, and c'=c, where
a, b, and c refer to the dimensions of the unit cell of a di-
mer. The large unit cell contains two charged polarons or
one charged soliton and one charged antisoliton. The
hole doping level was y =20%. Similar undoped lattice
distortions were also studied. Here, differently from the
calculations assuming a unit cell of a dimer, the CH units
were moved exactly parallel to the x axis (coordinates y„
were fixed at their values obtained above for the undimer-
ized chain). The displacements of the CH units in the po-
laron lattice from equidistant positions x„at high doping
levels were approximated by the expression

C. Geometry u„= —( —1)"u~[1+A cos(K x„+P)], (33)

The dimerized ground state of a trans-polyacetylene
chain is typically characterized using two parameters:

where uz is the average dimerization amplitude [the max-
imum value of ~u„~ is (1+A)uz and the minimum value
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is (1—A)u~]. A is the amplitude of the periodic modula-
tion, assumed to be in the range 0.0—1.0. K~ defines
the periodicity and P the phase of the polaronic distor-
tion. In our special case y =20%, wherefore
K~ =4m. /a' =0.8m /a and x„=(0. 1n —0.55)a', n

=1,2, . . . , 10. The sinusoidal distortion is expected to
be a fairly good approximation at high y's because the po-
larons strongly overlap. The polaron lattice is changed
into a uniformly dimerized chain if A =0, and an undi-
merized chain is obtained by setting u„ to zero.

The displacements of the CH units in the soliton lattice
at large dopings may be correspondingly approximated
by the expression

u„= —( —1)"—us cos(Ksx„+P), (34)

where uz is the average dimerization of the soliton lattice
[the maximum value of ~u„~ is (n /2)us], and Ks defines
the periodicity and P the phase of the soliton lattice dis-
tortion. The value of Ks is 2m/a'=0. 4m /a for y =20%.
The limiting case of the undimerized chain is obtained
with u& =0.

We have, for simplicity, assumed in the calculations
that /=0. In the real incommensurate case the phase
has no effect on the total energy.

E. Numerical methods

TABLE I. Coefficients of the Gaussian expansion for Vo's of
the SC LCGO calculations using the LDA. c, and a,. denote the
expansion coefficients and the exponents of the Gaussians, re-
spectively [see Eq. (13)]. The corresponding coefficients c, H and

a, ~ of the pure Hartree calculations (the exchange-correlation
fully neglected) are given in parenthesis.

Atom c,. (c~~)

Z=6 (Z=6)
2.00062 (0.67418)
2.972 32 (2.8010)
6.11212 (5.3848)
0.714 77 (6.580 6)

—1.11134 ( —)

a~ (aj H)

1.82417 (1.6573)
37.69078 (358.48)
9.85677 (44.418)
3.00303 (10.340)
2.085 37 (2.5891)
0.34275 ( —)

H Z=1 (Z=1)
0.501 88 (0.36613)

—0.01417 (0.983 34)

0.236 52 (0.35272)
0.74859 (3.851 8)
0.10347 (0.545 29)

We use a restricted basis set, which includes the hydro-
gen 1s and carbon 1s, 2s, 2p, 2p„, and 2p, orbitals. The
coefficients of the Gaussian expansion of the atomic crys-
tal potentials Vc(r) [Eq. (13)] are given in Table I. The
fitting was performed in the same way as in Ref. 34.

For the calculation of b p [Eq. (9)] 11 = 1331
reciprocal-lattice vectors were used. hE was decreased
by about 100 meV with the number of G's increasing
from 729 to the present number of 1331. The numerical
integrations of the Fourier coefficients and AE„were
performed in a regular mesh containing 61 X41 X41 = 10
points in the primitive unit cell. This mesh division was
optimized to give a practically converged AE versus u

characteristics with a reasonable computing time. The
larger number (61) mesh points in the polymer axis direc-
tion was found to be essential for obtaining b.E ( u )

symmetrical with respect to the origin u =0. A smaller
number (41) sufficed for other directions because the
atoms move nearly parallel to the x-axis in the dimeriza-
tion process.

The integrals in Eq. (29) were precomputed at 50 suit-
able discrete R =

~r~
—r~ ~

values in the range from 0. 8ac
to 6.0ao using X =104 Gaussian quadrature for the in-
tegrations (ac is the Bohr radius). The integration limit
was cut to 12.0ao. The value at arbitrary R is interpolat-
ed using spline fitting. A suitable Gaussian quadrature
was applied for the precalculation of the factors in the
brackets in Eq. (27). Here the upper integration limit was
set to 20.0ao ~ Although the pseudoatomic exchange-
correlation energy is a constant, the numerical accuracy
of the relatively small difFerence AE„, [Eq. (31)] was in-
creased by integrating both parts in the same mesh of
61 X41 X41 points. In the undoped case, the total charge
of p(r) is 14 per unit cell of a dimer C2Hz, and bp(r) is
electrically neutral. The numerical integration of Ap in
this mesh gave for ~hp(G=O)Qc~ less than 0.001 elec-
trons. Cycle-dependent amounts (70—95%) of the previ-
ous Fourier coefficients b, V&(G„) and b, V„,(G„) were
mixed into the new coefficients to improve the conver-
gence during the SC iteration. The number of iteration
cycles was 20. A much longer iteration changed hE by
less than 2 meV per unit cell. We estimate that the nu-
merical accuracy of our calculation is a few meV's.

In the study of the undoped chain we used three
different k meshes in the one-dimensional Brillouin
zone (BZ): (i) a regular mesh of 21 k's
[k/(m/a)=0. 0, +0. 1, . . . , +0.9,+1.0] including the
boundaries k =+sr/a (these two points with a half
weight), (ii) a regular mesh of 20 k's
[k/(m/a)=+0. 05, +0. 15, . . . , +0.85, +0.95] including
only interior points, and (iii) a nonregular Gaussian mesh
of 20 k's with the points and weights from the %=20
Gaussian quadrature, which has the last nodes at
k=+0 993m/a .The mos. t accurate electron density and
AE are obtained with the Gaussian mesh. Regular
meshes of 11 k's (including the BZ boundaries with a half
weight) and 10 k's (including only interior points) were
also studied for drawing conclusions of the corvergence
of AE with increasing number of k's.

