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Density-functional theory and Nio photoemission spectra

15 DECEMBER 1993-I

V. I. Anisimov, I. V. Solovyev, and M. A. Korotin
Institute ofMetal Physics, Ekaterinburg GSP 170-, Russia

M. T. Czyzyk and G. A. Sawatzky
Laboratory ofSolid State and Applied Physics, Materials Science Center, University of Groningen, Nij enborgh 4,

9747AG Groningen, The netherlands
(Received 22 June 1993)

The generalization of the local-density-approximation method for the systems with strong Coulomb
correlations is proposed, which restores the discontinuity in the one-electron potential as in the exact
density functional. The method is based on the model-Hamiltonian approach and allows us to take into
account the nonsphericity of the Coulomb and exchange interactions. The calculation scheme could be
regarded as a first-principle method due to the absence of adjustable parameters. The method was ap-
plied to the calculation of the photoemission (x-ray photoemission spectroscopy) and bremsstrahlung
isochromat spectra of NiO.

What is the main problem in applying the local-density
approximation (LDA) to the systems with localized elec-
trons? Perdew et al. ' considered the problem of a free
single atom in a reservoir with which it could exchange
electrons (open system). They showed that in this case
the exact density functional (although still unknown) re-
sults in a dependence of the total energy on the number
of electrons E (N) as a series of straight-line segments:

E(N+x) =(1 x)E~+xE—~+, ,

where E~ and Ez+, are ground-state energies for the N
and %+1 electrons. The curve itself is continuous, but
its derivative BE/BN has discontinuities at integral values
of X.

E(M) E(M —1), M——1 &N &M
E(M+1)—E(M), M &N &M+1

(M is an integer value). The same is true for the one-
electron potential V(r) =M/5n(r), which should jump
discontinuously when the number of electrons goes
through an integer value.

All actual calculations for real systems are performed
in the LDA, where the function E versus N and all its
derivatives are continuous. The absence of the potential
jump, which appears for the exact density functional, is
the reason for LDA failure in describing the band gap of
Mott insulators such as transition metal and rare-earth
compounds. Gunnarsson and Schonhammer showed
that the discontinuity in the one-electron potential can
give a large contribution to the band gap.

In Ref. 3 we suggested a way to overcome this
deficiency of the LDA by adding an orbital-dependent
correction to LDA potentials (the so-called LDA+ U
method). LDA equations themselves are constructed as a
mean-field [Hartree-Fock (HF)] theory and they could be
modified to take into account an on-site Coulomb interac-
tion U. One can look at the LDA as an analog of a
homogeneous solution of the HF equations. This means
that the LDA gives the correct solution of the HF equa-

where J is the exchange parameter. The one-electron po-
tentials V are orbital dependent in this approximation:

V = VLD~+QU(n np). —
m'

+ g ( U —J)(n ~
—np) . (4)

With this orbital-dependent LDA+ U potential orbital
polarization becomes possible and the Mott-Hubbard gap
appears in the single-particle spectrum. We showed that
this method is rather successful in the description of the
electronic structure of a variety of 3d transition metals
compounds, yielding order-of-magnitude improvements
on conventional LDA results. '

The above scheme is based on the suggestion that the
LDA corresponds to the homogeneous solution of the
HF equations with equal (averaged) occupancy of all d
orbitals. But is it the best way to set the relationship be-
tween the LDA and a model Hamiltonian approach? If
one follows the arguments of Perdew et al. ' then one can
see that the main difference between the LDA and the ex-

tions when variational freedom is restricted by the re-
quirement that the occupancies of all d orbitals are equal
(averaged): n = np =g n /10. (The output orbital
occupancies can be different in LDA calculations due to
the crystal field splitting, but as the potential in the LDA
is a functional of the charge density, which is defined by
the total or averaged per orbita1 number of d electrons,
and this potential is the same for all d orbitals, then the
HF analog of the LDA should have equal orbital occu-
pancies. ) Then the variational space can be extended by
adding to the LDA functional a correction corresponding
to the deviation of the orbital occupancies n from the
average on no..

