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A Landau free energy for the La, ,(Ba,Sr),CuO,_, family is constructed, including the coupling en-
ergy between the order parameter and strain tensor. Using group theory, it is demonstrated that the
coupling energy can be expressed as a sum of terms linear in the strain and quadratic in the order param-
eter and should contain a coupling term bilinear in the two order-parameter components. The structural
phase transitions (SPT’s) in La,_,(Ba,Sr),CuO,_, are discussed on this basis. It is shown that several
SPT’s may occur in this system under different conditions. The observations of the influences of applied
pressure, doping concentration x, and oxygen deficiency y on the SPT temperature are interpreted quan-
titatively. Relations connecting spontaneous strain, soft-mode vibrational frequencies, heat capacity,
and elastic constants of the lower-temperature phases are derived. The mean-field results of the elastic
properties and the results of the scaling analysis are also giveri. The results of ultrasonic measurements
on a La; 4Sr, ,CuO, single crystal are reported. The present and other relevant experimental observa-
tions are compared with the obtained theoretical results. The possible effects of structural phase transi-
tions or structural instabilities on the superconductivity of the system are discussed.

I. INTRODUCTION

The high-temperature structure of
La,_,(Ba,Sr),Cu0O,_, compounds has been determined
by neutron powder and x-ray-diffraction measure-
ments! 3 to be body-centered tetragonal with space
group I4/mmm. On cooling, they undergo a structural
phase transition (SPT) at a temperature T, depending on
the concentration of the Sr or Ba dopant as well as on ox-
ygen contents. This transition is induced by the softening
of the optical phonons associated with the tilting of CuOg
octahedra with wave vectors®’ (2mw/a)[1,1,0] and
(2w /a)[ 4, —1,0], denoted as Q(q;) and Q(q,), respec-
tively. These phonons are degenerate modes at the X
point of the Brillouin-zone boundary of the body-
centered tetragonal Bravais lattice. The low-temperature
phase is usually taken to be the Cmca phase with two for-
mula units in the primitive unit cell. However, some re-
ports have claimed that their data could not be fitted
completely using the Cmca group.>® Interestingly, re-
cent measurements have shown!®!! other SPT’s in
La,_,Ba,CuO,_, (LBCO) and structural instabilities!>1?
in La,_,Sr,CuO,_, (LSCO) at low temperatures. These
experimental results need to be explained and under-
stood, since the structural varieties may have great
influence on the physical properties of the compounds.
This is especially important in the low-temperature re-
gion, where the superconducting transition also takes
place. In the past few years, considerable effort has been
devoted to this aim, and analyses based on Landau theory
have been put forward.!%!:14~18 However, a systematic
study is still lacking.

Various SPT’s in La, ,(Ba,Sr),CuO,_, are expected
to have great influence on, among others, the elastic
properties of the compounds. Particularly from the elas-
tic measurements of single crystals, by the proper choice
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of polarization and propagation directions of ultrasonic
waves a soft phonon mode of a SPT can be detected. In
this paper some results of our latest ultrasonic measure-
ments on a La; gSr; ,CuO, single crystal are reported
together with the presentation of a systematic Landau
theoretical study of SPT’s and related physical properties
in the La,_, (Ba,Sr), CuO,_, family.

The format of this paper is as follows: In Sec. IT we
show explicitly how to construct a suitable Landau free
energy for the La,_,(Ba,Sr),CuO,_, system, including
the strain energy, the energy expanded in a power series
in the order parameter components, as well as the cou-
pling energy due to the interaction between the strain
tensor and the order parameter. In Sec. III a prediction
of the possible structural phase transitions in the
La,_,(Ba,Sr),CuO,_, systems is given. A temperature-
dependent Landau theory is developed. Relations con-
necting spontaneous strains, soft-mode vibrational fre-
quencies, heat capacity, and elastic constants of the
lower-temperature phases are derived. The mean-field re-
sults of elastic properties are also presented. Scaling
analysis is performed in the hydrodynamic limit in Sec.
IV. In Sec. V, we use the Landau theory to examine the
effects of the external constraints, doping, and oxygen
deficiency on the phase transition temperature in
La,_,(Ba,Sr),CuO,_,. Section VI reports the results of
ultrasonic measurements on a La,_,Sr,CuO,_, single
crystal. Section VII contains a discussion and a compar-
ison between experiments and calculated results. Possible
effects of SPT or structural instability on superconduct-
ing properties of La, ,(Ba,Sr),Cu0O,_, compounds are
discussed. A summary is given in Sec. VIII.

