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We examine the nature of the singlet excitations introduced recently to describe the spin dynamics of
the antiferromagnetic Heisenberg model with anisotropic coupling. It is shown that they excite spin
waves polarized linearly, as opposed to the usual magnons, that are triplet excitations and correspond to
circularly polarized waves. The approach yielding the singlet excitations give more accuracy than ordi-
nary spin-wave theory, which shows that the absence of linearly polarized modes is an important flaw of

the latter.

We present here insight into a formalism developed in
recent years for dealing with the antiferromagnetic
Heisenberg model with anisotropic coupling between the
spins.! ™8 This approach provides a more accurate
description of the ground state than common spin-wave
theory6’8 and shows that a class of excitations, additional
to magnons, may be important in the spin dynamics of
antiferromagnetic materials. The development we are re-
porting now clarifies the physical meaning of these exci-
tations and makes apparent the essential difference with
magnons.

The lattice is separated into spin-up and spin-down
sublattices.® The one associated to spin up is character-
ized by a set of N /2 vectors denoted R. The other one is
described by the vectors R-+8, where §, is any of the
vectors 8 which connect a lattice site with their z nearest
neighbors. A translation in 8§ always implies a change of
sublattice. With this notation the anisotropic Heisenberg
Hamiltonian becomes

H=JS |s,(R+8)s,(R)
RS

+%[s+(R+8)s_(R)+s+(R)s_(R+8)] ,

(D

where J is a constant, s; (i =x,y,z) is a component of the
spin assigned to the lattice site stated in the argument, a
is the anisotropy parameter, and s+ =s, tis,.

T?g 2gnethod starts with the observation that the opera-
tors™™

1

¢§(k>=m~ e™®Rs  (R+8)s_(R)
R
s YN B @

where the vector k runs over the Brillouin zone associat-
ed to one of the two sublattices determined by the antifer-
romagnetic spin alignment, become good Bose excitations
of the Hamiltonian (1) if high antiferromagnetic order is
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assumed. More precisely, in the asymptotic limit a—0
one can write®%8

[$5(k), 81K )1 =85 58 » [B5(K),bx(k')]=0  (3)
and

[H,5(k)]=(2z8 — 1)J (k) . @)

Hence the ¢ excitations allow us to write H in diagonal
form, with the ground-state energy E, as an additive con-
stant. Within the limitations posed by the approximation
of the theory the ground state |g ) and its energy can be
determined explicitly yielding*®?

aS ~5
— L By (o) —
lg)=exp| = N/2§[¢8(0) $5(0)] | IN)
(5)
and
Ey =_Z _a® (6)
NJS? 2 2z8 —1 |’

where |A) is the Néel state assigning the spins up to the
sublattice {R}.

The procedure is shown to be valid for 0<a<1. In
one dimension and § =1 the theory proved to be highly
reliable and accurate for 0<a <0.5 in all calculations.?
The validity range is expected to increase with S. The
precision of the theory proves to improve rapidly with
the lattice dimensionality. Equation (6) for the two-
dimensional square lattice (z =4) and S = turns out to
be accurate to better than 0.5% over the whole range
0<a=<1.*®

The theory outlined above was subsequently general-
ized® to the range 1 <a < «. The parametric phase tran-
sition conjectured by Barnes, Kotchan, and Swanson® for
the square lattice at @ =1 on the basis of numerical calcu-
lations was clearly obtained. The expression for the
ground-state energy given by the extended theory reads®
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Table I compares the ground-state energies given by
(7) with the quantum Monte Carlo (MC) results ob-
tained by Barnes, Kotchan, and Swanson® which, to our
knowledge, are the state of the art in the numerical com-
putation of the anisotropic S =1 Heisenberg model in
two dimensions. The agreement is better than 0.5% for
any a in the interval 0.4<a<1.4. As spin order in-
creases with the lattice dimension one can presume that
the agreement is even better in three dimensions. The re-
sults of spin-wave theory are also given in Table I. The
advantages of the present approach over linear spin-wave
theory to describe the ground state of the Heisenberg
model become apparent.

The new excitations are essentially different from the
antiferromagnetic magnons of spin-wave theory. An im-
portant distinction is the spin of the quasiparticles. The
¢ excitations are associated to operators which are sums
of terms of the form s, (i)s_(j), where i and j denote
neighboring sites. Thus they cannot modify the total spm
when operating on a state and, consequently, create spin-
less quasiparticles. On the contrary, the excitations of
spin-wave theory follow from a Holstein-Primakoff trans-
formation yielding Bose operators which are sums of odd
products of the ladder operators s, and s_. Thus the
magnon operators change the total spin in one unit when
operating on any state and can be thought of as spin-one
excitations.

The ground-state energy given by linear spin-wave
theory (that considers no magnon interaction) departs
significantly from the exact one-dimensional results of
Orbach, '° or those of reliable numerical computations in
two dimensions,® as a goes to zero. Though reaching the
right value at the Ising limit @=0 the asymptotic
behavior for a=0 is clearly wrong. On the other hand,
the present method gives, within a scheme of free bosons,
the right asymptotic behavior of any physical magnitude
when approaching the Ising limit. This strongly suggests

TABLE 1. Ground-state energy E,(a)/(NJ). The square lat-
tice z =4.

a MC results? Eq. (7) Spin wave
0.40 —0.528 —0.527 —0.521
0.60 —0.562 —0.560 —0.548
0.80 —0.607 —0.607 —0.590
0.85 —0.620 —0.620 —0.603
0.90 —0.634 —0.635 —0.619
0.95 —0.653 —0.650 —0.636
1.00 —0.669 —0.667 —0.658
1.05 —0.694 —0.691
1.10 —0.717 —0.717
1.20 —0.769 —0.768
1.40 —0.873 —0.871

“Data from Ref. 9.
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that the problem with spin-wave theory is the lack of
spin-zero excitations, which become more relevant when
approaching the Ising limit.