E =ELDER +— g U(ll np)(tl ' lip)
m, m', a

+ —,
' g ( U —J)(n —np)(n ~

—np),
mmmm', o.
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act density functional is that in the latter the potential
must jump discontinuously as % increases through in-
teger values and in the former the potential is a continu-
ous function of the number of electrons X. The second
important fact is that while LDA orbital energies [which
are derivatives of the total energy on orbital occupation
numbers n; (e; = BE/Bn; )] are often in rather bad agree-
ment with experiment or more rigorous calculations, the
LDA total energy is usually quite good (this is demon-
strated by the LDA success to give correct crystal struc-
ture and equilibrium volume and even the properties
defined by the second derivative of total energy such as
phonon frequency ). A good example is a hydrogen atom
where the LDA orbital energy is —0.54 Ry (instead of—1.0 Ry) but the total energy ( —0.96 Ry) is quite close
to —1.0 Ry. The main idea of our LDA+ U method is
the same as the Anderson impurity model: to separate
electrons into two subsystems —localized d or f electrons
for which the Coulomb d-d interaction should be taken
into account by a term ,' Ug;&—n;n in a m. odel Hamil-
tonian and delocalized s and p electrons which could be
described by using an orbital-independent one-electron
potential (LDA). Let us consider a d ion as an open sys-
tem with a Auctuating number of d electrons. The above
arguments allow us to suggest that the Coulomb energy
of d-d interactions as a function of the number of d elec-
trons N given by the LDA is a good approximation [but
not the orbital energies (eigenvalues)]. The correct for-
mula for this energy should be E = UN(N —1)/2. If we
subtract this expression from the LDA total energy func-
tional and add a Hubbard-like term (neglecting for a
while exchange and nonsphericity) we will have the fol-
lowing functional:

E =EiD~ —UN(N —1)/2+ —,
' Ugn;n . .

lWJ

The orbital energies e, are derivatives of (5) on orbital oc-
cupations n,. :

e =BE/Bil =. ti Dp + U( — n ~ )

This simple formula gives the shift of the LDA orbital
energy —U/2 for occupied orbitals (n; = I) and + U/2
for unoccupied orbitals (n; =0). A similar formula is
found for the orbital-dependent potential [ V, (r)
=5E/5n, (r) where variation is taken not on the total
charge density n(r) but on the charge density of a partic-
ular ith orbital n;(r)]:

E=—,'U g n n + —,'(U —J)
mmmm', m', cr

nm~nm'~ .

In the LDA exchange is partially taken into account in
such a way that the number of electrons with different
spin projection are equal (Nt =N&, N=N&+N&). That
leads to the following expression for the LDA Coulomb
energy of d-d interactions as a function of total number
of d electrons X:

UN(N —1)/2 JN(N —2)/4 —.
Finally we could taken into account nonsphericity of

the Coulomb and exchange interactions, i.e., dependence
on what particular d orbitals m and I' are occupied by
introducing matrices U ~ and J

duces this jump. Again we could look at a hydrogen
atom H. In this case U=0. 945 Ry and eID~= —0.54
Ry. If we consider the "spin-up" orbital to be occupied
(n& =1) and the "spin-down" orbital to be empty
(ni =0), then et= —1.0125 Ry and e&

—0.0675 Ry. It
looks quite reasonable. The ionization potential for H is
exactly 1 Ry and the electron affinity is —0.055 Ry.

Expression (6) could remind us of the "transition state"
approximation of Slater. ' Slater showed that the excita-
tion energy defined as a difference of total energies in the
final and initial states [for example, the removal energy
E(N —1) E(N—)] could be approximated with good ac-
curacy by LDA orbital energies (one-electron eigenval-
ues), calculated not in the ground state but in the so-
called transition state with occupancies halfway between
the final and initial states. For the removal energy it
means e(N —

—,') and for additional energy e(N+ —,'). If
we suggested that the LDA gives the d-d interaction en-
ergy in a form UN(N —1)/2, then the derivative of e
over N is equal to Uand e(N —

—,')=e(N) —U/2, e(N+ —,')
=e(N)+U/2. Comparing this with expression (6) one
can see that our corrected orbital energies for occupied
orbitals correspond to the removal energies in the transi-
tion state approximation and orbital energies for unoccu-
pied orbitals correspond to the addition energies.

The functional (5) neglects exchange and nonsphericity
of the Coulomb d-d interaction. If we take into account
exchange, then for electrons with the same spin projec-
tion o, the interaction energy will be (U —J), and with
different spin it is still U:

V&{r)=ViD~{r)+ U( 2 it&. ) (7) U, =gal, F
k

Expression (7) restores the discontinuous behavior of the
one-electron potential of the exact density-functional
theory. In Ref. 1 it was shown that the maximum occu-
pied Kahn-Sham orbital energy e,„jumps by
[E(N+1) E(N)] —[E(N) —E(N —1)] (which—is equal
to the Coulomb parameter U by definition, if one neglects
the hybridization 9) when the number of electrons
changes from N —5 to N+5. From (6) one can see that if
for N electrons the ith orbital is occupied and the jth or-
bital is empty, then e,„=e; for the 1V —6 case and
e,„=e for N+5. As (e —e;)=U expression (6) repro-

J .=yb„F",
k

a&= g (lm~Y&~~lm )(lm'~YI,* ~lm'), (ll)2k+1
k

, y f&im[Y„)im )['.