II. CONSTRUCTION OF THE LANDAU FREE ENERGY

One of the main tasks of this paper is to develop explic-
itly an appropriate Landau free energy for the system un-
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der study. Before doing so, let us first address the choice
of coordinates.

A. The coordinates

Usually the choice of unit-cell axes for a body-centered
tetragonal lattice is as shown in Fig. 1 with correspond-
ing coordinates {x,y,z}. The SPT from tetragonal to or-
thorhombic structure, for instance in DyVO4,19 may be
described as an expansion of one of the two equal lattice
parameters, while contracting the other one. However,
in the present case of La, ,(Ba,Sr),CuO,_, compounds,
the SPT from the tetragonal (I4/mmm) to the ortho-
rhombic (Cmeca) structure may be expressed in terms of
the unit-cell transformation

2sin | T+ 2 0 0
ao 4 2 a,
bO = 0 1 bt ,
Co 0 2 cos %+% ol ¢

where 6 is the change of angle between the a, and b,
directions caused by the tilting of CuOg4 octahedra about
the [1,1,0] or [1,—1,0] directions. It will be seen later
that it is advantageous for the development of the Lan-
dau free energy if we choose the unit-cell axes with corre-
sponding coordinates {x’,y’,z'} (see Fig. 1).

B. The order parameter

The symmetry of the order parameter places this sys-
tem in the universality class d =3 XY with cubic anisot-
ropy.” The order parameter Q has two components,
Q(q,) and Q(q,), associated with the two orthogonal tilt-
ing modes of the CuOg4 octahedra, representing the tilting
angles. q; and q, are the two arms of the K-star vector at

FIG. 1. The structure of La, ,(Sr,Ba),CuO,_, at high tem-
perature with space group I4/mmm.

WU TING AND K. FOSSHEIM 48

the X point of the first Brillouin-zone boundary of the
body-centered tetragonal structure. It can be easily
verified that both amplitudes of Q(q;) and Q(q,) are
real. For simplicity, we denote Q(q;) as Q; and Q(q,) as

Q,.
C. Landau free energy

A Landau free energy normally comprises three parts:
(@) a free-energy contribution, F;, from the strain fields,
(b) a free energy, F,, expanded in a power series in the or-
der parameter, and (c) a free-energy contribution, F,,
from the coupling between strains and the order parame-
ter. The inclusion of these three parts is usually sufficient
for a system without any external constraints as long as
only the structural and elastic properties are considered.
The Landau free energy may be extended to take into ac-
count possible magnetic or piezoelectric effects.

For the present case, the strain energy can be obtained
directly from the following general expression:

F,=1C; e, e, , 2)

where C,,, are the elastic moduli and e, ,e, are the corre-
sponding strains. Summation over repeated indices is un-
derstood. The superscript ¢ denotes the 14 /mmm phase.
Since we already know that our system belongs to the
d =3 XY universality class, the standard free-energy ex-
pansion in the power series of the order parameter
reads®

Fo=1K(TXQ}+Q3)+u(Qi+03)
+o(Q1+05)+ -+ . 3)

The last contribution comes from the coupling between
strains and the order parameter. Generally such contri-
butions are constructed using group theory. It is re-
quired that the Landau free energy must be invariant un-
der the symmetry operations of the space group
I4/mmm. First, let us consider the invariant functions
for the corresponding point group 4/mmm. An impor-
tant and useful group theoretical result often being used
for this purpose is the generalized Unsold theorem, which
states that?! the quantity

1.
J .
S g’ @)

k=1

is invariant under all operations of the point group for
which @i’ are the basis functions of an irreducible repre-
sentation j of dimension 1;. Applying this theorem to
our case results in the conclusion that a coupling term be-
tween a particular combination of strain tensors and a
given power of the order parameter can exist only if they
belong to the same irreducible representation of the point
group 4/mmm. Also, from group theory we know that
after the transformation from {x,y,z} to {x',y’,z'}, the
space group I4/mmm and the irreducible representa-
tions of the point group 4/mmm remain the same.
Therefore, the symmetrized strains and symmetrized
elastic constants can be obtained straightforwardly from
the character table?? of 4/mmm as listed in Table I. It
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TABLE 1. Symmetrized elastic moduli and strains in {X’,Y’,Z’} and {XYZ} coordinates.