In the study of the doped chain we used the regular
mesh of 21 k's because it gives the dimerized ground state
for the undoped chain with the same uo as the Gaussian
mesh of 20 k's and allows us to study the effect of doping
with a reasonable uniform accuracy. We did not use the
Gaussian mesh in this case because the predetermined
Gaussian mesh loses its better accuracy in the integration
if the occupation of the states in the bands are modified.
Furthermore, a more accurate estimate of the gap is ob-
tained with the regular mesh of 21 k's because it includes
the k point at the BZ boundary. The number of extra
charge ~5N~ ranged from 0.0 to 0.3 charges per unit cell,
corresponding to a doping level y = ~5N~/2 of 0—15%
per CH unit. Both electron (5N )0) and hole (5N &0)
additions were treated.
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The SC pure Hartree calculations (all exchange and
correlation neglected at all stages) were performed paral-
lel to the LDA calculations to study the effect of the local
exchange correlation. We used the same basis set in the
Hartree calculations as in the normal SC DF LDA calcu-
lations. The fits of the Gaussian expansion of Vo's for the
Hartree calculations are given in Table I.

The calculations of the bands and total energies of the
soliton and polaron lattices needing a large unit cell of
C,oH, O (y =20%) were performed by using a regular
mesh of 5 k's [k/(m. /a') =0.0, +0.5, +1.0] (including the
RZ boundaries with a half weight) in the new narrow BZ
(the k points of this mesh coincide with the k points of
the regular mesh of 21 k's of the smaller unit cell, if ex-
tended zone presentation is used), 5 = 125 Cr vectors, and
a regular mesh of 61X21X21 points. The number of
iteration cycles was 3. These calculations are therefore
less accurate than those with the C2H2 primitive unit cell.

All the calculations were run on an IBM 3090 comput-
er.

III. RESULTS AND DISCUSSION

A. Undoyed chain

Although the band energies are not physically observ-
able energies in the rigorous original HKS DF theory,
one can use Janak's transition state argument to per-
form approximate comparison. Our electronic band
structures of undimerized (u =0) and dimerized

0

[u =0.026 A=uo(Exp. )] trans-polyacetylene calculated
by using the regular mesh of 21 k's, are sho~n in Fig. 1.
This particular k mesh was chosen here because it gives
the band energies at the BZ boundaries and at k =0.

F0 0- ————----:
UJ

Note that the two deep degenerate core bands (c
&

and c2)
of carbon ls character are not shown. The bands are la-
beled by the symbols cr &, . . . , o 4, ~ (the uppermost occu-
pied band), and n* (the lowest unoccupied band). The
o.

&, . . . , o 4 valence bands are basically formed via the sp
hybridization from the carbon 2s, 2p, and 2p„orbitals as
well as from the hydrogen 1s orbitals whereas the upper-
most valence band and the lowest conduction band, the m

and m* bands, respectively, originate from the carbon 2p,
orbitals. The dimerization opens the gap Es(m m*)—at
the Fermi level E~ between the occupied m valence and
unoccupied m.* conduction bands. Es(rr m—) is much
smaller than the total m. band width W= 11.0 eV (defined
as the energy difference between the m and m* bands at
k =0). Gaps are also opened between cr, and a2 bands
and between cr3 and cr4 bands. The gaps Es(cr, cr2—) and
Es(~ m* ) —are linearly proportional to u:
Es(o i

—o2) =20u eV/A and Es(n.—m*) =47u eV/A
(Fig. 2). The values of Es(o 3 o&) are lo—w and sublinear-
ly proportional to u. Due to the improvements in com-
puter codes and accuracy as well as the use of the im-
proved approximation for exchange and correlation our
new bands differ from the bands in Ref. 34 at some places
a few eV's. The calculated DOS and the x-ray photo-
emission (XPS) spectrum by Keane er al. are also
shown in Fig. 1. The XPS spectrum is shifted by 0.6 eV
downwards to facilitate a better comparison. Our DOS
gives a natural explanation for the four bands of their
XPS spectrum. The weak XPS structure in the range
0—5 eV can be associated with the m band DOS. The
XPS band between 5 and 10 eV can be associated with
the combined o.3+a.4 DOS. If the weak XPS shoulder
above 5 eV could be associated with the onset peak of the
o.

4 band in our DOS then the weak XPS peaks at 6.8 and
9.3 eV could naturally correspond to the cr4 and o.

3 peaks
of our DOS, respectively. The XPS peak at about 12 eV
can be associated with the o.

2 peak of our DOS. Finally,
the XPS peak at 18.7 eV can be associated with the o. ,
peak of our DOS, although here the double-ionization
continuum may be involved in the XPS peak. Our inter-

a~) Og

o
3

r
r Q

2

01
I ( I

1.0 2.0 3.0 0.0
g (stakes/eV carbon)

—02 E (o)-Wo2~

-20.0
0.0 0.5 1.0 0.0

k (Tt;/a)

FIG. 1. Band structures of the dimerized (u =0.026 A, solid
line) and undimerized (u =0, dotted line) undoped trans-
polyacetylene. o.

&

—o.4, m, and m.* denote the four deeper
valence bands, the occupied bonding m band and the unoccu-
pied antibonding ~ band, respectively. The corresponding den-
sities of states are also shown. The zero energy is chosen to be
in the middle of the ~ valence and m* conduction band at the
Fermi level E~. Results are for the regular mesh of 21 k's. The
dashed line represents the XPS spectrum of Keane et al. (Ref.
47) shifted down by 0.6 eV for comparison.

1.2

UJ

0.8

0.0

0.0
0.0 0.01 0.02 0.03

u (A)

FIT&. 2. Band gaps Eg(o.
&

—o.2), E (o3—o.4), and E (w —w*)
at the BZ boundary versus dimerization amp1itude u. The small
Eg ( o'

3 o 4 ) has been scaled upwards by a factor of 10. Results
are for the regular mesh of 21 k's.
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pretation thus basically agrees with the interpretation
given by Keane et al. Also the positions of the peaks
of our DOS agree with those of the XPS spectrum within
an accuracy of about 1 eV.

The SC Hartree calculations neglecting all exchange
and correlation at all stages give band structures which
closely resemble the SC DF LDA bands. However, the
core bands c, and cz are located at —221 eV below E~ in
the SC Hartree case, compared with the value —258 eV
in the SC DF LDA case.

The key quantities of various SC calculations are sum-
marized in Table II. The band structures of the SC DF
LDA calculations resemble each others. Especially o,
o.z, ~, and m* bands are nearly identical. The most dis-
cernible differences are found in o.

3 and o.
4 bands in the

region where the o.
3 and o.

& bands are near the
valence-band minimum. In our calculation the o.