(10)

(12)

(F" are Slater integrals and (1m
~
Y„~lm') are integrals

over products of three spherical harmonics Y& .) Note
that the off-diagonal Coulomb and exchange matrix ele-
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ments cannot be treated in this way, i.e.,
(mm'~l/r&z~m "m"'). These types of terms, which are
very important in atomic multiplet theory, are still
neglected. To take this into account we would have to
abandon the concept of an orbital energy and also the use
of a single Slater determinant to describe the states of the
system. The same type of problem occurs in treating
only the z component of the spin and thereby neglecting
terms such as JS& Sz, which again are so important in
multiplet theory. We remind the reader that two elec-
trons in difFerent orbitals with an exchange interaction
JS&Sz form a triplet and a singlet with an energy splitting
of J whereas if we consider only the z component of this
spin JS&,Sz, the splitting between ferromagnetic and an-
tiferromagnetic configurations is J/2. This stresses the
importance of the spin-Hip terms which cannot be incor-
porated into a single-particle potential.

We can now write the total energy functional in the
form

E =ELD~ —[ UN(N —1)/2 JN(N ——2)/4]

Umm ' m o m ' —cr

m, m', o.

+ —,
' g (U J.)n—n

mmmm�',

m', o.
(13)

+ g (U .—J ~ —U,fr)n
m'Wm

+ U, s.( —,
' —n )

—
—,
' J, (14)

where U,z= U —
—,
' J.

In order to calculate the matrices U ~ and J ~ one
should know the Slater integrals F" (F,F,F for d elec-
trons). In Ref. 9 we showed that the Coulomb parameter
U, which we calculate in the supercell approximation,
could be identified with the Slater integral F . What is
the relationship between exchange parameter J and
E,F integrals? If we average matrices U ~ and
(U .—J . ) over all possible pairs of mm' we should
obtain U and U —J as in expression (8). Using properties
of the Clebsch-Gordan coe%cients one can prove that
this averaging gives

U= g U .=F1

(2l+1) ™
1

21(2l +1),™m

(15)

=F' (F'+F'), —

J=(F +F )/14 . (17)

To define all three Slater integrals from U and J one
needs to know only the ratio F /F . In Ref. 11 F and
F"are tabulated for all 3d. The ratio E /E for all ions is

The derivative of (13) over orbital occupancy n gives
us the expression for the orbital-dependent one-electron
potential:

V (r) = Vi.DA(r)+ g( U —U,s)n.

between 0.62 and 0.63. So we fixed the value of this ratio
at 0.625. Then the expressions for the Slater integrals are

14
1.625

r'=O. 62Sr' .

(18)

(19)

The screened Coulomb and exchange parameters U and J
are calculated self-consistently in the supercell approxi-
mation as described in Ref. 9. Expressions (9)—(19) define
the version of our LDA + U method. One could consid-
er it as one step further from local-density approximation
to exact density functional. The first step was the so-
called local spin density approximation (LSDA) where,
instead of a functional of total charge density E[n(r)],
the functional of two spin densities E [n &(r), n&(r)] was
introduced. Quite naturally the next step is to define a
functional of spin orbita1 -densities E[[n (r))] and ex-
pressions (13) and (14) give this type of functional. The
most important property of this functional is the discon-
tinuity of the potential and the maximum occupied orbit-
al energy e „as the number of electrons increases
through an integer value, the absence of which is the
main deficiency of the local-density approximation com-
paring with the exact density functional' as far as band
gaps are concerned.

