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Linear temperature dependence of the transverse electrical resistivity
of organic metals arising from electron-electron umklapp scattering
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We have calculated the electron-electron scattering contribution to the electrical resistivity (p~)
in the two transverse directions for an anisotropic tight-binding cosine band. This type of band
structure is thought to apply to organic metals such as the Bechgaard salts. Simple expressions for
p~ were obtained using the standard variational method. In all cases we found pi = cxT+PT . For
the b direction n ts and P ts, and for the c axis n t, while the expression for P is more
complicated. The above formulas are compared with experimental data and the efFective Coulomb
interaction for the Bechgaard salts is found to be U 0.64 eV.

Most organic metals are composed of large planar
molecules stacked face to face in chains. The anisotropy
of the 7r orbitals leads to good electronic overlap along
the chains and much weaker overlap in the transverse di-
rections. For example, the electron spectrum of a large
family of organic conductors, the Bechgaard salts, can be
approximately represented by a simple tight-binding for-
mula with effective transfer integrals, t~~~, tb, and t„corre-
sponding to the high, intermediate, and low conductivity
directions, respectively. For the Bechgaard salts typical
values of tt~~, tb, and t~ are 347) 23) and 0.1—1 meV, '

respectively. If the weak dimerization along the chains
is neglected, one deals with a quarter filled hole bagd
whose Fermi energy EJ 2t~~(1 —0.707) 203 meV.
The Fermi surface (FS) is open in both transverse direc-
tions. Typical values of the lattice constants, e.g. , for
(TMTSF)2C104 are a=3.62, 6=7.678, and c=13.275 A. .

Measurements of the intrinsic temperature (T) depen-
dences of the resistivity for the three perpendicular direc-
tions p, pb, and p * are often complicated or rendered
invalid by the occurrence of sudden irreversible jumps in
resistance-temperature plots which are caused by micro-
cracks in these small &agile crystals. This is especially se-
rious for measurements of p (T). However, early work on
(TMTSF) 2PFs using either dc or 35 GHz (where cracks
are less important) showed that p (T) T (30—300 K),
pb (T) Ti (30-300 K), s and p,*(T) T (20—70 K).

In several cases these measurements have been
confirmed by other groups using dc, e.g. , p (T) of
(TMTSF) 2C104, p, * (T) of (TMTSF) 2C104 and
(TMTSF) 2PFs, and py (T) of (TMTSF) 2NOs. s

Furthermore we noticed some time ago that for
(TMTSF)2C104 the T behavior of p, * changes over to
a linear dependence below 10 K.

In this paper we show that the Ti behavior in pb(T)
and p * can arise Rom electron-electron scattering when
k~T ( tb or t . Until now it has generally been found
that electron-electron scattering gives rise to a T law.
The exceptions are either for the special case of a one-

dimensional half-filled band or for a model which may
apply to the organic conductor TTF-TCNQ where there
are two types of chains and two partially filled one-
dimensional bands crossing at the Fermi-level. The ba-
sic physical picture is sketched below followed by the
results of numerical calculations. These enable the ef-
fective electron-electron Coulomb interaction to be esti-
rnated from the linear terms in p, * of (TMTSF)2C104.

As explained in various textbooks the T law arises
simply from the need to conserve both energy and crystal
momentum in electron-electron collisions. For a spheri-
cal [or general three-dimensional (3D)] Fermi surface and
a given initial state, the energies of the other initial state
and one of the final states can vary independently by
= +2k~T, and it is still possible to conserve energy E
and momentum k. Thus the number of allowed scatter-
ing processes increases as T leading to T2 behavior of
p(T). Such behavior is generally obtained when the in-
tegrals over k and the integrals over E can be factorized
out. For a half-filled one-dimensional band sketched in
Fig. 1(a) the origin of the linear T behavior arising from
electron-electron umklapp scattering can be seen as fol-
lows. Without loss of generality one initial state can be
considered to be at the Fermi level (Ei ——E~). Then,
in order to conserve E and k, the other initial state (2)
must also have the same energy (E2 ——E~). If this is
not the case then simultaneous conservation of E and
k is impossible. The two final states (3, 4) must then
be symmetrically disposed about E~ as sketched in Fig.
l(a), and integration over Es leads to p T . The main
point of this paper is that similar constraint applies for
the transverse resistivity of a tight-binding cosine band
with arbitrary band filling. For example, for the (trans-
verse) umklapp scattering process sketched in Fig. 1(b)
only one of the energies can be varied independently—
leading to p~ T . In contrast for the umklapp process
shown in Fig. 1(c) where all four states are on the same
side of the Fermi surface, a T law is obtained because
E~ and E3 can be varied independently and still satisfy
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E and k conservation. These two points can be shown
by simple geometry and are confirmed by detailed calcu-
lations outlined below.