3 and o.
4

bands do not cross the n valence band. Our bands resem-
ble most those of Ref. 48. Note that the bands obtained
for a three-dimensional crystal should be wider and
minimum gaps in the BZ narrower than those obtained
for a single chain. This is the case with the results of
Table II. The experimental ratio E~ ( n n' ) /u o

—is
=50—80 eV/A for the experimental gap of 1.4—1.8 eV
(Ref. 3) and the experimental dimerization amplitude of
0.023—0.03 A. ' E (m n* ) is —underestimated by
about 30—70% in the SC DF LDA calculations, if the
experimental geometry is assumed. This error is caused
by the discontinuity 6 in the exact V„, on addition of an
electron, which is not included in these SC DF LDA
calculations (see also Ref. 17). On the other hand, the SC
Hartree-Fock (HF) calculations give an overestimated
gap of about 5 —7 eV, but the inclusion of correlation de-
creases it.

We have calculated the effective mass of a hole in the ~
valence band and the effective mass of an electron in the

m* conduction band as a function of u by fitting a parab-
ola to the m and m. * band edges at the two largest

~

k~'s at
the BZ boundary. The effective masses are shown in Fig.
3. The results for the Gaussian mesh of 20 k's are most
accurate. The effective masses would probably approach
zero with decreasing u, when the number of k's ap-
proaches infinity. If u =0, the m —m gap vanishes, and
the system becomes a simple metal with one m electron
per CH unit in the metallic m band.

Figure 4(a) shows the calculated electron density p(r)
at the polymer plane along the x axis and Fig. 4(b) the m.

electron density p at z=0.458 A above the polymer
plane where p is large. In the undimerized chain (u =0)
the carbon-carbon bond lengths are equal and the elec-
tron density is the same in all bonds (the double bond is
located at x =0 and the single bond at x =+a/2). The
dimerization breaks this symmetry and results in an in-
crease of the electron density in the (shorter) double
bonds and a decrease of the electron density in the
(longer) single bonds, a behavior which is clearly seen in
Fig. 4 (compare the solid curve for u =0.026 A with the
dashed curve for u =0.0 A). The n electron density
p„k =2~4 k ~

at z =0.458 A in the middle of the C—C
and C=C m bonds versus wave vector k is shown in Fig.
5. The bonding m. valence-band states increasingly con-
tribute to the electron transfer from the single bonds to
the double bonds when the BZ boundary is approached
and/or when u is increased. The total contribution from
the six other occupied bands, pk

—p„k, does not show
any large variations as a function of k because of large
cancellation s.

The deformation part Ap of the total electron density
rejects the changes due to chemical bonding. The real
part of the Fourier coefficient hp[G(1, 0,0)]

t

Rebp[G(1, 0,0)]= f bp(r) cos x d r (35)
1 2K 3

a

TABLE II. Key quantities of different self-consistent DF
LDA calculations. The table gives the bandwidths and band
gaps in eV. LCAO, LMTO, and PSP denote linear-
combination-of-atomic-orbitals, linear-mu5n-tin-orbital, and
pseudopotential methods, respectively. 1D and C denote
infinite single chain and crystal, respectively.

measures how much electrons are transferred from the

0.2—
Method LCAQ' LMTO PSP' PSP LCGO'

"Dimensionality"
E~{~—m*)/u (eV/A)
m. valence band
m* conduction band
O'I

CTp

O'3

O4

Gap (7 I ~o p

Gap o.
q
—+o.3

Gap o.4—+m

1D
32
4.9
4.7
3.7
2.7
3.1

2.4
1.3
0.8

—1.2

1D
21
4.1

4.1

2.6
3.6
3.3
0.9
0.9

—1.3

C
14
4.5
4.4
3.7
3.4
2.8
1.2
0.7
0.7
0

C
17
5.1

3.1

4.0
1.4
1.7
5.4
0.3
4.0

—0.8

1D
47
4.4
5.4
3.2
1.2
1.8
3.9
0.5
2.6
1.7

0.1

0.0
0.0 0.01 0.0 2

U (Aj

I

0.03

'Reference 14.
Reference 13.

'Reference 17.
Reference 48.

'This work.

FIG-. 3. Effective masses m* of holes t', solid lines) in the m.

valence band and of electrons (dashed lines) in the m conduc-
tion band. The symbols 21, G20, and 11 designate the regular
mesh of 21 k's, the Gaussian mesh of 20 k's, and the regular
mesh of 11 k's. mo is the mass of a free electron.
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FICx. 6. Fourier coefficient hp[G(1, 0,0)] vs dimerization
amplitude u for the regular mesh of 21 k's, the regular mesh of
20 k's I, and the Gaussian mesh of 20 k's denoted in the figure

by the symbols 21, 20, and G20, respectively.

FIG. 4. (a) Electron density p(r) along the polymer axis and
(b) the m electron density p„ from the occupied ~ valence band

0
along the line y =0, z=0.458 A. The dashed line corresponds

0
to u =0 and the solid line to u =0.026 A. The results are for
the Gaussian mesh of 20 k's.

region of the single bonds (around x =+a/2) to the re-
gion of the double bonds (around x =0). The imagi-
nary part of Ap[G(1, 0,0)] is practically zero, as it
should be because of the symmetry. The calculated
Rebp[G(1, 0,0)], shown in Fig. 6, is found to be positive
for u )0 and to increase with increasing u thus implying

electron accumulation in the double bonds. For the mesh
of 21 k's Rebp[G(1, 0,0)] has a discontinuity at u =0
whereas for the two other k meshes this discontinuity is
not present. The discontinuity comes from the ~ band
and is entirely due to the ~% I, + &, (r)~ contribution to
the double bonds.

The calculated total energy versus u for an undoped
chain is shown in Fig. 7. Two different features are im-
mediately obvious. (i) The total energy strongly increases
with increasing u for u )0.02 A. (ii) The results near the
origin u =0 display a sensitive dependence on the k sam-
pling. The curves corresponding to different k meshes
approach each other at large dimerizations, but differ

0.05—
Ct

C$

g 0.04

0.03

0.02

60.0

40 0O
E

~ 20.0—

0.0
1v- 20

-20.0—

~620 ~

0.0't (

0.01

10
1V

—40.0
0.0

I I l

0.02, 0.03
u (A)

0.0 0
Q

I

0.5 1.0
k (Tc/a)

FICi. 5. p A. =2~% „~ vs k in the middle of the C—C (lower
curves) and C=C (upper curves) a bonds at z =0.458 A above
the polymer plane. The dash-dotted, dashed, and full curves
correspond to u =0.0, 0.005, and 0.01 A, respectively. The re-
sults are for the Gaussian mesh of 20 k's.

