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Logarithmic corrections of one-dimensional S = — Heisenberg antiferromagnet
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We investigate the eff'ect of the marginal operator on the critical exponents of the one-dimensional
S = — Heisenberg model, using the relation between the critical exponents and the energy gaps of
the finite system. The energy gaps behave as AE oc 1/L with the logarithmic corrections from
the marginally irrelevant operator. The numerical results obtained with the Bethe ansatz are well
explained by the two-loop renormalization of the marginal coupling. Thus the discrepancies between
the one-loop renormalization prediction and numerical results are resolved, though it is found that
the nonuniversal constant of the logarithmic correction in the ground state does not agree with the
asymptotic expansion of the Bethe ansatz.

The one-dimensional Heisenberg mod. el

L

H = ) S; S,+i

is one of the simplest many-body problems but shows
several nontrivial behaviors. It is discussed that half-
odd-integer spin Heisenberg models belong to the same
universality class as the S=l/2 case, and so it is impor-
tant to understand the S=l/2 Heisenberg model more
deeply.

The various properties of the S=l /2 Heisenberg model
are well understood. The energy eigenvalue problem
is solved using the Bethe ansatz. Unfortunately, the
spin correlation cannot be calculated with the Bethe
ansatz. The critical exponent g of the spin correlation
(So S ) oc (—1)'r " has been obtained as rl = 1 indi-
rectly by bosonization. However, results of exact diag-
onalization are somewhat diferent from this value. It
was pointed out that the umklapp process produces a
logarithmic correction, ' and this term makes the con-
vergence of the 6nite-size correction extremely slow.

Another approach to investigate the correlation func-
tion is to use conformal field theory. The critical expo-
nent is related to the energy gap of the finite-size system
with periodic boundary conditions,

E„(L)—Eo(L) = 27rvx/L, 2x = rl. (2)

The other important formula is the finite-size correction
of the ground state energy

Eo(L) = eoL —7rvc/6I,

where c is the conformal anomaly number that plays a
central role in conformal field theory. In (2),(3) v is the
"sound velocity" for the model [in this case v = 7r /2 (Ref.
9)]. The finite-size corrections of the ground state energy
and the energy gaps of the S=l/2 spin chain can be ob-
tained with the Bethe ansatz, and these results indicate
that c = 1 (Refs. 10 and ll) and x = 1/2. Although for
c ( 1 the assumption of conformal invariance and unitar-
ity yields a discrete set of possible value of c and critical
exponents, there are no constraints on c and critical expo-
nents for c & 1. Nonetheless if the system has an internal
non-Abelian symmetry, such as SU(2) of the spin chain,

there are other restrictions on the critical indices (Kac-
Moody algebra). In our case, the S=l/2 Heisenberg
antiferromagnet corresponds to the SU(2) Wess-Zumino-
Witten (WZW) model with topological coupling k = l.

In addition to relevant operators, in the WZW model
there is a marginal operator JI. JR, which causes
logarithmic corrections on the energy gap, the spin-
correlation function, and other quantities. However,
it is found that there are some discrepancies between
the one-loop renormalization prediction and the numeri-
cal results obtained with the Bethe ansatz for the finite
system. In our previous paper, we noticed the impor-
tance of the two-loop correction. %e consider in this
paper the two-loop renormalization of the marginal op-
erator more deeply.

Conformal invariance is exact only at the fixed point.
In general there exist irrelevant operators, which produce
finite-size corrections vanishing more rapidly than 1/L.
We can calculate the correction terms if we know the
operator product expansion (OPE) of irrelevant opera-
tors and other primary fields at the fixed point. Let us
consider a critical Hamiltonian as

H = H" +g d xP(x), (4)

where H* is a fixed point Hamiltonian and P is an irrel-
evant operator whose scaling dimension is x. Mapping
this onto a cylinder and carrying out the erst-order per-
turbation, we obtain

E (L) —Eo(L) = 2vr l' 27r )x„+2nb„g
/

(for simplicity we set v = 1). Under a change of
length scale, the coupling g satisfies the renormalization
equation

7rbg(l) = 7rbgo/(1 + 7rbgol) = 1j(ln L + 1/7rbgo),

P(g)—:dg/dl = (2 —x)g —7rbg + 0(g ).
The OPE coeKcients b, b are related to the normaliza-
tions of the three-point functions of P, P„, and the ra-
tios of them are universal.