According to the standard variational method for the
solution of the Boltzmann transport equation the elec-

trical resistivity is given by
(kgb T)

2'

Here P is the volume of the system, fk is the Fermi distribution function, Ek is the electron energy, vk = h Bi,Ei,
is the electron velocity, and @k is a variational trial function. As usual, we assume that the trial function Ck is
proportional to the electron velocity in the direction of applied electric field 8', 4k ——8' vk. X represents the entropy
production integral arising from electron scattering processes. Here we consider only electron-electron scattering
processes and thus

f dkdk'dkidk, [4a+ Cv 4v —4g ] ~Vj g p

2'
x —~(Ei + Ei —Ek, —E„)fkfi (I —fi, )(I —f„). (2)

Vkk. k, kr is the matrix element of the Coulomb interaction between the two initial states k, k and two final states

!Vj,i, ,i„k, ! VV„„,.„„,(27r) b(k+ k' —ki —k', ) + v ) V„„,.„„,(c)(27r) s(k+ k' —k] —k', —C).
AQO

The first part of Eq. (3) corresponds to normal electron-electron scattering processes (N processes) and the second
term corresponds to umklapp processes (U processes). Usually umklapp processes give the dominant electron-electron
contribution to the resistivity except when the effective mass varies strongly over the FS. On the other hand umklapp
matrix elements are usually smaller, !V( )! » !V( )!. However, in these materials the Thomas-Fermi wave vector,
kTF ——4vr e Ng 4e /(abc t~~) & (2vr) /bc, is of the same order as the reciprocal lattice vectors. Thus the efFective

(screened) Coulomb interactions for U and N processes are comparable, !V( )(G~)! !V( )! for the first few
umklapp wave vectors G~, perpendicular to the chain which are important for the transverse resistivity. Likewise,
we can neglect the k~ dependence of the Coulomb matrix elements V~ ~ and V~ ~. The k dependence will be
approximated in the usual way by introducing two interaction terms corresponding to the Coulomb interaction with
small and large (= 2k~) momentum transfers:

v'U'"'
kk', kz k~ ~G U2

if!k. + k'. —k,.—k',.—2k&! «k~
if!k + k' —ki —ki ! (( ks, (4)

where &0 ——abc is the unit cell volume. We also linearize the electron energy spectrum around the Fermi wave vectors,
Ei, ——Eg+ h v~ k~ p k&+ (qg), where EF = —

2t~~ cos(kga) is the Fermi energy, and kp and vg = 2h a t~~ sin(k~a)—1

are the average values of the Fermi wave vector and Fermi velocity in the 2: direction. The Fermi surface (FS) can
then be described by kFs (q~) = k~ 6 (hvar) [2ti, cos(k„b) + 2t, cos(k, c)].

~ 4

-A/2 a

FIG. I. (a) Electron-electron umklapp scattering for a ID half-filled band. As explained in the text, in order to conserve
energy and momentum the initial states 1 and 2 and the final states 3 and 4 must be symmetrically disposed around Ez. So if
Ei ——Eg as drawn, then E2 = E~, Es + E4 ——2 E~, and p~~ T . (b) Electron-electron umklapp scattering for the transverse
resistivity of an anisotropic quasi-one-dimensional "cosine" band. If the initial states 1 and 2 are on opposite sides of the FS
only one of the energies, e.g. , E2, can vary independently and hence pz T . (c) If both initial states are on the same side of
the FS then E2 and E3 can vary independently leading to p& T .
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Because of momentum conservation only two types of scattering processes give a Gnite contribution to the entropy
integral X when the band is not half filled. In case A the initial states are on the opposite sides of the FS [Fig. 1(b)]
and in case B all states are on the same side of the FS [Fig. 1(c)]. These two cases will be considered separately.

Case (A). First we consider the resistivity for the 6 direction. The entropy integral Z can be factorized into three
four-dimensional integrals, one for each direction in k space:

2," —Es (2c) k (bsbVCVi) J d k* ) b(k +k' *—kl* —kl —G*)

2
ky sl y + y $y sin wkly ~ ky + k y kly kl y Gy

G'„

(5)x d k 8 k~ + k k] k& ~ 8 A v& k~ k ~ k&~ + k& & 1 l 1

where k = k g k~ denotes the electron momentum measured with respect to the Fermi wave vector. The k and ky
integrals yield constant factors, (27r/c)s and 2(2'/b), respectively. The third k set of integrals provide a temperature
dependent term, (k~T) /2(hv~) Substi. tuting back into Eq. (1) we obtain a linear (I) contribution to pb

(,) g «(U,'~~ + U,
~~

+ U, ~ + U,~)kaT
Pb 16 sin(akim )bt

~~
tq

(6)

where U;~~ and U;~ are Hubbard-like electron-electron interactions, as defined by Eq. (4), for electrons with parallel
and antiparallel spins, respectively.

The calculations for the c direction are completely similar and the result can be obtained from Eq. (6) by the
substitutions b ++ c and tb ++ t .