FIG. 7. Total energy AE per dimer C2H2 vs dimerization am-
plitude u for the regular mesh of 21 k's, the regular mesh of 20
k's, and the Gaussian mesh of 20 k's denoted in the figure by the
symbols 21, 20, and G20, respectively. The total energies for the
regular mesh of 11 k's and the regular mesh of 10 k's, denoted
in the figure by the symbols 11 and 10, respectively, are also
shown. The curves are only to guide the eye, and the same zero
point has been chosen for all five cases.
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considerably at small u's. bE(11 k's) and EE(10 k's)
diff'er considerably from each others over the whole
region u =0—0.032 A studied. The better converged
EE(20 k's) and EE(21 k's) differ for u (0.01 A.
b,E(20 k's), neglecting the BZ boundary k's, gives an un-
dimerized ground state, whereas b,E(21 k's), overweight-
ing the BZ boundary k's, gives a distinct minimum at
u =0.01 A. Here b,E(u =0.001 A) b,E(—u =0.01
A ) = 12 me V. EE(Gaussian 20 k's) gives a weak
minimum at u =0.003 A and a distinct minimum at

0
u =0.01 A. However, due to the above sensitivity to k
sampling we do not consider even AE(Gaussian 20 k's) to
be very reliable for u (0.005 A, and interpret
b,E(Gaussian 20 k's) to give a dimerized ground state at
u =0.01 A with Ez-—7 meV, calculated here as the
difference AE(u =0.005 A) —b,E(u =0.01 A). The
carbon-carbon bond lengths corresponding to the dimeri-
zation of. u =up=0. 01 A are rc ——1.39 A and rc
c = 1.42 A. Although we did not perForm a full geometry

optimization, we found that up is rather insensitive to the
bond lengths (and a) in reasonable limits: uo remains
0.01 A, although Ez decreases from 18meV towards 0
meV and rc c and rc c increase from about 1.37 to
1.41 A and from 1.40 to 1.45 A, respectively, when the
unit cell length a and the x„'s are correspondingly scaled.
Also the C—H bond direction chosen here is accurate
enough for the present calculations.

According to experiments neutral trans-polyacetylene
has a dimerized ground state with uo = u 0(Exp. )

=0.023 —0.03 A. The values of up and E& of SC DF
LDA, SC HF, and SC correlated HF (CHF) calculations
for infinite chains are given in Table III. The SC DF
LDA calculations for infinite trans-polyacetylene single

chains or crystals have resulted in up's ranging from 0 to
O

0.028 A. Since our numerical accuracy is expected to be
better than our calculated value E& ——7 meV at

0
u = up =0.01 A, we think that this minimum is real. Our
results closely resemble those by Mintmire and White for
a single trans-polyacetylene chain [up —0 ~ 009 A Eg —6
(3.5) meV]. ' . Although our small dimerization differs
qualitatively from the zero dimerization by Ashkenazi
et aI. ,

' both calculations do find the extremely sensitive
dependence of the results on the k sampling at the BZ
boundary. In the light of the less converged results by
Mintmire and White' (Es =42 meV, uo =0.016 A for 11
k's including the BZ boundaries) and by us (Es —-30—40
meV, up-—0.015 A for 11 k's including the BZ boun-
daries) it seems that the calculations by Springborg
et al. ' [E&=56 meV, uo=0. 028 A=uo(Exp. ) for 11 k's
including the BZ boundaries] are similarly not fully con-
verged and would give a weaker dimerization for a denser
k sampling. Also the optimized C—C—C bond angle of
128' by Springborg et al. may favor dimerization. The
molecular cluster study of C2pHz2 by Ye et al. results in a

0
dimerized ground state with u p

=0.035 A and
Ez =20—30 meV. The reason for this exceptionally
larger up is not clear to us but may be related to the finite
size of the chain.

Since our results are in qualitative agreement with the
Peierls mechanism —the dimerization lowers the total
energy and at the same time opens the gaps at the BZ
boundaries —we adopt the common terminology used in
the context of the Peierls mechanism in this paper. How-
ever, we mant to emphasize that it is not possible to ascer-
tain whether or not the Peierls mechanism is really at
work here. This is due to the fact that the total HKS DF

TABLE III. Dimerization amplitude uo and dimerization stabilization energy Ez (per dimer C2H&)
for dift'erent SC DF LDA, SC Hartree (H), SC Hartree-Fock (HF), and SC correlated HF (CHF) calcu-
lations (only the most recent results of the groups are given). LCAO, LMTO, LAPW, and PSP denote
linear-combination-of-atomic-orbitals, linear-muKn-tin-orbital, linearized-augmented-plane-wave, and
pseudopotential methods, respectively. 1D, C, EX, SP, and G denote single chain, crystal, exponential
mesh, Monkhorst special points, and Gaussian mesh, respectively.

Authors (system)

Present work (1D)
Mintrnire and White (1D)'
Springborg et al. (1D)
Ashkenazi et al. (1D, C)'
Vogl and Campbell (C)
Ye et al. (C2OHz2)'

Method

DF LDA (LCGO)
DF LDA (LCAO)
DF LDA (LMTO)
DF LDA (LAPW)
DF LDA (PSP)
DF LDA (mol. cluster)

No. of k's

20 G
41 (~)
11
36 EX
16 SP

uo (A

0.01
0.009
0.028

~0
0.005
0.035

E, (meV)

7
6 (3.5)

56
=0

20-30

Present work (1D)
Suhai (1D)
Konig and Stollhof (1D)g
Suhai (1D)'
Konig and Stollhof (1D)g

H
HF
HF
CHF
CHF

20 G & 0.005
0.0291
0.0328
0.0238
0.0252

151
= 120

86
=80

Experimental (C)"

'Reference 15.
Reference 13~

'Reference 19.
Reference 17.

x ray, NMR

'Reference 53.
Reference 50.
Reference 51.

"References 8—10.

0.023—0.03
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energy [Eq. (4)], when expressed in the alternative form
using Eq. (2), is not necessarily a simple sum of band ei-
genvalues c. plus a strain energy E& proportional to the
leading order to u . Instead E& may depend nontriUially
on u via the Coulombic and exchange-correlation parts
(see Ref. 19 as well as Mintmire and White and Ashkena-
zi et al. in Ref. 11).

