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Five signals which emerge after transmission through potassium slabs (~0.1 mm thick) have been
studied by Dunifer, Sambles, and Mace at 1.3 K with 79-GHz microwaves and large magnetic fields, HZ,
perpendicular to the slabs. They are (i) conduction-electron-spin resonance (together with spin-wave
sidebands); (ii) Gantmakher-Kaner (GK) oscillations; (iii) cyclotron resonance; (iv) cyclotron-resonance
subharmonics; and (v) high-frequency oscillations. Spin-resonance transmission has been understood for
many years, but not the other four. The isotropic-Fermi-surface model is used here to calculate the
transmitted power versus H by solving Maxwell’s equations self-consistently with the Boltzmann trans-
port equation. GK oscillations do emerge, but the (theoretical) transmitted power is too large by a fac-
tor ~10000. In contrast, the remaining three signals should not even exist. It has been shown that a
charge-density-wave broken symmetry creates a family of (higher-order) minigaps which cuts through
the Fermi surface near its extremities along the slab normal. These gaps diminish the effectiveness of
conduction electrons having v, near the Fermi velocity. Calculation confirms that this ineffectiveness
dramatically reduces the predicted amplitude of the GK oscillation, and thereby provides an interpreta-
tion of the huge discrepancy. The minigaps also give rise to a small Fermi-surface cylinder which (as re-
cently shown) leads to Landau-level oscillations that quantitatively explain signal (v). Signals (iii) and
(iv) can also be attributed to the small Fermi-surface cylinder, but only because its axis is tilted ~45° rel-
ative to Z. A nonlocal theory for such a scenario is yet to be formulated.

sium retains its bce structure to 4 K, as is known from
neutron diffraction® and ultrasonic attenuation* on
strain-free - crystals. Accordingly, potassium plays the
dominant role in the confrontation between theory (for a
simple metal) and reality.

The focus of this work is on the transmission of mi-

I. INTRODUCTION
From a theoretical point of view, potassium is a most
important metal. Being monovalent and having
Brillouin-zone energy gaps of only ~0.4 eV, its Fermi
surface is thought (by some) to be spherical to ~0.1%.
Lithium could have been the exemplar, except that below

~78 K it undergoes a martensitic phase transformation
(from bce) to a rhombohedral structure having a nine-
layer stacking sequence.! This phase change destroys cu-
bic symmetry and thereby precludes a simple characteri-
zation of low-temperature electronic behavior. The Fer-
mi surface is no longer simply connected. A similar situa-
tion exists for sodium below ~35 K.2 In contrast, potas-

crowaves through potassium slabs in a magnetic field,
HZ, perpendicular to the sample. An extensive study of
the five signals that emerge is due to Dunifer, Sambles,
and Mace,” who reported data on 15 potassium samples.
Four of the transmission signals for sample K-4 (kindly
provided to us by G. L. Dunifer) are shown versus o, /o
in Fig. 1. o, =eH/m*c, and m*=1.21 m.% Not shown
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FIG. 1. Microwave transmission signal vs H through a potassium slab in a perpendicular magnetic field. (H =3.42T at . /0=1).
The phase of the microwave reference was adjusted so that the cyclotron resonance is symmetric. The data are from sample K-4 of
Ref. 5. Not shown is the signal between w,/@=0 and 0.8, which exhibits cyclotron-resonance subharmonics at -;—, %, and %. The
Gantmakher-Kaner oscillations in the low-field range are smaller than those near w./w=1.5 by a factor of 5.
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are the subharmonic cyclotron resonances at o,/0=1,
1, and 1. (0/2m is the microwave frequency f.) Sample
K-4, 85 um thick, was selected by G. L. Dunifer for the
overall clarity of its transmission signals. The amplitude
of its Gantmakher-Kaner (GK) signal was consistent
with those from other samples, whether formed in argon
or in vacuum.

Conduction-electron-spin-resonance transmission, and
the associated spin-wave sidebands, have been studied ex-
tensively’ and provide the only phenomenon of the five
which is correctly accounted for by a simple theoretical
model. (Even in this case, however, sideband splittings
indicate® the presence of a charge-density-wave broken
symmetry.’) Unlike the spin precession signal, which is
collective in nature, the four remaining signals are criti-
cally dependent on the one-electron energy spectrum and
the Fermi-surface topology. Magnetotransmission of mi-
crowaves is therefore an important tool for validating or
contradicting theoretical points of view.