Coordinates
{x'y'z’} {xyz}
Symmetrized Symmetrized Symmetrized Symmetrized Transforms
strains elastic moduli strains elastic moduli under
g +&5¢3 D, +Dy, e;te,,e; Cy+Cpy Ay,
€178 D,,—Dy, 2C¢6 B,
E¢ D66 (1/2)(92—61) (1/2)(C11’_C12) B2g

may be demonstrated that Q2 +Q32, Q?—Q3, and Q,0Q,
are the symmetry-adapted basis functions of the irreduc-
ible representations of A4 19> Big> and B,,, respectively, by
using the following formula for creating symmetry-
adapted functions:?3

FiQ) =3 x/(G,)*G,f(Q), (5)

where f(Q) is some chosen function of the general type
of interest, G, is the rth symmetry operation of the jth ir-
reducible representation, and y/(G,)* is the correspond-
ing complex conjugate character. In the cases of one-
dimensional irreducible representations, such as 4 1g°
By,, and B,, in the 4/mmm point group, if f(Q) is
chosen to be the symmetry-adapted basis function, Eq. (5)
becomes

f(Q>=§zxf<G,)*G,f(Q> . ©

Here g is the order of the point group 4/mmm.
Indeed, Q2+ Q3% 03 —0Q3% and Q,Q, do satisfy Eq. (6)
for the 4,,, By,, and B,, irreducible representations re-
spectively. This provides the coupling energy as

[01(51+52)+(1283](Q%+Q%)

+b1(51—€2)(Q%"Q%)‘H’zesQle ™
where a,,a,,b,,b, are coupling constants. By perform-
ing a coordinate transformation from the {x',y’,z'} sys-
tem to the {x,y,z} system, we may express the coupling
energy in terms of the strain tensors e; in the {x,y,z} sys-
tem as

F,=[a(e, +92)+0293](Q%+Q%)

+2b1e6(Q1—03)+3byle;—e)Q:Q; - @)
|

{E/[n/2,n,/2,n3/2]}Q; =

Q, otherwise

Q, otherwise
{E/[n,/2,n,/2,n,/2]}Q,=

Q, otherwise

—Q, When n,,n, are odd integers
Q, otherwise

Q, when n,,n, are odd integers

—Q, when n,n, are odd integers

Q, when n,n, are odd integers

D. The coupling term bilinear in order parameter components

Before we subject the coupling energy to the examina-
tion of the translational operations of the I4/mmm
phase, we must be aware of the fact that for a given sys-
tem, the possible low-temperature phases are fixed as
soon as the universality class and the order parameter are
known. The effect of the coupling between strains and
order parameter leads only to a change of the conditions
for a particular SPT to take place and possibly alters the
SPT from a second-order transition to a first-order transi-
tion.?® For the d =3 XY universality class, there are
three possible low-temperature phases:® (a) Q,;70,
2,=0 or Q,=0, 0,70, (b) Q,=Q,70, and (c)
Q,50Q,50 (see Sec. III for details). In the first case, the
bilinear coupling term vanishes and therefore produces
no influences on the macroscopic properties of the sys-
tem. However, in the second and third cases the bilinear
coupling does not give a zero contribution and is invari-
ant under all symmetry operations of the I4/mmm
group. The latter point can be demonstrated as follows:
Let us consider case (b) to be specific. The Q;=Q,70
phase is understood as the coherent superposition'® of the
tiltings of the 9,70, @, =0 and Q, =0, Q,70. It is easi-
ly shown graphically that the resulting tilting is along the
[1,0,0] or [0,1,0] directions (see Fig. 3). Therefore, here
the real physical meanings of Q, and Q, are the clock-
wise tiltings around the [1,0,0] and [0,1,0] directions, re-
spectively. The verification of the invariance of the cou-
pling energy under the symmetry operations of the point
group 4/mmm is the same as before. If we perform
translational symmetry operations using Seitz operator,?
we get the following results:

when n,; >0, n,>0or n, <0, n, <0

(9a)

when n; >0, n,<0or n, <0, n,>0,

when n; >0, n,>0 or n; <0, n, <0

when n; >0, n,<0or n; <0, n,>0.
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Here n,,n,,n, are integers satisfying |n;|=|n,|=|n,|540, and

{E/[n,,0,n3] or [0,n,,n;]1}Q,= lQl otherwise ,

{E/[n{,0,n3] or [0,n,,n;]}Q,= {Qz otherwise .

Here n,n,,n; are integers or zero. In this case, the term
2b,e¢(Q? — Q%) gives a zero contribution. We see, there-
fore, that the bilinear term is invariant under all symme-
try operations of the I4 /mmm group.

It has been argued that the bilinear term should be
omitted, since the Q,Q, term transforms as a K vector at
a point of the first Brillouin-zone boundary.?* Therefore,
it cannot couple to the long-wavelength quantities. This
argument is correct only under the assumption that there
is only one possible SPT, namely, the SPT from I4/mmm
to Cmca. This assumption is, however, not true in the
present case due to the multicomponent nature of the or-
der parameter. On the other hand, even if this assump-
tion were correct, the inclusion of the bilinear term could
not have altered the total free energy of the system, since
one of the order-parameter components must be zero.

J

—Q, when n,,n, are odd integers

(9¢)

—Q, when n,,n, are odd integers

(9d)

[

The important idea here is that there are two other possi-
ble SPT’s in addition to the I4/mmm to Cmca. For the
other two cases, which are at least theoretically allowed,
the order parameter is the coherent superposition of the
tilting around the [1,1,0] and [1,—1,0] directions. There-
fore, the 0,0, term will transform as a zone-center K
vector instead of zone boundary. It is evident then that if
one wants to construct a Landau free-energy density,
which can account for all three possible SPT’s, the bilin-
ear term must be included. We will show later that the
importance of this bilinear term is clearly reflected in ex-
plaining experimental data.

Finally, we obtain the total Landau free energy F,
which is suitable for describing the structural phase tran-
sitions in La,_, (Ba,Sr),CuO,_, as the sum

F=F_ +F, +Fo:[ax(31+ez)+azes](Q%+Q%)+2b196(Q%_Q%)+%b2(92—€1 0,0,

+3Cli(ef+e3)+1Che] +Cloeie, +Clsle ez +eye)+1Ch, (3 +E2)+1Che?

+IK(TNQT+03)+u(QT+03P+v(Qt+05)+ -+ .

The symmetrized elastic constants expressed with respect
to both {x,y,z} and {x',y’,z'} coordinates are listed in
Table I.

1II. MEAN-FIELD CALCULATION,
PHASE DIAGRAM

On cooling, the system will be unstable at K (7)<0.
The equilibrium states of a La,_,(Ba,Sr),CuO,_, crystal
in the absence of external constraints are obtained by
minimizing F with respect to all Q; and ¢, (i=1,2,
k =1-6). The range of possibilities is conveniently visu-

(10)

[

alized by minimizing F first with respect to all e;, while
keeping all Q; arbitrary. Setting dF /de; =0, we get a set
of equations from which we may express e; as a function
of Q;. Then substituting the obtained e,(Q;) into Eq.
(10), the free energy now (denoted as F) can be rewritten
as a function of the order parameter alone,

F:F[Qi’e(Qi)]
=1K(T)Q}+03)+Y(Q}+03)*+v'Q}03 . (11)

Here, Y, v’, and a are defined as follows:

a={2[pXCi+C',)+2pa,k]CL —(2Cp +a,k)?} /2k2C,

Y=u-+a+v—(2b2/CL),

v'=(8b%/CLs)—{b%/[4(C}; —C,)]} —2v , (12)

s:%C§3(C{1+C’,2)—C’1§, k=2(C{;—Ci)s, p=(C};—Cix)a,Ci3—a,Chy) .