Independently of the validity of the Peierls model for
trans-polyacetylene the contributions from the BZ boun-
daries, especially from the ~ band states, are important
for lowering the total energy and forming an electron
density difference between the single and double bonds in
the dimerization. It is therefore extremely important to
sample the occupied m band at the BZ boundary carefully
for obtaining the electron density and the total energy ac-
curately. ' ' ' Our results clearly show that inaccurate
integration may even lead to qualitatively incorrect con-
clusions. According to the tight-binding argument' '

the absolute value of the error in our AE grows for small
u proportionally to Xl, exp( 9Nku/—A) where X& is the
number of equidistant k points. This sensitive behavior
with respect to the k sampling should also be taken into
account when calculating other conjugated polymers,
especially when studying the ground-state geometry of
the polymers which, like trans-polyacetylene, have a de-
generate ground state.

There has been much debate about the origin of the di-
merization of trans-polyacetylene (the relative impor-
tance of the electron-electron interactions and electron-
phonon couplings). "' ' ' '' ' ' These discussions are
largely based on parametrized tight-binding model Ham-
iltonians, and it is not straightforward to analyze our
first-principles results within such models. However, it is
interesting to note in this context that the SC DF LDA
b,E„,(u), shown in Fig. 8, is a decreasing function with
increasing u for all k meshes thus significantly favoring
dimerization. In comparison, the SC pure Hartree calcu-
lations neglecting all exchange and correlation at all
stages resulted in a practically undimerized ground state
with u =uo(Hartree) & 0.005 A, as shown in Fig. 9.

O

0.0
LJ

-2 0.0

O
CLl

E

20 0.0—

100.0—

0.0 '

0.0 0.01 0.02 . 0.03
u {A)

FIG. 9. Total energy of the pure Hartree calculations AEII
per dimer C&H~ vs u. These calculations neglected all exchange
and correlation at all stages. The zero has been arbitrarily
chosen. Results are for the Gaussian mesh of 20 k's.

However, because the calculated SC DF LDA uo =0.01
A & uo(Exp. ) =0.023 —0.03 A, we conclude that the local
exchange correlation does not favor dimerization enough.

At this point it is also interesting to compare the
above SC DF LDA and the SC pure Hartree result for
infinite chains with the ab initio SC HF results. The SC
HF calculations have a tendency to slightly overestimate
the dimerization amplitude: ' ' uo(HF) =0.025
—0.043 A as compared with the experimental value
uo(Exp. )=0.023 —0.03 A. The size of the basis set has a
strong effect on the HF results. A small basis set overes-
timates uo and Ez. By comparing the results of our SC
Hartree calculations [uo(Hartree) &0.005 A] with the re-
sults of these HF calculations, it is obvious that the exact
exchange strongly favors dimerization. However, the
electron correlation effects are known to play an impor-
tant role in the structural and optical properties (see, for
example, Refs. 58 and 59). The proper inclusion of
correlation in the HF calculations (CHF) reduces uo(HF)
of trans-polyacetylene by about 20%, bringing the dimer-
ization amplitude inside the experimental range:
uo(CHF) =0.024 —0.025 A. ' Correlation reduces Es
quite remarkably by 40% from E&(HF) =0.12—0. 15 eV
to Es(CHF)=0. 08 —0.09 eV. ' The proper inclusion
of correlation to the HF calculations is therefore essential
for obtaining quantitatively accurate values for uo and

—&0.0 B. Doped chain

-6 0.0

- 80.0
0.0

i

0.01 0.02 . 0 03
u {A)

FIG. 8. Exchange-correlation energy AE„, per dimer CzH&
vs the dimerization amplitude u. Dashed, dotted, and solid
lines refer to the regular mesh of 21 k's, the regular mesh of 20
k's, and the Gaussian mesh of 20 k's, respectively. The same
zero has been used for all three cases.

We found that our calculated band structure of a uni-
formly dimerized chain with fixed u is only marginally
modified by doping. We also found that g(E~) remains
approximately constant equal to 0.12 states/eV/carbon
atom in the undimerized case in the whole doping region
y =0—15 % studied.

The calculated m electron density above the polymer
plane in the center of the double and single bonds as a
function of u for different doping levels y is shown in Fig.
10. Both doping by holes [Fig. 10(a)] and by electrons
[Fig. 10(b)] strongly suppresses the charge-density wave
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0.05 0—

(the difference in the electron density between the double
and single bonds). The calculated coefficient
Rebp[G(1, 0,0)], measuring global changes in hp(r), is
shown in Fig. 11. bp[G(1, 0,0)] shows the same suppres-
sion of the charge-density wave under doping. The
effect of the occupied antibonding m* states (unoccupied
bonding m states) near the BZ boundary is to increase the
single bond electron density (decrease the double bond
electron density) and thereby decrease the differences be-
tween the bond charges. The discontinuity in the elec-
tron density at u =0 for small y's is due to the discretized
k mesh. ' '

The total energy AE versus u for different doping levels

y is shown in Fig. 12. Extra holes added into the polymer
chain are expected to lead to a reduced dimerization, be-
cause the important states at the BZ boundary favoring
dimerization become unoccupied. A corresponding effect
may be expected for extra electrons, too, because the oc-
cupied m.* conduction band states at the BZ boundary
should cancel the effect of the ~ valence-band states at
the BZ boundary. In fact, the results of our total energy

I
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FIG. 11. Fourier coefficient bp[G(1, 0,01] vs dimerization
amplitude u for different doping levels y for (a) extra holes and
(b) extra electrons. The doping levels y are O%%uo, 2.5%, 5%,
10%, and 15% per CH unit (indicated in the figures). Results
are for the regular mesh of 21 k's.
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0.0 0.01 0.02 . 0.03
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0.0
1

0.01 0.02 . 0.03
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FIG. 10. m electron density p above the polymer plane be-
tween the carbon atoms in the double bond at (0,0, 0.0, =0.458
A) (rising curves) and in the single bond at (a /2, 0.0, =0.458 A)
(descending curves) as a function of the dimerization amplitude
u: for (a) extra holes and (b) extra electrons. The doping levels

y (in percent per CH unit) are indicated in the figures. Results
are for the regular mesh of 21 k's.

calculations, shown in Fig. 12, clearly confirm such a
behavior. The dimerization, measured by the u =uo of
the minimum of AE, becomes suppressed with increasing
y. The m. —m. * gap at the BZ boundary [Eg(rr n')] is-
proportional to u and therefore decreases with decreasing
uo. The transition from the semiconducting (semimetal-
lic) state to the simple undimerized, gapless metallic state
occurs (within our accuracy) at a critical concentration
y =y, =4(3)% per CH unit for extra holes (electrons).
The doping has a large effect on the shape of the b,E(u)
curve at y (y, but a weaker further effect at y )y, .