To gain perspective it is useful to display the field
dependence of the transmission signal when the electrical
conductivity is local. That is, the current density (in the
X9 plane) can be obtained from!°

1 —o.T 0
j(2)=—2° 0 |E&) (1)
Z)— T N
. 1+ (w,7)*
0 0 1+ (w7)?

where j and E are column vectors, and oo=ne?r/m* (r
being the relaxation time, and n the electron density).
The sample configuration is here a semi-infinite specimen,
and HZ is normal to the surface. The (transverse) electric
field at z =0is

E=E&e " . 2)

On using Maxwell’s curl equations, together with Eq. (1),
one finds two propagating microwave fields:

Ey=(E,+iE,)=Eze "+, (3)
where
drwio,/c? 12
q+= _l——l((l)—i‘a)c)T (4)

Figure 2 shows the field dependence of the two circu-
larly polarized microwave signals at a depth d =2X 1076
cm. The field variable is represented by w,/w, for
f=79.18 GHz. (0w,/w=1 when H =3.42 T.) The relax-
ation time 7 was chosen so that w.7=70, which causes a
cyclotron-resonance width equal to that of the resonance
in Fig. 1.

Notice that the £, wave increases monotonically with
increasing H. In contrast, the E_ wave exhibits a sharp
cyclotron-resonance dip at w./w=1. The sharp dip at
resonance is the only important transmitted feature. The
reason for the dip can be understood from Eq. (4). At
resonance the microwave skin depth for the E_ mode,
1/Im(qg_ ), reaches its minimum value. Off resonance,
the denominator in Eq. (4) becomes large, and so the skin
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FIG. 2. Field dependence of the circularly polarized mi-
crowave signals at a depth d =2X 107° cm if the conductivity
o, is local, i.e., for propagation constants given in Eq. (4). The
sharp dip near w,/w=1 occurs in the wave which rotates with
the same sense as an electron’s cyclotron motion. (w@,7=70.)

depth increases, indicating a greater penetration of the
microwave field.

Needless to say, the local conductivity Eq. (1) does not
apply to potassium at 1.3 K. The conduction-electron
mean free path / =vg7 is then much larger than the skin
depth. Accordingly a nonlocal theory must be used to
determine the transmitted signal. Nevertheless, the most
significant intuition that can be gained from Fig. 2 is that
a standard theoretical model leads to a cyclotron-
resonance dip in the transmitted power. This expected
behavior is contradicted by the very large resonance peak
in the data of Fig. 1. Such a peak occurs in all samples.’

Before proceeding to the nonlocal theory, it is neces-
sary to define the transmission efficiency in absolute
terms. Consider a slab (of thickness L) which is infinite in
the X§ plane. Suppose the incident microwave field (on
the surface at z =0) has an energy flux P, (in ergs/cm? s).
Because the reflection coefficient is almost unity, the elec-
tric fields of the incident and reflected waves at z =0 will
almost cancel. However, the magnetic fields will add.
For a linearly polarized incident wave, E; =H,. The
reflected wave (at z=0) will have E;=—FE, and
H)=H,. So the total fields at the front surface are
E,=0and H,=2H,.

At the rear surface (z =L), there is only an outgoing
wave. If only the X polarized component were detected,
the transmitted field (at z=L) will have E, (L)=H (L).

Y
The ratio of the transmitted power P, to P, is, therefore,

P, | E(L) |?

SRELEYSU (. 5
P, | 1H,0) ®

This definition is general; it applies to the local-
conductivity calculation, based on Eq. (4), as well as to
the nonlocal ones which will follow below.

For the (theoretical) local case treated above, with
7=1.4X1071° 5, £=79.18 GHz, and n=1.4X10%
cm ™3, the classical skin depth in the low-field limit is
~|q| ™!, which from Eq. (4) is

8,=5X10"%cm . (6)



48 MAGNETOTRANSMISSION OF MICROWAVES THROUGH . . .

It is necessary to include both e and e ~*% waves in or-
der to match continuity equations for E and H at both
surfaces. Then the power transmission ratio, from (5),
(6), and Maxwell’s curl E equation, is, for L =85 um,

2
P 8mfd
7}% A 0e)cp(—L/Bo) ~10715% (7
0

which is rather small. Nonlocal effects are necessary to
explain the existence of a transmitted signal.