We applied this scheme to the linear muffin-tin orbital
(LMTO) method in two versions: atomic sphere approxi-
mations (ASA's) in orthogonal representation' and the
more rigorous full-potential (FP-LMTO) version of Meth-
fessel. ' The earlier variant of our scheme [Eqs. (3) and
(4)] was used in the ASA-LMTO method. We chose NiO
as the object of the investigation because a lot of the ex-
perimental and theoretical work was performed for this
compound. The results for the magnetic moments value
are rather close in both methods: 1.6—1.7p~ per Ni atom.
The energy gap value is more sensitive to the choice of
the method and to the details of the calculation. The
most accurate calculations (with a filling of the interstitial
sites with the empty spheres and with the maximum
basis-orbital set on every sphere) results in an energy gap
of 3.4 eV in the ASA-LMTO calculation and 3.7 eV in
the FP-LMTO calculation [the experimental value is 4.3
eV (Ref. 14)]. It is worth mentioning that in less accurate
calculations, for example, without empty spheres or with
the smaller basis-orbital set, the results could vary
significantly: in the range 3.0—3.4 eV in ASA-LMTO
and 3.7—4.2 eV in FP-LMTO. We used the FP-LMTO
method for further calculations.

It was pointed out above that in our method the orbital
one-electron energies of occupied states have a meaning
of removal energies and those of the empty states corre-
spond to the addition energies. If it is so, is it possible to
reproduce photoemission spectra and bremsstrahlung iso-
chromat spectroscopy (BIS) of NiO by the results of our
LDA + U calculations?

Figure 1 shows the total and partial densities of states
(DOS) for the valence band of NiO. One can see a rather
broad ( =7.5 eV width) band with strongly mixed Ni 3d
and 0 2p states. That is in striking contrast with the
standard LSDA calculations' where Ni 3d bands are
above the oxygen bands and those two groups of bands



ANISIMOV, SOLOVYEV, KOROTIN, CZYZYK, AND SAWATZKY

I
I

I

(a) Totai

~ CD

Cd o

Q) m

CO o
65~ O
M ~

CD

I
I I

(

(b) Nickel Sd

I
t

I
I

(c) Oxygen 2p

CD

CD
-10

I

-8

Energy (eV)

I

-2

FIG. 1. The density of states (DOS) for the NiO valence band
in the LDA+ U calculation ("unmodified"). (a) The total DOS,
(b) the Ni 3d partial DOS, and (c) the O 2p partial DOS.

are well separated. The reason for this is the shift down
in energy for occupied d orbitals due to the LDA+ U
correction. The energy of unhybridized occupied d orbit-
als is now even lower than the 0 2p orbitals and in the re-
sult the top of the valence band of NiO has predominant-
ly 0 2p character with a strong admixture of Ni 3d states.
If we compare this result with the experimental photo-
emission spectrum of NiO (upper curve on Fig. 3) one
can see that the experimental band is broader and that
there is the strong peak at the lowest binding energy of
the experimental spectrum which is absent in calculated
DOS.

It is known that configuration interaction calculations
based on the model Hamiltonian approach were quite
successful in describing photoemission spectra of strongly
correlated systems. ' ' What is the possible relationship
between LDA+ U and those models? We showed above
that in our method one-electron energies of occupied d
orbitals correspond to the removal energy of the d shell
and in the configuration interaction calculation it is the
energy of the configuration ~d ) for NiO. LDA+ U can
even partially imitate multiplet splitting for this
configuration by different one-electron energies for
different d orbitals due to the nonspherical Coulomb and
exchange interactions [U .,J ~ matrices in (14)]. In a
model Hamiltonian approach the photoemission spec-
trum is calculated as a distribution of the final states
which are linear combination of configurations ~d ) and
~d I. ). ' ' Both of these configurations have multiplet
structure and the resulting Hamiltonian matrix and
many-electron wave functions are rather complicated.
This complex picture can be crudely approximated in the
following way.

In the final state of the photoemission removal process

(before hybridization with oxygen states is taken into ac-
count) there are three holes in the d shell which can be in
three configurations: ~es&eg't ), ~egt t2g& ), and ~es&tz~& )
neglecting off-diagonal Coulomb interactions as discussed
above. The first configuration (e ) hybridizes with oxy-
gen 2p states with a-bond hopping parameter. In this
simplified scheme in order to take into account three pos-
sible ways of hybridization corresponding to three holes
this hopping parameter is multiplied by V3 (Ref. 16) in
the spirit of the 1/I. approximation by Gunnarsson and
Schonhammer' where L is the orbital degeneracy. In
this way we collected the hybridization of each of the one
electron orbitals in the configuration in an effectively
larger one for the complete configuration. The other two
configurations (e t') can hybridize with oxygen 2p states
by two possible ways: through the e channel, with a 0.-
bond hopping parameter multiplied by &2, and through
the t2 channel, with a m.-bond hopping parameter. This
scheme could be easily simulated in the LDA+ U calcula-
tions. The energy of the

