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XH defects in nonmetallic solids: General properties of Morse oscillators
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As part of a program to investigate light-atom vibrations associated with defects in nonmetallic
solids, we have developed a general, dimensionless procedure to solve for the energy levels, wave func-
tions, and transition-matrix elements for Morse oscillators. We can thus readily investigate transition-
strength anomalies associated with electrical anharmonicities such as those recently observed in certain
OH and OD systems in alkali halides. A center-of-mass correction in adapting the OH dipole mo-
ment function to OD is of central importance in interpreting isotope effects on fundamental and over-
tone transition strengths.

Introduction. The physics and chemistry literature is
replete with accounts of the infrared properties of sys-
tems involving hydrogen attached to a heavier atom,
commonly called LH systems. ' ' Such systems may be
diatomic or more complex molecules, hydrogen attached
to a surface, or hydrogen-related defects in solids. This
work has led to several general conclusions, among which
are the following: first, hydrogen is suKciently light that
anharmonicity in the XH bond must be taken into ac-
count; second, a model of a free diatomic system is a fair
first approximation for obtaining vibrational frequencies,
but for some properties the environment plays an impor-
tant role; third, electrical anharmonicity in the electric
dipole moment is a crucial feature in determining the
strengths of fundamental and overtone infrared bands. '

In 1991 Fowler, Capelletti, and Colombi' published a
theoretical technique to deal with this problem, focusing
particularly on OH and its isotopes in insulating solids.
They introduced a reasonable, but ad hoc, treatment of
such systems as single Morse oscillators' whose reduced
mass depends on the coupling of the heavy atom to the
environment. Within this effective Morse oscillator mod-
el, they investigated electrical anharmonicity effects in
the framework of the Sage' form of the electric dipole
moment function, and noted ranges of Sage's parameters
which could yield unexpectedly strong overtones or weak
fundamental IR absorptions. They applied this technique
to OH and its isotopes in a variety of systems, including
defect complexes in alkali halides.

More recently Luty and co-workers' have greatly ex-
panded the available data on such systems by investigat-
ing fundamental and overtone spectra of OH and OD
in 15—20 alkali halide hosts. They have found both regu-
larities and anomalies in their observed data, with partic-
ular anomalies occurring in connection with some of the
IR absorption strengths.

In view of these results, and of the likelihood of a fur-
ther explosion of data associated with the importance of
hydrogen-related defects and the availability of high-
resolution Fourier transform infrared spectrophotome-
ters, we have been motivated to develop an analysis tech-
nique that would be both generic and easily applied. This
paper discusses that technique and some applications.

Theory. Our goal is to develop a simple, accurate, gen-

V(R ) =D, [exp[ P( R —R, ) ]—1—]
where R, is the equilibrium separation and D, and p are
constants. The exact solution of the Schrodinger equa-
tion yields term values given by

G(n) =co, [n + —,
' ][1—x, (n + —,')],

where

co, =P(D, /2~ pc )'

co,x, =Pip /4m pc, (4)

eral and easily applied technique to analyze IR spectra of
XH systems. We will thus make some approximations
which, although not necessary, are desirable in the in-
terest of simplicity. For example, because the model of a
free diatomic is rather accurate for determining energy
levels, ' we will use that approximation. We will also use
a Morse potential to simulate the anharmonic XH bond.
This is consistent with a wide array of literature; Morse
potentials are used even for states of large quantum num-
ber, while our applications will all involve transitions
from the n =0 state to n = 1, 2, or 3.

Since we are using a Morse potential„we could in prin-
ciple obtain analytical solutions for the Schrodinger equa-
tion as well as for the matrix elements necessary to ana-
lyze the transition probabilities. We have instead chosen
to carry out these calculations numerically, solving the
time-independent Schrodinger equation using a Runge-
Kutta algorithm. There are several reasons for this, the
main one being the ease with which dipole moment func-
tions and anharmonic potentials of arbitrary form could
be used as desired. The existence of analytical values for
energies and moments has allowed us to check our re-
sults, and in general there is agreement in these quantities
to within a few hundredths of a percent.

The computer code was written in Turbo Pascal. The
code was designed with particular attention to versatility
and reusability. To meet this specification, object-
oriented code was used. The final version is menu-driven
and is easily modified as desired.

The Morse potential is given by
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and p is the reduced mass of the system. Note that in
Eqs. (3) and (4) co, is expressed in wave numbers, while

D, is an energy. Thus, for example, if we choose as sam-
0

pie values D, =3 eV, P=2 A ', and pc =9.3X10 eV,
then m, =2556.7 cm ' and x, =0.0264.

Reference 15 discusses various ways to combine these
expressions with experimental data to determine the
relevant parameters. Measurement of the fundamental
and the first overtone for a given system leads to a deter-
mination of co, and x, . Combining Eqs. (3) and (4) then
yields an expression for D, :

D, =(co, /x, )(Mc/2)

and for a combination of P and p:

P /p, c =4m', x, /A'c .