II. NONLOCAL THEORY
FOR AN ISOTROPIC FERMI SURFACE

The conduction-electron mean free path / =vg7 in po-
tassium (of typical purity) below 4 K is ~0.1 mm, i.e.,
~100 times the (nonlocal) skin depth for microwaves.
The transverse conductivity can be found by solving self-
consistently the Boltzmann transport equation together
with Maxwell’s equations. This exercise is a well-known
one, so we shall merely quote the result for o.(q,w,H)
that we derived for a related problem:!!

3ne’r

04= *x2{2ap—1+r(x2+1-—a2)

2m

+ila+p(x*+1—a?)—2ar]}, (8)

x=ql,

9)
-1 1+(x +a)?
P ™ T+ x—ar |

r=i[tan_1(x +a)+tan " {x —a)] .
2x

Application of this result to transmission of microwaves
through a slab of thickness, L, is facilitated when one as-
sumes that the two surfaces are smooth, so that specular
reflection of electrons occurs. Sensitive experiments!? in-
volving potassium that has crystallized in contact with
glass have shown that specularity is readily achieved.

Following the formalism of Urquhart and Cochran,!’
we expand the field and current distributions (for
0<z <L) in a Fourier cosine series:

E . (z)= Y E’%cos(g,z), (10)
=0

B

1Ms

o.E"% cos(qg,z) , (11)
0

ji(Z):

where g, =nm/L. From Maxwell’s curl equations it fol-
lows that
__ 47w

’E, _
9%z c?
(This displacement-current term has been dropped.) The

coefficients E. can be obtained by using (11) and (12) and
multiplying the resulting equation by cos(q,,z), followed

ji . (12)
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by an integration from O to L. One finds, with E’; denot-
ing 0E /0z,

(2—8,,0)[( —1)"E’, (L)—E'; (0)]
Lg% —(4miow/c®)o(q,,)]

ET= , (13)
where 8,5 is 1 for m =0, and zero otherwise. The in-
tegral involving the left-hand side of (12) must be carried
out by partial integration, without using (10). The reason
for this caution is that the series for E’, converges to O at
z =0 and L, whereas (in fact) E, is finite at both surfaces.

Suppose, for the time being, that the sample were very
thick. Then a solution of interest is a propagating wave
in the Z direction. E’. (L) can be set to zero in Eq. (13).
E’, (0) may be evaluated from Maxwell’s curl E equation,
which requires

E’i=i%Hi(0). (14)
If the incident electromagnetic wave (for z <0) is polar-
ized along X, then H(0) is along §. We now take the total
Hy(O), from incident and reflected waves, to be 1 cgs
unit, so that

H(0)=x=i . (15)

Accordingly, the right-hand side of Eq. (14) is iw/c. The
coefficients (13) for the Z-propagating solution are then

. Q@
—_——

cL

At the rear surface z =L, there will arise a reflected
wave traveling along —Z. The two waves at z =L must
combine so that |H| and |E| are equal, because that is re-
quired by the boundary conditions appropriate to having
only a transmitted wave (for z > L). Inside the metal, | H|
for a traveling wave is several orders of magnitude larger
than |E|. Accordingly, the two waves must combine so
that (at z =L) the magnetic fields almost cancel. The op-
posite Pointing vectors then require that the two contri-
butions to E are essentially equal and parallel. Recogniz-
ing this factor of 2, the electric field at z =L is

ET= (2—8,,0)[g2 —(4miw/cH)o(g,,)]" . (16)

E.(L)= 2o & (2—38,,0)cos(m ) an
- teL mzzo g2 —(4miw/coi(q,)

A detailed analysis which leads to this factor of 2 has
been presented by Cochran.!* From Eq. (5 and
Hy(O)E 1, the transmitted power ratio for a detector sen-
sitive to polarization  is

P_./Py=4|E_(L)|*. (18)

It will be shown below that for the sample of Fig. 1, the
observed ratio is ~10722, i.e., 220 decibels below the
power incident on the metal surface from the microwave
configuration.

Evaluation of Eq. (17) presents numerical difficulty be-
cause the series converges very slowly and, moreover, is
an alternating one, since cos(m)=(—1)". Neverthe-
less, a successful calculation results from following the
method of Ref. 13. The first 3000 terms can be summed
without compromise. For m > 3000, one can replace the
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denominator of Eq. (16) by ¢2. Accordingly, one must

calculate
© —1\m © —1 3000 [ __ 1 m
1) 2 2) -3 ( 2) (19)
3001 m? 1 1 m

(precision to 14 decimals is required.) The first term on
the right-hand side is!> —#7?/12, and the second causes
no numerical problem. We have verified that the results
to be presented below are unaltered when the cutoff is
changed from 3000 to 5000.