When P is marginally irrelevant, that is, x = 2 and
bg(l) ) 0, the solution for (6) is
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where we set e = L. Substituting this into (5), we see
that

-( ) — o( )= —I'-+2ir ( 2b„ 1
(8)

dg jdt = 7rbg ——vr dg,
and integrate this; we obtain

»(L/Lp) = I/abg —(d/b ) 1n(1/~bg + d/b ).

For L )) 1, this is approximated as

(10)

1 d ln[ln(L/Lp) + d/b ]

ln(L/Lp) bz lnz (L/Lp)
It is shown that the SU(2) k = 1 WZW model is equiv-

alent to the sine-Gordon model at P = 8n. From the
two-loop P function of the sine-Gordon equation, the con-
stants b, d of Eq. (9) satisfy d/b = 1/2. 2P The two-loop
P functions for the general WZW models can be deduced
from those of the chiral Gross-Neveu models, which
have been proven to be equivalent to the WZW models.

Another important efI'ect of the marginal coupling is a
correction of O(g ) to the ground state energy,

For the SU(2) k = 1 WZW model, the scaling dimensions
of the lowest triplet and singlet excitations are xq ——x, =
1/2. In this case, the coeflicients b, b are easily obtained
by the OPE of the currents JL, J~ and other primary
fields in the Kac-Moody algebra. These are b&/b = —1/8
for the triplet excitation and b, /b = 3/8 for the singlet
excitation.

In Eq. (6), we treat the P function up to O(g ), '

and we obtain the O(1/lnL) correction. If we con-'
sider the P function up to O(g ), there appears an
0( ln(ln L) j(ln I )z) term, which cannot be negligible
until L becomes very large. Since higher-order terms
than O(gs) depend on regularization, we neglect these
terms. ' Consider the next equation

The ground state has L/2 real A, the lowest triplet state
has L/2 1 r—eal A, and the singlet excited state has I /2 2—
real A plus a complex pair at +i/2.

Applying the Euler-Maclaurin formula and a Wiener-
Hopf integration to (13), Woynarovich and Eckle, 2s

Avdeev and Dorfel, and Hamer et al. obtain ana-
lytically the asymptotic behaviors of the ground state
energy, the triplet excitation, and the singlet excitation.
Their results are consistent with those of conformal field
theory taking account of the marginal operator up to the
one-loop order.

Unfortunately, there are still no analytic results up to
the two-loop order. So we solve the Bethe ansatz equa-
tions (13) numerically and compare these results with the
predictions of conformal field theory with the marginal
operator up to the two-loop order.

Numerical Bethe ansatz results were obtained for the
ground state energy and the lowest triplet and singlet
excited states energy by Avdeev up to L = 480 and
AfHeck et al. up to L = 2048. We calculate these energy
eigenvalues up to L = 16384. These results are shown
in Table I. In order to extract the critical exponents and
finite-size corrections by irrelevant operators, we use the
following notations in this table:

c(L) = (6L/harv) [epL —Ep(L)],
x~(L) = (L/2~v) [&~(L) —Fp(L)]
x.(L) = (L/2~v)[E (L) —&p(L)]

In the large limit(I -+ oo), these values become c = 1
and x~ = x, = 1/2, but convergences are extremely slow.