(5)

x =P(R —R, ), (8)

Further information about the reduced mass can come
from measurements on isotopes. For example, by com-
paring the wave number for the fundamental transition of
an XH system to that of an XD system, one can deter-
mine the ratio of the reduced masses of these two sys-
tems. The ratio can be tested against various force-
constant models for the defect. As noted above, in the
present analysis we treat the system as a free diatomic, in
which case the reduced masses are known.

In the present calculations we write a reduced and di-
mensionless form' of the Schrodinger equation as

qI" =7/[U(x) —e]%,
where x is a dimensionless distance given by

function to be used in calculating transition probabilities:
one, as a Taylor expansion in x, and two, as some analyti-
cal function such as that used by Sage. ' The Sage func-
tion, written in terms of x, is

S(x)=k(x+PR, )exp( —x/PR*)+C . (13)

P and R, are Morse potential parameters introduced in
Eq. (1), while R* is a new parameter which defines the
detailed shape of the Sage function and C is an additive
constant.

A final crucial point in utilizing the dipole moment
function is to recognize that for a molecule that has a net
charge the dipole moment must be expressed relative to
the center of mass of the molecule. ' This means that
the dipole moment functions for, e.g., XD and XH
will not be the same. Rather, there will be a difference
which is linear in x. The Appendix shows that for a free
diatomic molecule with net charge —

l el the difference in
dipole moments is given by

M~ —MH

(M +M )(M +M )

(14)

where p is the electric dipole moment and R is the
hydrogen-X separation.

Applications to OH and OD . Application of the re-
sults of the preceding section begins with an expression
for poH as a function of x, and a corresponding expres-
sion for pzz which differs from poH according to Eq. 14.
Using values of oxygen, hydrogen, and deuterium masses
for this case, we find

c is a dimensionless energy given by

c =E/D, ,

U(x) is a dimensionless Morse potential given by

~p =o.0523lelR .

In terms of x this becomes

~p = (0 0523
I
e

l /P) (x +PR, ) .

(15)

(16)

u(x)=(e —1) (10)

and q is a dimensionless parameter which by combining
D„P,co„andx, we may write as

To calibrate this correction in terms of our dimension-
less units, we have approximately fitted the Werner,
Rosmus, and Reinsch center-of-mass dipole moment
function for free OH to a quadratic, obtaining

g = 1 /(4x 2
) . p&H =0.383+0.3225' —0. 1656R (17)

Finally, combining the above equations, we may write the
dimensionless energy c as

s„=4x,[n +—,
' ][1 x, (n+ —,

'—)] . (12)

We thus have arrived at a very convenient working
version of the Schrodinger equation for the Morse prob-
lem, with only one parameter. And this parameter, x„is
one that in practice does not vary much for a given XH in
different environments. Thus we expect that by choosing
a single representative value of x, for XH we may con-
centrate on this single generic version of the problem.
The corresponding value of x, for XD may be obtained
by noting that x, is proportional to p '~, where the re-
duced mass p is calculated for the pertinent diatomic sys-
tem (e.g. , OH or OD ).

There are two possible ways to treat the dipole moment

R =0.8475x+1.82 (19)

poH =0.4214—0.2375m —0. 1189x

po~ =0.5166—0. 1932~ —0. 1189~' .

(20)

(21)

We next expand the Sage function [Eq. (13)J to second or-
der in x, with pR, =2. 1476 as above, and set R *, k, and
C to agree with Eq. (20). This yields C = —0.8759,
k =0.6041, »d PR *=1.5415 to simulate free OH

where R is in atomic units. Then the corresponding di-
pole moment function for OD would be

I'~~ =0.383+0.3748R —0. 1656R (18)
To convert these to dimensionless units we use typical
values of R =1.82 a.u. and/3=1. 18 a,u. '. Then
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TABLE I. Transition matrix elements for OH and OD, computed from solutions of Eq. (7).

OH matrix elements for x, =0.021904.
~1 0~2 0—+3

OD matrix elements for x, =0.01595.
0~1 0—+2 0-+3

x —0.149 605
x —0.016 844
x —0.011 822
x —0.002 770
x —0.001 651
x —0.000 579

—0.015 998
0.029 444
0.006 211
0.005 343
0.001 931
0.001 269

0.002 825
—0.007 887

0.006 132
0.001 839
0.002 238
0.001 121

—0.127 290
—0.010 356
—0.006 975
—0.001 207
—0.000 668
—0.000 177

—0.011 549
0.021 772
0.003 280
0.002 642
0.000 708
0.000 419

—0.001 725
0.004 916

—0.004 135
—0.000 867
—0.000 954
—0.000 352

Free OD is then simulated by the same expression with
(0.0952+0.0443x) added as the center-of-mass correc-
tion. We note that the constant term will not contribute
to transition-matrix elements.