Figure 3 shows the predicted amplitude of E (L) and
E _(L) for the conditions of Fig. 1. Observe that the cy-
clotron resonance is a moderate and broad dip in E near
o, /0=1. Both waves exhibit oscillations having half the
GK period. Figure 4 shows the transmitted signal E_(L).
Observe the prominent (GK) oscillations, but notice that
near w./w=1 there is only a small decrease in the oscil-
lation amplitude. There is no evidence of a sharp cyclo-
tron resonance peak, there are no cyclotron resonance
subharmonics, and there are no high-frequency oscilla-
tions between w,/w=1.1 and 1.3, as in Fig. 1.

The periodicity of the GK oscillation is related to the
Fermi velocity vy of the conduction electrons, and de-
pends on the sample thickness L. The phenomenon is
caused by those electrons having the fastest velocity
parallel to H. Each oscillation occurs when the number
of cyclotron rotations during the transit time, L /vg, is an
integer n, i.e.,

n=ow.L /2mvg . (20)

On setting w,=eH,/m*c and vp=#kz/m*, Eq. (20)
leads to GK peaks H, which are linear in n:

H,=2m#ckp/eL)n . (21)
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FIG. 3. Theoretical field dependence of the circularly polar-
ized microwave-transmission amplitudes for a potassium slab of
thickness L =85 um. The broad, symmetric dip at w./0=1
occurs in the signal rotating with the cyclotron motion. The
nonlocal conductivity Eq. (8) for an isotropic Fermi surface was
employed. (w,7=70.) The periodicity of the oscillations is half
that of Gantmakher-Kaner oscillations (which do not occur in
the circularly polarized amplitudes). The small oscillations cor-
respond to ballistic transit times for electrons, having |v,|=vp,
and which travel from z =0 to L and back again, being an in-
tegral multiple of the cyclotron period.
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FIG. 4. Theoretical field dependence of the linearly polarized
microwave-transmission amplitude for a potassium slab of
thickness L =85 um. The nonlocal conductivity Eq. (8) for an
isotropic Fermi surface was employed. There is no cyclotron
resonance peak and, of course, no Landau-level oscillations.
The power transmission ratio is the square of the ordinate,
2E.(L)/H,(0), and exceeds that observed in the Gantmakher-
Kaner oscillations of Fig. 1 by 2X 10%

Notice that m* cancels out, so the oscillation period pro-
vides a measure of the Fermi-surface radius k.

The foregoing characteristics of the GK signal were
verified in many specimens.” However, what has never
been tested until now, to our knowledge, is the absolute
magnitude of the GK signal. Equation (18) together with
the amplitude of E (L) near w, /o= 1.5 in Fig. 4 leads to
a theoretical power transfer ratio at the maximum in the
oscillation,

P,/Py=2X10"18 (22)

G. L. Dunifer has kindly provided the calibration of his
microwave-transmission instrument. The power transfer
ratio was 3s2X 10723, where s is the detector output in
pv. From the original chart recordings of Fig. 1, s =2uv
near o,/w=1.47. Accordingly, the experimental power
transfer ratio is

P,/Py=~1X10"22 . (23)

The discrepancy between (22) and (23)—a factor
exceeding 10000—is serious. It cannot be attributed to
sample imperfection, e.g., rough or nonparallel surfaces.
Such causes would degrade the GK resonances for high
values of H, compared to low ones. Such is not the case.
The GK oscillation near o./w~1.5, ie.,, H=5.1 T,
which corresponds to n ~14 in Eq. (21), is considerably
larger than those for n =1-5 (not shown in Fig. 1). Dun-
ifer, Sambles, and Mace® report that larger GK signals
for w./w>1 are usually observed. Furthermore, spin-
wave sidebands, which are also geometric resonances, are
routinely observed out to n =30-50.” Consequently,
geometric imperfection of samples cannot be imputed.
We have also verified that the prediction (22), for which
o.7=70 was used, is not sensitive to variations in 7 by
factors of 2. In Sec. III we shall show that altered
Fermi-surface topology created by a charge-density-wave
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broken symmetry can account for the extreme weakness
of the observed GK signal.