We estimate the zone-center optical-phonon frequency
f, , from the shape of the b,E(u) curve around the
ground state u =uo =0.01 A to be about 7 X 10' Hz for
undoped trans-polyacetylene. The commonly accepted
value is about half of this. ' f, , is expected to attain a
minimum value at y =y„but increases again for y &y,
up to about 5 X 10' Hz (f, , for y )y, is calculated
around the undimerized ground state u =uo =0).

We find that the shape of EE„,(u) is practically
unaffected by extra charges in the range y ~15%%uo al-
though the absolute values are shifted due to the change
in the total number of the electrons from the original 14
to 14+51V per unit cell. The local exchange correlation
favors dimerization at all dopings, but its effect is not sen-
sitive to the occupation of the m or ~* states at the BZ
boundary.

The coupling between the dopant charges and the
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chain geometry leads to the formation of self-localized
states within the open, relatively large m —a* gap at low
doping levels. Polarons and solitons (see, e.g., Ref. 1) are
such self-localized states connected with a local reduction
of the dimerization amphtude u from uo around the extra
charge (the sign of u changes when passing through the
soliton). The states are spatially separated by longer fully
dimerized segments at low y's, and the system is therefore
mostly commensurate, the solitons acting as local
discommensuration centers. Solitons are the energeti-
cally lower charge storage con6guration than polarons
but can be only created as soliton-antisoliton pairs. ' Po-
larons do not have this restriction and may therefore be
important if the charges are far from each others. Exper-
iments indicate that the extra charge is mainly stored into
solitons which gradually form a soliton lattice and a wid-
er soliton band within the m. —~ gap with increasing
doping. ' Due to the localized character of the states, the
low efFective mass of the band states (Fig. 3) is less mean-
ingful in the lightly doped region because the charge is
transported by hopping.

For a large number of extra holes or electrons, the di-
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FIG. 12. Total energy EE per dimer C~H2 as a function of
the dimerization amplitude u. The doping levels for (a) holes
and {b) electrons are 0%, 2.5%, 5%,10%, and 15'Fo per CH unit
(indicated in the figures). The zero levels are arbitrarily chosen,
and the lines are only to guide the eye. Results are for the regu-
lar mesh of 21 k's.

merization stabilization energy and amplitude uo de-
crease, as shown in Fig. 12. According to our calcula-
tions, which assume uniform dimerization, a transition to
a simple undimerized metallic state with E (n. n.—')=0
takes place at the critical doping level y, =4(3)% for ex-
tra holes (electrons). An undimerized metallic state has a
lower energy than a semimetallic uniformly dimerized
state at y )y, . Since the SC DF LDA calculations are
known to underestimate uo (see Ref. 18 and references
therein), the actual y, should be somewhat larger. The
use of a discretized k mesh brings also some inaccuracy
to the exact value of y, . Nevertheless, me think that this
qualitative change in the electronic structure has a close
connection to the experimentally detected sharp increase in
the Pauli susceptibility at y =6%."' The calculated DOS
at the Fermi energy of the undimerized chain is
g(E~)=0. 12 states/eV/carbon atom above our y„ in
fair agreement with the experimental value of =0.08
—0. 12 states/eV/carbon atom in metallic trans
polyacetylene.

Our results, shown in Fig. 12, agree qualitatively with
the HF and extended Huckel results of Refs. 61—64. The
HF calculation by Tanaka et al. gives the interesting
behavior dimerized lattice~soliton lattice~nearly undi-
merized lattice with increasing y, although the last phase
is obtained at a very high doping level of about 30%, and
slight bond length differences and a gap at EF are still
present. However, the bond lengths are always found to
become increasingly equal with increasing doping. Al-
though we are not able to study the energy of a dilute sol-
iton lattice with sufficient accuracy, we expect that the
SC DF LDA calculations would also give the soliton lat-
tice ground state for 0 (y (y, .

C. Polaron and soliton lattices

%'e considered above only the energy of the uniformly
dimerized chain and not the other possible geometries
such as polaron and soliton lattices, which have much
larger unit cells and are therefore computationally more
demanding. In fact, one possible model of the transition
to the metallic state is that the soliton lattice, which is
known to be the ground state at lower doping levels,
dominates at high y's, too. The soliton lattice (a dense
soliton lattice corresponds to an incommensurate Peierls
state with a sinusoidal lattice and electron density distor-
tion) has been supported in Refs. 5 and 24—29. The fact
that an ordered one-dimensional soliton lattice has a gap
at E~, in disagreement with the 6rst-order transitionlike
rapid increase of g (Ez ) at y =6%, motivated the polaron
lattice model. ' ' The polaron lattice has about the ex-
perimental g (EF). Furthermore, the infrared activities of
polarons and solitons in the dilute concentration limit are
nearly similar, a fact which was speculated to be general-
izable to the highly doped state thereby explaining the
persistence of the IRAV modes. According to the pola-
ron lattice model, the spinless soliton lattice was expected
to become unstable and a first-order transition to a pola-
ron lattice to take place at y =6%. However, the undi-
merized chain model ' ' is the simplest way to explain
the high g(Ez). The persistence of the IRAV modes
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above y =6% is often considered to be in disagreement
with the undimerized chain but, also, with the polaron
lattice because the resulting electron densities are nearly
uniform in both cases and the infrared activity should be
nearly totally quenched when passing from a dense soli-
ton lattice to a polaron lattice or to an undimerized
state. "

Our less accurate SC calculations for the sinusoidal po-
laron and soliton lattice distortions [see Eqs. (33) and
(34)] with two holes per unit cell of C,OH, O (y =20% )y, )

(two strongly interacting polarons or solitons per C,OH, O

unit) give (using the average dimerization amplitude 0.01
A) the band structures presented in Figs. 13(b) and 13(c),
respectively. Figure 13(a) shows the bands of the corre-
sponding uniformly dimerized chain calculated with the
same accuracy. The polaron lattice has two polaron
bands (P, and P2) and the soliton lattice one soliton band
(S), respectively, in the ~ band region, in agreement with
the general view. ' ' At this high doping level above y,
these bands are quite wide. The band structures are very
different from those expected for y «y, where the elec-
tronic structure is dominated by the large
gap similar to that of the undoped chain, the
polarons/solitons are far from each other, and the
polaron/soliton bands in the ~—m* gap are very narrow.
Figure 14 shows the gaps in the m band region as a func-
tion of the average dimerization amplitudes u,„, (u „,=u,

Qp ol Qg in the case of the uniformly dimerized chain, po-
laron lattice, or soliton lattice, respectively). The polaron
lattice has two narrow gaps, E (VB P, ) = 30u~—A eV/A
and Es(P2 —CB)=13u~A eV/A (VB and CB denote
valence and conduction bands, respectively). The pola-
ron bands in Fig. 13(b) correspond to an unrealistically
large A =1.0 chosen here to make E~(VB—P&) and
E (P2 —CB) more evident. In fact, these two gaps are
the only clear difference between the bands of the polaron
lattice and the uniformly dimerized state because the
gap between the polaron bands is proportional to u~,
E (P, P2)=52u~ eV—/A, and the gap E~(m. rr') =52u-
eV/A of the uniformly dimerized doped chain shows the
same dependence on u.