Case (B). For an electric field applied along the 6 direction, the entropy production integral 2' can again be
factorized into three terms corresponding to difFerent space directions:

2; = El*, (2lc) 'k '(bobVovi)* f d'k )b(k*+.k'. —kl. —kl', —G.)

x d'ky sin bky +sin bky -sin bkly —sin bkly b -2tb cos bky +cos bky —cos bkly

cos(bkl )]) E(ks +@ s kls kl s Gs) /d k b(k + k kl kl ) ff (1 fl)(1 fl)

The k, and k„ integrals yield constant factors, (2m/c) and 64/tabb, respectively, while the k integral is equal to
(2vr /3)(k~7/hv~) The final . result is a quadratic (q) terin:

( ) g ac(U2~] —U2~)(kiter)
Pb (8)e2 67r sin(ak~) ht]] t&3

Unlike the previous cases, the corresponding calculation for the c direction is much more complicated because the
k and ky integrations cannot be decoupled:

2' E (2O) 2 (1 CVCV~) /d k b(k +k kl kl ) ff (1 fl)(1 fl)
2

x d kz b kz + k'z —klz —ky'z —G sill ck + sin ck' —sin ckj, z —sin ckl'

ky 8 ky+k y kly kl y Gy b 2tb' cos 6ky +cos bky
G„

We notice that the k„part of the integration diverges
logarithmically for small t . Therefore we have to keep
the t part of the electron spectrum within the b function
as a cutoK The calculations can be done approximately
if t (& tb. Eventually we obtain that the T part of p is

g ab(U2]] + U2~)E(t, /t(, )(kiiT)
e2 487(. sin(ak~) ct]]tbt2

—cos(bkls) —cos(bkl )] 21 ]coo(ck ) + cos(ck ) —cos(ckl ) —cos(ckl )]). (9)

where E(t /t(, ) = 6.1 —3.61n(t, /t(, ) + 0.51n (t, /tb).
The above equations for pb and p can be compared

with experimental data for the Bechgaard salts. We do
not discuss pb here because although experiments clearly
show T behavior there is still some doubt about the
magnitudes. Furthermore, some numerical factors may
be altered because of the monoclinic structure. Usually
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band formulas are only valid when the mean free paths
are larger than the lattice constants, which means that
Eqs. (6), (8), and (7?) may only apply for ps & 0.007 0
cm (if t~~/tb = 17) and p, & 0.03 Ocm (if t~~/t, = 250).

Figure 2 shows experimental data for p, * (T) of
(TMTSF) 2C104 in the slowly cooled (relaxed) state
where the C104 anions are well ordered. A second-order
polynomial fit enables possible linear and quadratic con-
tributions to be estimated. Similar data were obtained
for the two other crystals studied. The magnitude of the
linear term corresponds to a resistivity of 0.035 Acm at
12 K [taking p, *(300 K) = 6 0cm (Ref. 2)j. An up-
per limit to the phonon contribution to p, (T) is given by
scaling p (T)(Ref. 14) by v2/v2; at 12 K it is a factor
of 5 lower than the latter value. The value of t deter-
mined from the low-temperature magnetoresistance is
1+ 0.2 meV. Together with the other parameters given
previously and the appropriate form of Eq. (6) for p„we
find an average value U 0.64 eV.

Using the above value of U we can estimate the ex-
pected T2 term in p, * of (TMTSF) 2C104 from Eq.
(10). The theoretical value corresponds to a resistivity
of 2.5x10 0 cm at 12 K, which is a factor of 10 lower
than the experimental value obtained from the fits shown
in Fig. 2. So the present analysis cannot account for
the crossover in p, * from T to T observed near 15 K.
The doubling of the 6 lattice parameter associated with
the anion ordering transition in (TMTSF)2C104 at 24 K
makes the value of tg somewhat uncertain, but this can-
not be responsible for such a large discrepancy because
the T term in p, * only changes by 30%%uo above 24 K. '

The possible reasons for this discrepancy are either the
monoclinic symmetry or the short mean &ee path. How-
ever, in the latter case one might expect unusual effects in
magnetoresistance in this temperature range which were
not observed.

Although we have not calculated p (T) there is evi-
dence for a T dependence &om 20 K down to the
superconducting transition. Further work is needed to
see whether this is caused by electron-electron scattering
and whether it can account for hot spots or hot strips
which may be responsible for the anomalous magnetore-
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FIG. 2. Normalized resistivity versus T for a represen-
tative crystal of (TMTSF)2C104 in the low conductivity c*
direction. The inset shows the data on a linear tempera-
ture scale. In both cases the solid line is a polynomial Bt:
R/Rsoc ——0.001 79+ 7.21 x 10 (T/15) + 7.0 x 10 (T/15)
i.e., the T term becomes dominant above k~T 1 meV t .

We have benefited &om useful discussions with S.
Barisic, A. Bjelis, L. Forro, D. Jerome, and S. Tomic.

sistance and magic angles, respectively.
Finally the present analysis implies that measurements

of the pressure dependence of p„ in combination with a
determination of t, &om magnetoresistance, could be
used to follow the pressure dependence of the effective
Coulomb interaction U (caused by changes in screening)
and its connection (if any) with the suppression of the
superconducting transition temperature.

On the theoretical side another question is whether
the relatively large low-temperature value of U (- 0.6
eV) obtained here is at all consistent with, for exam-
ple, the low spin density wave ordering temperature of
(TMTSF)2PFs (12 K). Perhaps the answer to this lies
in the anomalous screening effects and the momentum
depend. ence of the Coulomb interaction in these highly
anisotropic compounds.
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