48 STRUCTURAL PHASE TRANSITIONS IN . ..

From the expression of F, one can see that the transi-
tion temperature does not change due to the coupling be-
tween the order parameter and the strain tensors in the
absence of external constraints. However, if the system is
subjected to an external stress field, the transition temper-
ature will be modified greatly by the coupling.?>?® The
discussion of this situation will be given in Sec. V. Here
we restrict ourselves to the case of free cooling.

Before performing the minimization, we first normalize
the eigenvector

Q1=§1Q’ E z2=

i

1, i=12.

By minimizing F with respect to Q;, we have the follow-
ing solutions.

A. Orthorhombic phase

Under the conditions v’ >0 and Y >0, the stable phase
has one of four domains (§;==+1, £=0 or £;=0,
£,==1). Here * denotes tilting of the CuOg octahedra
in anticlockwise and clockwise directions, respectively.
This phase corresponds to the Cmca structure with a
doubling of the volume of the crystallographic unit cell of
the high-temperature tetragonal phase (see Fig. 2). First,

FIG. 2. The MO phase of La,_,(Sr,Ba),CuO,_, with space
group Cmca (§;,==1, £,=0). Each arrow indicates the direc-
tion of tilting.
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let us calculate the changes in elastic moduli due to this
SPT. Usually the elastic moduli are measured under the
condition that the order parameter can change freely in
the presence of applied ultrasonic strain. Its conjugate
force 0F /8Q; is kept zero during the measurements.
Therefore, in the calculation of the elastic moduli of this
low-temperature phase, we may first take the partial
derivatives of F with respect to Q;, while keeping e, arbi-
trary. Then setting 9F /8Q; =0 (i =1,2), we can express
Q; in terms of e, (k =1-6). It is known that the elastic
moduli entering the expression for the purely elastic free
energy are those determined under the condition Q; =
The changes of the elastic moduli due to SPT’s are creat-
ed by the motion of the order parameter. So the elastic
tensor Cj, in the low-temperature phase is given by

. aZF(Q,»(ek ),ek)
s ae‘ae,

d°F
2 de aQ, Ri300e, °

=Cj— (13)

where C J’, are the tetragonal elastic constants appearing
in the expression of F. Using the relations?’
_¥F °F
R =3j; d Iw?%,,= R 14
> Ruzgpg, —om M= 3000, 0 1Y

where I is a generalized mass, we get

3*F o2 3*F
e;00; ' 0Q;de,
It is easily seen that C;, are equal to C,; because of the

symmetry of the Landau free energy. For T > T, the or-
der parameter is zero. Therefore,

Cy,=Cj, .

C,=Cj, —1—12 3 (15)

For T <T,, we get

2

b5
401(1)2 24+ -4‘(01 2

C(l)l =C(2)2:C “I_lQo

C(l)z =Cq, _I‘]Qc% 4‘1%

w{z—?wrzl ;
3 =C%=Ci;—4aja,] "'Qfw;?,
CS=Ci—4a3l "'Q%w; * (16)
% =Cls— 16011 'Q3w; %, Cls=8ayb, I 'Qfw; %,
C?é:(;%:galbl]—'lQ(Z)wzﬂ ’
Ce=C3=Cly, C{5=Cl=C3%=0.

These relations clearly show that C,;, C,,, C33, and
Ces Will exhibit a steplike decrease at the transition tem-
perature when the temperature is lowered, while Cy4 and
Css remain unchanged. For Cy;, C,3, and Cj,, either a
step decrease or increase is possible, depending on the rel-
ative magnitudes and signs of the coupling constants a,
a,, and b,. From Eq. (16) we see that several spontane-
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ous elastic tensor components appear in the low-
temperature Cmca phase. This is because we do our cal-
culation in the high-temperature tetragonal coordinates.
They could be removed by making a coordinate transfor-
mation from the {x,y,z} coordinates to the {x',y’,z’}
coordinates. Perhaps the most important information
obtained from such relations is that they show how to
determine the coupling constants a,,a,,b;,b,, and the
generalized mass I experimentally by measuring the elas-
tic tensors, the soft-mode vibrational frequencies and the
order parameter, and generally a way of testing the range
of validity of the mean-field theory. The changes in other
physical properties due to this phase transition is summa-
rized in Table II.
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siderations show that the space group of the new phase
may be P4,/ncm (see Fig. 3). This structure is developed
by coherent superposition of the tilted CuOg octahedra
around [1,1,0] and [1,— 1,0] directions.