The polaron lattice has the Fermi level in the middle of
the polaron band [Fig. 13(b)] and therefore g (Ez) has a
large value of 0.125—0.144 states/eV/carbon atom.
g (EF) of the polaron lattice increases with increasing u~
and A. The lowest value of 0.125 states/eV/carbon atom
is obtained in the limiting case of the undimerized
chain with uz —+0 and the highest value of 0.144
states/eV/carbon atom for u~=0. 026 A and 2 =1.0.
Although g(Ez) of the polaron lattice is slightly larger
than that of the undimerized chain or the experimental
value of 0.08—0.12 states/eV/carbon, it is still in rough
agreement with the experiments. On the other hand, the
single chain soliton lattice has the Fermi level inside the
gap producing a zero g (Ez), clearly in disagreement with
the experiments. The two gaps of the soliton lattice are
linearly proportional to u& .. Eg ( VB—S)=Eg (S —CB )

=39u, eV/A at y =20% (Fig. 14). Notice that in the
limit y «y, we would expect the soliton band width
to be about zero and Es(VB S)=Es(S —CB)—

=Eg(~ —m*.)/2 where Es(m m—.*) is the gap of the un-
doped uniformly dimerized trans-polyacetylene chain.

The uniformly dimerized state is typically taken as the
only possible ground-state geometry for the undoped
trans-polyacetylene chain. Figure 15 shows the total en-
ergies for the undoped uniformly dimerized chain, un-
doped polaron lattice, and undoped soliton lattice versus
t e average dimerization amplitude u,„, with similar dis-
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FIG. 13. Band structures of (a) a uniformly dimerized lattice
for u =0.01 A, (b) a polaron lattice for up=0. 01 A and
A =1.0, and (c) a soliton lattice for uz =0.01 A. The hole dop-

ing level is y =20% in all cases (two extra holes per C&pH~p) and
an extended presentation has been used. P& P&, S, VB, and CB
designate the lower polaron band, the upper polaron band, the
soliton band, the valence band, and the conduction band, re-

spectively. EF designates the Fermi level. The zero energy is set
at EI:.
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FIG. 16. Total energy per CIOH&o unit for soliton (S) lattice,
polaron (P) lattice (A =0.5), and uniformly dimerized (UD)
chain doped with holes (y =20go) versus the average dimeriza-
tion amplitude u„, (u„,=u&, uz, u). To increase the numerical

0

accuracy, the energies at u,„,&0.01 A are averages of the total
energies of negative and positive u,„,'s. The results are obtained
by using a regular mesh of 5 k's (including the BZ boundaries).

tortions as used in the case of the doped lattices with

y =20% below. The uniformly dimerized chain has the
lowest energy. The undoped dense polaron and soliton
lattices have larger energies which, furthermore, increase
more steeply with increasing u,„,. The energy of the po-
laron lattice decreases when A decreases from 1.0 to-
wards 0.0 for all uz's (only the curve corresponding to
A =0.5 is shown in Fig. 15). The ground-state geometry
of the undoped trans polyacetylene chain is thus uniform-
ly dimerized with u =u0 =0.01 A, in agreement with the
more accurate results discussed earlier. Here the di-
rnerization stabilization energy Es —AE( u =0.0—01 A)

bE(u =0.0—1 A) =140 meV per C,OH, O, or =28 meV
per dimer.

The energy curves in the doped case y =20% &y, are
shown in Fig. 16. They differ considerably from those in

2000.0
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/
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FIG. 15. Total energy per CIOHIO unit for undoped soliton (S)
lattice, polaron (P) lattice (A =0.5), and uniformly dimerized
(UD) chain versus the average dimerization amplitude u,„,
(u,„,=uz, u&, u). The results are obtained by using a regular
mesh of 5 k's (including the BZ boundaries).

Fig. 15. The curves corresponding to different lattices in
Fig. 16 differ less from each other than the curves in Fig.
15. The energy of the polaron lattice (shown only for
A =0.5 in Fig. 16) decreases with decreasing A for all
uz's and coincides at A =0.0 with the energy of the uni-
forrnly dimerized chain thus making the latter energeti-
cally more advantageous. Furthermore, the uniformly
dimerized lattice attains its energy minimum for
u,v, =u =0. The inset of Fig. 16 shows that the soliton
lattice with the marginally small uz-—0.003 A has a
lower energy than the undimerized chain. However, this
result is not definitive due to the reduced accuracy. By
comparing the results of Figs. 15 and 7 we estimate that
an accurate calculation would reduce the stabilization en-
ergy of this marginal soliton lattice of about 4 meV per
dimer C2H2 in Fig. 16 below 2 meV per dimer C2H2,
which is considerably less than the stabilization energy of
the undoped uniformly dimerized chain (Fig. 7). The gap
Eg (VB—S) at us =0.003 A (corresponding to a
maximum atom displacement

~ u„~ of (n /2) X0.003
A=0.0047 A) is still open, and has a value of about 0.08
eV, but is considerably narrower than the gap Eg(ma*).—
of about 0.5 eV of the undoped uniformly dimerized
chain. The above energies for the soliton lattice are so
small that interchain interactions, quantum fluctuations,
thermal fluctuations, and thermal excitation of electrons
across the gap may destroy the possible marginal soliton
1attyce I4 20 30 65 68

We consider next in more detail the different models
suggested for the metallic state. The electronic bands of
the polaron lattice [Eq. (33)] depend on the parameters
uz and A. According to our less accurate SC cal-
culations, the gap between the two polaron bands,
E (P, P2), is proportional to u~—, but not affected by 3
(Fig. 15). The small gaps between the polaron bands and
the valence- or conduction band edges, E (VB PI ) and—
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Ez(J'2 —CB), are proportional to up A. The electronic
structure and the ground-state geometry of the polaron
lattice should increasingly resemble those of the uniform-
ly dimerized chain with increasing y, because the value of

should decrease as the polarons overlap more and
more (see Ref. 25). In the limit A ~0, the ground-state
value of uz, uz o, of the polaron lattice approaches uo of a
doped uniformly dimerized chain. Our accurate results
(Fig. 12) for the uniformly dimerized structure indicate
that uo =0 above y, and therefore indirectly indicate that
the possible polaronic lattice should also have a pro-
nounced tendency to change into an undimerized metallic
chain with increasing doping. Our less accurate calcula-
tions of different lattices using the unit cell of C,oH&0 for
y =20% (Fig. 16) are in full agreement with the above
considerations and indicate that the polaron lattice is un-
stable with respect to the undimerized chain. The study
of Ref. 17 indicates that the interchain interactions, not
included in our calculations but present in a three-
dimensional crystal, make the storage of a single
electron/hole charge into a self-localized polaron de-
creasingly favorable compared to the charge staying in
the extended band states as the interaction strength in-
creases. Although this result considers only noninteract-
ing polarons in the limit y =0, we think that the inter-
chain interactions should not increase the stability of the
polaron lattice with respect to the undimerized chain in
the highly doped state.