~
e &e &

) configuration is the re-
moval energy of e

&
states and in our method it is the

one-electron energy of occupied e
&

orbitals. For
configurations ~es&tz &

) and ~e it&st ) it will be the one-
electron energies of t2g& and t2g~ orbitals, respectively.
For every configuration we performed calculations where
only corresponding d orbitals were taken into account
with the proper factor increasing hopping parameters.
The partial density of Ni 3d states obtained in this calcu-
lation is presented in Fig. 2. Figure 2(a) is for the
configuration ~es )(e

&
orbital energy with e —0 2p off'-

diagonal matrix elements increased by a factor v'3), and
Fig. 2(b) is for the configuration e t ' ) hybridizing with
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FIG. 2. The partial Ni 3d DOS from the LDA+ U calcula-
tion vvith "modified" hopping parameters for (a) the
configuration eg; (b) the configuration e t2g, hybridization via
the eg channel; and (c) the configuration e~tz~, hybridization via
the t,g channel.
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FIG. 4. The experimental (dots) and the calculated (solid

line) BIS for NiO.

FIG. 3. The experimental (dots) and the calculated (solid
line) photoemission spectra for NiO.

oxygen 2p states through the es channel (t2g &
and t2s&

or-
bital energies with eg

—0 2p o6'-diagonal matrix elements
increased by a factor &2), and Fig. 2(c) is for the
configuration e t') hybridizing with oxygen 2p states
through the t2g channel (t2d& and t2~& orbital energies
with t2 —0 2p off-diagonal matrix elements).

Comparing with Fig. 1 one can see that the result of
stronger hybridization is that peaks appear 2 eV higher
than in the "nonmodified" calculation and also the "sa-
tellite" peaks around 8 —9 eV become more pronounced.
This result is very similar to the one obtained from the
model Hamiltonian calculations where the first ionization
states are of 3d symmetry pushed out of the top of the 0
2p band because of strong hybridization. In the case of
the high-T, compounds or CuO these are the Zhang-Rice
singlets. ' We summed the curves of Fig. 2 with the
proper weights and broadened them corresponding to ex-
perimental resolution. [We note that in x-ray photoemis-
sion spectroscopy (XPS) it is mainly the Ni 3d density of
states which is probed. ] The result, together with the ex-
perimental XPS for NiO, is shown in Fig. 3. Two main
features of the experimental curve —"the main line" on
the top and the "satellite" around 8 eV—are reproduced
in the calculated spectrum.

In the final state of the BIS for NiO there is only one
hole in the d shell in configuration e'~ ). In our approxi-
mated scheme it means that we can use the density of
unoccupied states obtained in the calculation without any
renormalization of the hopping parameters for the com-
parison with the experimental HIS (Ref. 14) or NiO (Fig.
4). The first peak in Fig. 4 corresponds to Ni 3d states
and the rest of the spectrum corresponds to Ni 4s and
4p-derived bands. The 4s and 4p bands start immediately
above the Ni 3d empty band, but their intensity is very
low and becomes significant only 5 eV higher than the Ni
3d peak. It is worth mentioning that the good agreement

in the relative position of the Ni 3d peak and the 4s and
4p bands is due to the LDA+ U potential correction
which pushes up the energy of the unoccupied Ni 3d
states. Without such a correction (in standard LDA) the
Ni 3d peak is significantly lower in energy ( = 3 eV).

Naturally our scheme is too oversimplified to repro-
duce all details of experimental spectra. The remarkable
lack of intensity in the calculated photoemission spectra
around 2 eV compared with the shoulder in this energy
region for experimental spectra is, in our opinion, due to
the fact that in the full configuration interaction calcula-
tion there are also states which do not hybridize as
strongly as the factor of V 3 suggests.

In summary, we propose the generalization of the
local-density approximation based on the model Hamil-
tonian approach which restores the discontinuity in the
one-electron potential as in the exact density-functional
theory. In order to calculate photoemission spectra of
the strongly correlated systems, such as Ni0, it is neces-
sary to renormalize the Ni 3d —0 2p hopping parameters
in the spirit of the 1/I. approximation. Although the
method presented here can yield quite accurate results
for magnetic moments and band gaps, we note that it is
still a mean field method in which electron removal and
addition states are represented by single Slater deter-
minants. Because of this, multiplet structures cannot be
properly described and phenomena such as spectral
weight transfers, which are so characteristic of correlated
systems, are absent.
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