Following the same procedure as the Cmca phase, we
get the changes in elastic moduli as
2

| —el
Cll _Cll

2

b
cl,=ct, —2I"'Q20;? 2a1+72

Cly=Cl3—2a,I " 'Q3w; *(4a,—b,) ,

Cly=Cl3—2a,1 7'Q3w; (4a,+b,) , 17)
B. New tetragonal phase 23 1B 2 Qooy "4, 2) (
o b2
Under the condition of v’'<0, Y +(1/4)v'>0, the . cl,=cCi,—2I7'Q%w;? 40%__1] ,
stable phase has one of four domains [£,=&,=+V'2/2]. 4
This corresponds to a new tetragonal phase with a Cl.=C!, —8a21 ~'0%0 2
ey . . - —8asl w ’
volume of the primitive unit cell four times larger than 3 3 oA Qo
that of the original tetragonal phase. Symmetry con- Cle=CL—36b Qw2 .
TABLE II. Several physical quantities in the MO and LT phases, calculated by employing the standard procedure.
Cmca P4,/ncm
Order parameter Q, [—K(T)/4Y]'"? [—K(T)/(4Y +v')]?
b
Spontaneous strains® e, =e,=PQ3/k e = P+TZS Q%/k
b

e;=—(2C4;P +a,k)Q% /Chsk e,= P~72s Q2 /k

e, =es=0 e;=—(2C4;P +a,k)Q3/Ci:k

es=2b,05/Cé ey, =es=es=0
Ground-state energy —KXT)/16Y —KXT)/(16Y +4v’)
Change in specific a’T a’T
heatAC® 8Y 8Y +2v’

T>T, T>T,

0r=wi=I1"'K(T) 0t=wi=I"'K(T)
Soft-mode vibrational
frequencies Ir<T, T<T,

_ +a aP _ —2u—v+a
=11k (T) | et Ll 2 2 1 —2u—v+ta
o7 (1) Y %Y w1=w;=2I"'K(T) Y 1o’
4. 2P +ask 4b? g 2CHPFask 2a,P
— a _
> 2CLKY CLY 22CLk(4Y +v')  k(4Y +v')
W= K(T) l —2Au+v)ta
Y
_aP 2C,,P +a,k
kY T acLKY

“Parameters Y, v’, P, S and k are defined in expressions (12).
"Here, we have assumed K (T)=1a(T —T,).
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So the degeneracy of the pairs of elastic constants
C,i,C; and Cy3,C,; of the high-temperature tetragonal
phase will be lifted in the ordered phase. The reason why
the calculated elastic moduli here differ from the stan-
dard tetragonal form is the same as that for Cmca case
[see Eqgs. (16) and the following discussion]. The calculat-
ed changes in other physical quantities due to the SPT
are listed in Table II.

C. Intermediate phase

When v’ —0, which is possible in these systems,?’ the
ordered phase may take up any orientation in the order
parameter space. In order to determine what is the stable
phase now, the next order in the expansion should be tak-
en into account. Unlike Ref. 10, which includes the
eighth-order term as the next approximation, here we
suggest instead that the sixth-order terms should be in-
cluded. This is simply due to the fact that the sixth-order
terms are the terms, which give the largest contribution
to the Landau free energy among those terms we have
neglected so far in this study.