We investigate the efFect of the marginal operator from
these data. Several authors ' ' have noticed that the
O(ln[ln(L)]/[ln(L)] ) term in (ll) is important to inter-
pret numerical data. In this paper we will use Eq. (10)
directly. First we consider the triplet excitation. From
Eq. (8), we obtain

~bg, (L):—4[-,' —x, (L)] = 7 bg(L),

Eo(L) ="L—( /6L)[ +(8/b')( bg)']. (12)

Thus the correction from a marginal operator to the
ground state energy converges much faster than those
of energy gaps. Note that although ratios of b, b are
universal, the number 6 itself depends on normalization
of P.

The eigenvalues of the Heisenberg Hamiltonian (1) are
given by the following Bethe ansatz equations:

(A, +- i/2)

M
Ai, xl

.--- (A. —AA, + i)k=1

(13)

(14)

where M is related to the total spin S as S = I /2 —M.
From these roots (Ai), the energy eigenvalues are given

by

TABLE I. Numerical Bethe ansatz results. c(L), xq(L),
and x, (L) are defined in Eq. (15).

L
256
320
384
512
640
768

1024
1280
1536
2048
2560
3072
4096
5120
6144
8192

10240
12288
16384

~(L)
1.0010323251382
1.0009288547119
1.0008553503974
1.0007556014624
1.000689395739
1.000641274677
1.000574490607
1.000529206963
1.000495806787
1.00044876532
1.00041640617
1.00039229458
1.00035797509
1.00033411561
1.0003161996
1.0002904886
1.0002724630
1.0002588428
1.0002391643

«(L)
0.46483064034411
0.46598413601509
0.46686952717954
0.46817285465041
0.4691125952419
0.4698386771392
0.4709150256942
0.4716966703695
0.4723037914637
0.473208906275
0.473870027515
0.474385755907
0.475158223449
0.475725181338
0.47616905245
0.47683651084
0.47732839655
0.47771467578
0.47829748719

~.(L)
0.62048957293961
0.61611034218623
0.61276252507011
0.60785771757117
0.6043396084766
0.6016325407402
0.5976382879858
0.5947521988068
0.5925192144511
0.589204710787
0.586794911158
0.584921763161
0.582127270984
0.580084852983
0.57849099708
0.57610288561
0.57434963108
0.57297679508
0.57091218791

where mbg(L) is defined by (10). Analyzing our data
for L=1024—16384 based on this form, we obtain L0 ——

0.5653(2). In Fig. 1 we compare the eR'ective coupling
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FIG. 1. Comparison of the effective coupling constant
gt, (+) and the two-loop renormalized coupling (solid line).
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7rbgt and the two-loop renormalization prediction (10).
In the whole region the agreement of both is good. This
indicates that there is no O(g ) or higher correction.

Next we consider the singlet excitation. In Fig. 2 we
plot the g, /gr. as a function of vrbgt, where 7rbg, is defined

vrbg, (L) —= 4 [2:,(L) —-']. (17)

Figure 2 indicates that the marginal correction of the
singlet excitation contains not only the O(g) term, but
also an O(g ) term. These results are represented as

7rbg, (L)= c,7rbg, (L) + c, [~bgr. (L)]',
(18)

ci ——1.00065(6), cz ——1.0198(7),

Perhaps beth c1 and c2 may be a universal value 1.
As for the 6nite-size correction of the ground state en-

ergy, to extract the coefficient of the (vrbg) term, we plot
[c(L) —I]/(7rbgq) as a function of 7rbgr 1/ ln(L) in Fig.
3(a). The coefficient of (7rbg)s approaches a constant
0.365 and there is no O(g ) term. About the irrelevant
operator, there is an O(L z) correction which comes from
the operator I zL zl {Ref. 17) [see Fig. 3(b)]. The am-
plitude of O(L ) is large since it occurs in first order,
while other irrelevant operators occur in second order.
These results are represented as

FIG. 3. (a) (c(L) —1)/(7rbgr) as a function of the vrbgq

It seems that the coefficient of (mbg) approaches a constant
0.365. (b) (c(L)—1)/(7rbg) as a function of the 1/((7rbg) I ).
This indicates that c(I ) has an Q(L ) correction besides
Q(g ).