The band structure of the ordered soliton lattice has a
gap at E~ [g (E~)=0; see Figs. 13(c) and 14], which is ex
pected to stabilize the soliton lattice with respect to the
undimerized chain in the Peierls model. Experiments
probing the DOS at Ez show no clear sign of a gap or a
pseudogap at EF, but indicate a high density of extended
states. ' ' ' The gap has thus to be eliminated by some
mechanism. Disorder (possibly together with interchain
interactions) could induce a finite density of states at
E~. ' ' 8' The study of Mele and Rice indicates that
the inclusion of both disorder and interchain couplings
leads to a relatively smoothly increasing g (EF) versus y
behavior for the insulator-metal transition in the doping
range y =2—10%%uo. The effect of the interchain couplings,
added on the disorder, is to weaken the soliton lattice dis-
tortion and to increase g(E~). The resulting states at
the Fermi level are considered to be localized because of
disorder. However, the experiments show that the high
conductivity is based on good order, not disorder ' and
the rapidity of the increase of the experimental Pauli spin
susceptibility does not support disordered soliton lattice
models. Interchain couplings, if strong enough, may
close the narrow gap. However, they are expected to
weaken the soliton lattice distortion at the same time be-
cause the opening of a gap or, more generally, a pseudo-
gap at EF drives the incommensurate Peierls distortion.
According to a recent study, the quantum fiuctuations
may also produce a nonzero g(E+), 6 but it is not clear
whether the soliton lattice could survive the Auctuations.
The studies of Refs. 69 and 70 indicate that, contrary to
the common belief, disorder does not necessarily localize
all states of a one-dimensional system, but the applicabili-

ty of the random dimer model used in Ref. 69 to conju-
gated polymers was questioned. '

The results of the Takayama —Lin-Liu —Maki (TLM)
model for the energy difference between the uniformly
fully dimerized and undimerized chains are qualitative-
ly in agreement with our results presented in Figs. 12 and
16, although the soliton lattice has always a lower energy
than the undimerized state in the Su-Schrieffer-Heeger
(SSH) or TLM models. The SSH and TLM models take
the electron-lattice coupling into account, but neglect
electron-electron interactions which are known to be im-
portant (see, e.g. , Ref. 11 and references therein). In the
simplest approximation, the electron-electron interac-
tions may be included by taking the on-site interaction
term (Hubbard term) into account whereas the long-
range interactions are neglected. In fact, such a one-
dimensional Hubbard-Peierls model leads to a possibility
of a gapless, undimerized metallic state at high doping
levels while the soliton lattice is the ground state at low
y's. For reasonable parameter values a transition from
the soliton lattice to the metallic state would take place at
y =3%%uo, in fair agreement with our value of y, .

Approximating the real doping atoms by the uniform
background charge, we are assuming that the dopants are
evenly distributed and that a full charge transfer between
the dopants and the polymer chain takes place. The
NMR measurements on the alkali-metal (donor) -doped
trans-polyacetylene indicate that the lithium and sodium
dopants are in a purely ionic state but the situation is
more complicated in the case of highly cesium-doped
trans-polyacetylene. On the other hand, the HF calcu-
lations of lithium-doped trans-polyacetylene indicate only
partial charge transfer. ' If the dopants were not com-
pletely ionized, our values of y, should be scaled up-
wards. The presence of real acceptor or donor ions be-
side an undimerized chain might lead to chain compres-
sions or stretchings (without bond alternations) around
the ions with a further possibility to displacements per-
pendicular to the chain.

The persistence of the doping-induced IRAV modes
is usually considered to be in agreement with the soliton
lattice but in disagreement with the undimerized chain
and the polaron lattice. ' However, although the per-
sistence of the IRAV modes indicates nonuniformities in
the electron density, the connection to the soliton lattice
is indirect. ' ' It is thus not fully clear whether these
nonuniformities at high doping levels are related to soli-
ton (polaron) distortions or, for example, the screening
charges induced by dopants. Although, as pointed out
earlier, we think that disorder is not a precondition for
the metallic state with a high g(E~) and high conduc-
tivity, thin barriers limiting the charge transport between
relatively large and perfect metallic regions are still need-
ed for explaining the experimental nonmetallic decrease
of the conductivity with decreasing temperature.

IV. CONCLUSIONS

To conclude, our self-consistent calculations for an un-
doped infinite single chain of trans-polyacetylene give a
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weak dimerization with a dimerization amplitude of 0.01
A, which is smaller than the experimental value by a fac-
tor 2 —3, and a small dimerization stabilization energy of
about 7 meV per dimer. Our calculations demonstrate
the extreme sensitivity of the electron density and total
energy to the k sampling near the Brillouin-zone boun-
daries for the small dimerization amplitudes which are
relevant for the present study. The exchange-correlation
energy clearly favors dimerization, but its effect is not
large enough when the local-density approximation is
used. We find that the undimerized metallic state be-
comes energetically more favorable than the uniformly
dimerized state above a critical doping level of
y, =4( 3 )% for holes (electrons). Our method would

probably give a soliton lattice ground state for y (y, al-

though such calculations are beyond our present possibil-
ities. According to our less accurate self-consistent cal-
culations the undimerized state, or a marginal soliton lat-

tice, is expected to be the ground state at high doping lev-
els y =20% )y, . The interchain interactions, quantum
Auctuations, or thermal effects, not included here, may
still destroy the possible marginal soliton lattice. Most
properties of the metallic state, such as the high density
of states at the Fermi level and the high conductivities,
can be most naturally explained by a simple undimerized
chain formed by a relatively rapid transition at y =y,
from a soliton lattice.
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