III. SUPPRESSION OF GK OSCILLATIONS
BY A CHARGE-DENSITY WAVE

The existence of a charge-density-wave (CDW) broken
symmetry'® in potassium has been established by many
extraordinary electronic properties,”!” that now number
~30. The wave vector Q of the CDW is tilted about 1°
away from a [110] crystal direction; so in a large crystal
24 Q domains are possible. The theory of the 1° tilt!®
stems from the elastic anisotropy of potassium. Phonon
screening of the CDW requires less elastic stress if
Q*=G,;p—Q, i.e., the wave vector of the three phonon
modes involved, is tilted about 45° from the [110] axis
closest to Q.

An important property of potassium is that when thin
specimens crystallize in contact with smooth, amorphous
silica or sapphire, the (polycrystalline) grains are epitaxi-
ally oriented. Each grain (usually) has a [110] direction
perpendicular to the surface. (The reason is that {110}
planes are the most closely packed.) The CDW charge
modulation of the conduction electrons can optimize the
interfacial energy if the direction of Q is also close to the
surface normal. This behavior is indicated, for example,
by the anisotropic optical conductivity,”!® and has also
been noticed with low-energy electron diffraction.

The conduction-electron energy spectrum is profound-
ly affected by the CDW periodic potential G cos(Q-r). In
addition to the energy gaps defined by Q, there are two
families of higher-order gaps which arise when the crystal
potential ¥ cos(Gy;y°T), is also in the Schrodinger equa-
tion.?% The “heterodyne” gaps are described by the
Fourier components

Q,=n(G;;,—Q)=nQ*, (24)
and the “minigaps” correspond to
Q,=(m+1)Q—mGy,, (25)

(m and n are integers). Some of the predicted infrared
transitions®! made possible by these gaps have been re-
ported experimentally.’> The Fermi-surface topology
which takes into account the tilt of Q and Q* relative to
the [110] axis has been elaborated.?* A schematic view of
the (001) plane in the Brillouin zone is shown in Fig. 5.
For clarity we have exaggerated the disparity between
|Q| and |G,,!, which is actually only 1.5%. (The figures
in Ref. 23 are accurate.)

The horizontal direction in Fig. 5 is the magnetic-field
direction 2 in the transmission experiments. It is self-
evident that fast electrons traveling in the Z direction will
have their cyclotron rotation interrupted by the mini-
gaps. Consequently their contribution to the GK signal
will cease. A possible way to model this effect is to let the
scattering time 7 be a continuous function of v,. (Any
artificial discontinuity will introduce spurious oscillations
in the signal.) A simple option is to replace 7, which we
redefine as 7, by

e
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FIG. 5. The k,=0 plane of the Brillouin zone of potassium.
The horizontal axis is along [110] and is parallel to H. The
three sets of (dashed) energy-gap planes passing near the center
are heterodyne gaps, having periodicities defined by Eq. (24).
The three sets of (solid and short) energy-gap planes near the ex-
tremities (along H) are minigaps having periodicities defined by
Eq. (25). The pair of planes nearest the zone boundary are the
main CDW energy gaps. The two black volumes, when joined
end to end, describe a Fermi-surface cylinder, having an axis
tilted ~45° from [110]. The cylinder’s volume is ~4X10~*
times that of the (undistorted) Fermi sphere, which is also
shown.

To

T:—*—‘l Fylv, /gl (26)

so that scattering times become short for electrons having
v, near the minigap regions (y is an adjustable parame-
ter). o.(q,w,H) must be reevaluated, starting from Eq.
(13) of Ref. 11 (but with 7 inside the integral). Instead of

3ne’r, 2_,2
op= 0 ‘Z(y x%)

4m* (y2+x2)2 y2+x2

+f1p1—8 171+ fap, —8a1;
+i [fﬂ'x t81p1+fry 8.0,

_ 2a(y*—x?)
(p2+x2)?

J . 27

x =gl and a =(w*w, )T, as in Sec. II, and
Fi1=[(1—a?—p*+x?)(3px2—p?)
+2(a+yx)(3y2x —x )] /(x2+y?)?,
g1=[2(a +yx)(y>—3px?)
+(1—a?—p2+x2)(3p2x —x3) ] /(x2+y2)?, (28)

o [ @=x)P+(y +1)?
P1=7l 2 >
(14+a*)
r,=tan"! —TX +x
! y+1+a*—xa
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Furthermore, [r(x)=f(—x),
Pa(x)=p(—x), and ry(x)=r;(—x).