While applying these results to a variety of OH and
OD systems, we realize that the coe%cient of x in the
additive term in Ap may depend on the environment and
the bonding of OH or OD in a particular case. How-
ever, we have insuKcient information to judge the
amount of such a variation and so take the simplest route
of assuming that the value appropriate to free OH is a
reasonable one to use for other situations.

The expression for poH may be obtained in one of
several ways: (1) One may use the Sage expression' in
terms of x, and vary the parameter R* to simulate
different conditions. (2) One may express the dipole mo-
ment function as a power series ' in x and vary the
coefficients. (3) One may combine (1) and (2) by expand-
ing the Sage function in a power series in x. In this case
the coe%cients will be related through the parameter R *.
In case (1) one would compute transition elements of the
Sage operator between states of interest, while in cases (2)
and (3) one would compute transition elements of powers
of x.

For those wishing to utilize the results of this paper for
cases of interest to themselves, methods (2) or (3) are
probably the most readily applied. Hence we have com-
puted, and present in Table I, transition-matrix elements
of x, x, x, x, x, and x6 for 0~1, 0~2, and 0~3
transitions of OH and OD, computed using the "typi-
cal" values x, =0.021904 for OH and 0.015950 for
OD

Since the transition probability from the ground state
to higher states is proportional to the energy diff'erence
times the square of the dipole moment matrix element be-
tween these states, ratios of overtone-to-fundamental
transition probabilities are readily computed using a
given dipole moment function and the energy expression
of Eq. (12). Figure 1 shows the result of such calcula-
tions. Shown are ratios of 0—+2/0~1 and 0—+3/0~1
transition probabilities for OH and for OD, as a func-
tion of the Sage parameter R*. In this calculation the
Sage function for OH was computed using k=0. 6041
and pR, =2. 1476. The Sage function for OD has the
same values of k and pR, but also contains the additive
term 0.0443x. These values of the constants yield a good
6t to the free-OH dipole moment function when
pR *= 1.5415, as discussed in the preceding section, and
so effects of the environment are assumed to be account-
ed for by varying R *.
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FIG. 1. Computed overtone-to-fundamental absorption in-
tensity ratios versus R*, on a log, o scale, using the Sage dipole
moment function and solutions of the dimensionless Morse po-
tential problem with anharmonicity parameter x, =0.021904
for OH and 0.015950 for OD . The Sage constants are
k =0.6041, PR„=2.1476. The Sage function for OD contains
the additive term 0.0443x, as discussed in the text.
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These results are quite striking. As discussed in Ref.
15, the overtone-to-fundamental absorption-strength ra-
tio is strongly dependent on R*. Thus one might expect
rather different results for OH and OD in different en-
vironments. For a given environment, however, one ex-
pects R * to be fixed, and so Fig. 1 predicts particular sets
of overtone and isotope data for given values of R *, and
may be very useful in analyzing experiments such as
those discussed in Refs. 15 and 18.

For example, Luty and co-workers' found third and
second harmonics of comparable strengths for OH in a
number of alkali halides. We note that the corresponding
curves in Fig. 1 cross for R *=0.77 A, suggesting similar
values of R* for these cases. Luty and co-workers also
found a very weak second harmonic for OH in LiF; this
would suggest a smaller value of R, say of order 0.73 A.
They found the second-to-fundamental strength ratio to
be consistently larger for OD than for OH: this is con-
sistent with a large range of R *, from 0.7 to 0.95 A. And
they found for OD in NaBr and KF that the second
harmonic is from 3 to 7 times the strength of the funda-
mental. According to Fig. 1, this would be possible if R *

were around 0.88 or 0.93 A.
These remarks do not mean that this approach, with

the Sage dipole moment function, fits all the cases studied
by Luty and co-workers. Indeed, detailed diff'erences per-
sist which may require a different dipole moment func-
tion or a different linear term in the center-of-mass iso-

4
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2-
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tope shift. Furthermore, the physics of such large
differences in dipole moment functions in different hosts
is largely unexplored. It was noted by Wedding and
Klein' that the shape of the dipole moment function of
OH implies significant movement of electronic charge
from oxygen to hydrogen as the 0-H separation in-
creases. It is likely that this type of effect will be sensitive
to the environment of OH . Calculations by Her-
mansson on OH in external electric fields show that
vibrational frequencies and dipole moment derivatives,
along with other properties, are strongly field dependent.
Extensions of such calculations might provide the physi-
cal insight needed to understand the variety of results for
OH in ionic hosts.

Summary. By computing the solutions of the Morse
potential Schrodinger equation in dimensionless form,
and corresponding transition-matrix elements for
different powers of x, we have obtained results which
may be applied to a variety of specific problems. In-
clusion of the proper center-of-mass shift associated with
H and D isotopes yields results which appear consistent
with certain of the outstanding and unusual experimental
features recentjy reported by Luty and co-workers for
OH and OD in alkali halides. ' In the process we
have shown that electrical anharmonicity may explain in
a natural way aspects of transition strengths which other-
wise are quite inexplicable.
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APPENDIX

The dipole moment p for an array of charges q; at posi-
tions r,. is given by
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