[r(O/Or) + P(g)(O/Og) + 2p„(g)]G„=0. (20)

The regularization independent parts of P(g) and p„(g)
are14)19

p(g) = 7rbg ——~ dg, p„(g) = z„+27rb„g

Using these relations, we obtain

G„(r,g) = G„(rp) exp
"dp'

, 2p„= Cg„{r), (22)

formula which is used to replace a sum with an integral
(also see Appendix). These higher terms change the val-
ues of the largest root A and root density r71, (A), OL (A),
etc. As for the universal constants corresponding to
x, 26 /6 in {8), the effects of A, oI. (A), . . . are canceled
out, but in the case of the nonuniversal constant corre-
sponding to 6 in (12), it is necessary to take account of
the variation of A, rTL, (A), . . ..

Finally we consider the spin-correlation function. The
Green function G (r) = (P (r)P {0))obeys a renormal-
ization group equation

c(L) = 1+ cs (vrbg(L)) + c4L
cs ——0.36516(2),
c4 ——1.66(6) .

where

g„(r) = r *"[1/7rbg(r) + d/6'j

(23)

Our fit 0.365 for the coefficient of (ln L) agrees neither
with 0.3433 by Woynarovich and Eckle s nor 3/8 by Af-
Beck et al. An explanation of the contradiction is the
dropping of higher-order terms of the Euler-Maclaurin

1.15,

The spin-correlation function is proportional with the

(—1)"(S„~Sp) /gt (T)
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FIG. 2. g, /gq as a function of the mbgr, . This indicates that
g, has an Q(g ) correction besides g.

FIG. 4. (—1)"(S„.Sp)/gq(r) as a function of r The cor-.
relation functions (S„Sp) are Monte Carlo data by Kubo e&

al. (Ref. 29).
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Green function

(S~ So) oc (—1)"Gt (r) + const/r (24)

where xt ——1/2 and bt/b = —1/8. In Fig. 4, we compare
Q&(r) with the Monte Carlo data by Kubo et al. 2s Al-
though the length of chain is rather small, the agreement
of two results is pretty well. Remaining corrections seem
to be of power-law type.

Kubo et al. concluded that (S„So) oc (—1)"(lnr) /r
from their data, which contradicts the one-loop renormal-
ization prediction (—1)"(lnr) /r. s By taking account of
the renormalization up to the two-loop order, this dis-

crepancy is cleared up.
In conclusion, the two-loop renormalization of the

marginal coupling well explains the numerical Bethe
ansatz results. It is expected to calculate the Io of Eq.
(11) by the analytic Bethe ansatz and to reexamine the
derivation of the nonuniversal coefficient of (lnL) in
the ground state energy.
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APPENDIX

When A~ are all real, (13) is rewritten as LP(Ai) = 2irI~ + P& i P((Ai —Ai, )/2), where P(A):—2arctan(2A), and
the I~ are integers or half-integers. Following Woynarovich and Eckle, we define a function zl, (A) = (1/27r)[P(A)—
(1/L) P i P((A —A~)/2)] and its derivative crl. (A) = dzr, (A)/dA, so that zl, (A&) = I~/L. We also define the inverse
function of zL, (A) as A(zl, ). One can use the Euler-Maclaurin formula to show that

—) g(A, ) =
A{z )

1 1 d
~(A(z))«+ 2L b(A(z-)) + g(A(-z-))]+»L, —„~(A(z)) —

d
~(A(z))

dz dz
Zrn

720L4 d s &( ( ))
d3

g(A(z)) + higher terms.

In the third term the magnitude of the parenthesis is (d/dz)g(A(z))~, ='
[ /Icr I( A)]g( A), and in the fourth term

o~ (A)2, a-~ (A), o(A~) „1
g(A(z)) = 3 g'(A) — g'(A) —3 g" (A) + g"'(A),

Zrn

where A = A(z ). Considering that crl, (A), ol (A), o'I'(A) are O(1/L), the contributions of the third, fourth, and
higher terms are O(1/L).
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