The transmission signal for y =6 was computed as de-
scribed above, and is shown in Fig. 6. As expected, the
GK oscillations are substantially reduced, and can be as
small as desired by increasing y. The summation break
[see Eq. (19)] had to be extended to 10 000.

The problem that remains is why, if Fig. 5 is correct,
there are any GK signals at all. Cyclotron rotation of
electrons having v, =v is thwarted by the minigaps. The
answer is that even though most CDW domains will have
Q perpendicular to the sample face, there can be a few
domains for which Q is ~60° from the [110] surface nor-
mal (near another [110] direction). One may surmise
from Fig. 5 that, in this event, “clear” regions of the Fer-
mi surface can occur along the axis parallel to H.

The sizes of the minigaps and heterodyne gaps fall off
very quickly?®?® with the integers n and m in (24) and
(25). Consequently, many of the gaps will lose their
effectiveness as a result of magnetic breakdown—a high-
field phenomenon. Possibly the larger GK signals (seen
at high fields) can be explained by magnetic breakdown of
the weaker minigaps and heterodyne gaps which would,
in small fields, jeopardize the cyclotron motion of elec-
trons responsible for the GK periodicity.

The physical presence of minigaps and heterodyne
gaps has been decisively confirmed by the extensive
open-orbit resonance experiments of Coulter and Da-
tars,>* phenomena that are accounted for quantitatively
with a CDW structure.?’ There seems to be little risk in
concluding that the discrepant (10 000-fold) loss in GK
signal has a similar origin.

82(x)=g(—x),

IV. CONCLUSION

The foregoing treatment brings into comprehension
one more of the five microwave signals that emerge from
potassium. Only two remain to be explained, since the
high-frequency oscillations were recently shown to be
Landau-level oscillations belonging to a small Fermi-
surface cylinder formed by the minigaps.?® This cylinder,
which is pieced together from the two black cylinders
shown in Fig. 5, contains only 4X 10~ * electrons per
atom.!! This small number was sufficient, however, to ex-
plain the sharp cyclotron resonance peak in the mi-
crowave surface impedance.?’” The cross-sectional area
(wk,%/69) of the cylinder, determined from the Landau-
level periodicity (vs 1/H ),2® when combined with the
cylinder length (determined from CDW neutron-
diffraction satellites?®), agrees with the originally sur-
mised fraction 4X 10~ % Landau-level oscillations from
the main Fermi surface, having a cross section 7k2, are
too rapid and too small to be seen in a microwave
transmission experiment. (They have been studied fre-
quently by the de Haas—van Alphen effect.)

Adding a cylindrical Fermi-surface component to the
microwave transmission theory does not (with the
cylinder axis parallel to Z) explain the cyclotron reso-
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FIG. 6. Theoretical field dependence of the Gantmakher-
Kaner transmission signal based on the nonlocal conductivity
Eg. (27), having a v,-dependent scattering time given by Eq. (26)
with y =6. The power transmission ratio is the square of the
ordinate, and equals the value 1X107 22, observed near
w./o=1.5 in Fig. 1. Magnetic breakdown of minigaps and
heterodyne gaps can be simulated by letting y be a decreasing
function of H. Accordingly, the GK amplitude would then in-
crease with H, as is observed.

nance peak (near o, /w=1), even if the modified o ., Eq.
(27), is employed. We believe that the 45° tilt of the
cylinder axis that is required theoretically!®? plays a
crucial role. This tilt is the only possible explanation for
the cyclotron-resonance subharmonics because, then, the
individual orbits (in real space) oscillate back and forth
along Z (as well as rotate in the X§ plane). Such back and
forth motion along the electric field gradient is the
behavior which creates subharmonics in the Azbel-Kaner
effect.?”

A nonlocal theory which incorporates a cylindrical
Fermi surface tilted ~45° relative to H presents a formid-
able theoretical endeavor. The reduced symmetry de-
stroys the isolation of the E | and E _ fields, and the lon-
gitudinal oscillations of the cylinder orbits introduce cou-
pling to plasma modes. A quantitative explanation of the
dominant microwave-transmission signal—the large and
ubiquitous cyclotron resonance peak —will likely remain
pending until a nonlocal study can be brought to com-
pletion.
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