The Holstein-Primakoff transformation is exact provid-
ed the additional restriction is imposed that no more than
2S5 +1 spin deviations can occur on any particular lattice
site. Hence the failure of linear spin-wave theory in giv-
ing the right asymptotic behavior when going to the Ising
limit is a consequence of the drop of magnon interac-
tions. Manousakis has shown that interactions yielding
magnon palrmg are of paramount 1mportance in the
ground state.!! This is quite intuitive since the action of

a single magnon operator always changes the state to a
subspace of different total spin. To keep within a sub-
space of given spin one has to add magnons in pairs. Al-
though the results of our method applied to the square
lattice are somewhat better than those of Manousakis the
two approaches are in the same spirit.

In this paper we demonstrate that the ¢ excitations are
associated with spin waves. polarized linearly. This pro-
vides a physical meaning to the excitations and insight
into the structure of the ground state and spin dynamics
of the Heisenberg antiferromagnet. Common magnons
excite spin waves constituted by coherent motions of the
different spins precessing circularly, which shows that the
two kinds of excitations are complementary. It follows a
physical explanation of why linear spin-wave theory
works better for isotropic, or very close to isotropic,
spin-spin interactions (a= 1) and rapidly breaks down as
a departs from unity. It is expected that the circular po-
larization of the spin projections on the XY plane be
enhanced for isotropic exchange.

Turning to the Heisenberg picture the equations of
motion of the z components of the spins

SZ(R)Z%[H,sZ(R)], s'z(R+8)=—;—[Hs (R+8)]  (8)
become
§Z(R)=—é— %g [s4+(R+8)s_(R)—s, (R)s_(R+8)]
©)
and
SZ(R+8)=—%J%§[s+(R+8)s_(R+8—8')
—s (R+8—8)s_(R+8)] (10)

after replacing the Hamiltonian (1).

On the other hand, inverting the lattice Fourier trans-
form appearing in the definition (2) of the ¢ operators
gives

2
2SV2/N S e~k Rgl () — 25

< 2285 —1°
(11

s+ (R+8)s_(R)=

On replacing this in Eqs. (9) and (10) the equations of
motion become



48 BRIEF REPORTS

5,(R)= -IMW/N 3 [ R (k) —e ~ R RpL(K)]
kd’
(12)
and
. 8ol s ik-(R+8—5)
$,(R+8)=i V2/N 3 [e ds(k)
k&’
_e—ik-(R+8'~8')¢gl(k)] i
(13)
The equations written above are exact. Introducing
now the exponential time dependence
ok, 1)=¢}(k,0)e’" (14)
J
5,(R+8,1)=F,(R+8)— 2“;“" VN

The time-independent operators 5,(R) and 5,(R+8) are
integration constants that represent the time average of
the projection of the spins.

Equations (16) and (17) make apparent the nature of
the excitations as propagating spin waves in which s,
varies periodically through the lattice. Since the modulus
of the spins is fixed this implies that the angle they sub-
tend with the z axis varies the same way. Thus the waves
are polarized linearly. The zero-point amplitude of oscil-
lation is

5 Vz
85, =1/ {ls,—5, ) =5 22a. (18)

The calculation of mean values with respect to the
ground state (5), and the excited states obtained from it
by the action of the operators (2), deserves a word of cau-
tion. The exponent appearing in the expression of the
ground state is proportional to aV'N. Then the parame-
ter a is multiplied by a very large number and, unless
a<<1/V'N, the exponent is always significant. This way
the ground state has a discontinuity of width 1/V'N at

2/N2[€ (k'R—wt), ik-(8— 6)¢ (k,0)+e™
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with
2z8 —1
=—V s
#
of the ¢ operators, which rests on the approximation that

they represent good excitations of H, Egs. (12) and (13)
can be integrated. The procedure yields

(15)

)=3,(R)+ 2 \/2/N

s, (R,
2z8 —
X 2 [ei(k~R—wt)¢5l(k’O)
k&’
e MRRTONGLK,0)],  (16)
and

i(k'*R— wt) —ik-(8— 6)¢T kO)] (17

a=0 and the Néel state |.N') does not connect adiabati-
cally with the ground state for finite values of the param-
eter. Calculations involving the ground state cannot be
accomplished by simply expanding the exponential in a
Taylor series and retaining only terms with small powers
of a. A procedure for deriving power expansions of
mean values to finite order in « is given in Ref. 6.

The operators (2) do not change the total spin. Then
they are not sufficient to generate the whole Hilbert space
of states of the system starting from the ground state. As
the ground state has spin zero the set of the ¢ operators
spans just the subspace of states with vanishing total spin.
In this sense it is not complete and additional spin-one
excitations, like magnons, are needed to leave the spin-
zero subspace and generate the rest of the Hilbert space.
In any event the results displayed in Table I indicate that
the ¢ excitations have the main role in the construction
of the ground state starting from the Néel state.
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