The sixth-order terms may be divided into two types.
One type, such as (Q2+Q3)3 is isotropic, which does
not help in determining the favorable orientation of the

FIG. 3. The LT phase of La,_,(Sr,Ba),CuO,_, with space
group Pd,/nem(£,=V2/2, &=—V2/2 and &=-—V2/2,
& =V'2/2). Each arrow indicates the direction of tilting.
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order parameter in the order parameter space and there-
fore will not be included for consideration. The other
type is anisotropic, which may be formally expressed as
w(Q3+Q3) Q1+ Q%). This expression can be rewritten
as w(Q1+03)0202+w(Q8+Q%). Itis easily seen now
that the first term is not an independent term. It has al-
ready been considered in the v’ term in expression (11),
and v’ is now supposed to approach to zero. Thus, here
we need only to include w (Q%+ Q%) into expression (11)
for the following discussion. It is important now to study
the consequences of this term. It is known that v’ is tem-
perature dependent.?® One crucial question, which can-
not be answered at the phenomenological level, is how
the parameter v’ varies with temperature. On cooling, v’
may first take a positive value and then at a certain tem-
perature change its sign gradually or abruptly depending
on the sign of w. Or it may occur in the opposite order.
As a result, several possible SPT’s may take place as list-
ed in Table III. Note that the Pccn phase appears when
Q0,570,750 (see Fig. 4). The initial conditions imposed
on the parameters v’,Y,w in Table III refer to T > T,.
The physical quantities involved in each SPT can be cal-
culated by a similar procedure as before. We shall not
now pursue this line of development in further detail.

FIG. 4. The PO phase of La,_,(Sr,Ba),CuO,_, with space
group Pecn(£,=2V'5/5, &=—V'5/5 and £,=-—2V5/5,
&=V'5/5). Each arrow indicates the direction of tilting and
the length of the arrow is proportional to magnitude of tilting.
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TABLE III. In this table, we list the various possibilities for second- or first-order transitions. The
symbols HT, MO, PO, and LT refer to the I4/mmm, Cmca, Pccn, and P4, /ncm phases, respectively.

v'>0, Y>0

v'>0, Y>0, w<0

v'>0, Y>0, w>0

v' <0, Y+(1/4)’'>0

v'<0, w>0

Y+(1/4p'>0

v'<0, w<0

Y+(1/40'>0

second

second

HT 2 LT
order order order
second
HT — LT
order
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*This phase is stable in the region —3wQ?<v’ <3wQ>
*This phase is stable in the region 3wQ? <v’ < —3wQ?.

Let us only point out here that the energy contributions
from the strain field and the coupling between trains and
the order parameter to the Landau free energy should al-
ways be constructed in the high-temperature phase. For
instance, if the SPT is the MO— LT [which has been ob-
served in La, ,Ba CuO, (Refs. 10 and 11)], instead of
using the strain field and coupling energy like F; and F,,
we should use F; and F/ given by

F/=1C,,e,e,= 1CY el +1Ch e+ 1Chel+Cl e e,
+Chees+Chee; +1ChLE]
FACL L Ce? 1)

and

F!=(aje;+ase,+ase; QT +03)+b5es0,0, . (19)

Note here that we are using {x’,y’,z’} coordinates (see

Q0 Q=0=

=0 Q+0=

MO First Order
:_::"i SPT sheet

~;!i (MO&LT)

Other kinds
of transitions

FIG. 5. The phase diagram of La,_,(Sr,Ba),CuO,_, resulted
from calculations.

Fig. 1). The Landau free energy proper for describing
this transition is now (here we assume that the discon-
tinuity in the order parameter at phase-transition temper-
ature is small so that Landau analysis is still valid)

F'=F!+F!+F, . (20)

After performing the same mathematic treatment as
before, we could express F’ in the same form as Eq. (11).
The coefficients Y and v’ now have changed their values
(since they are temperature-dependent functions). For
example, v’ has changed from a previous positive value to
a negative value —1(b%* /C%)—2v as expected (see Fig.

3).
IV. SCALING ANALYSIS

In the previous section, we presented the results of
mean-field calculations which are expected to be valid in
the region where the correlated fluctuations are small on
a length scale larger than the interaction range in the sys-
tem. Once the system approaches the region very close
to the SPT temperature, fluctuation effects are no longer
negligible. In this region the critical behavior will dom-
inate. Some basic critical exponents for d =3, XY model
have been calculated.”’ Here we want to see how elastic
moduli behave in this region.

Proceeding in a similar way as for the case of d =3,
Heisenberg model,>*3! we start from the effective
Landau-Ginzberg-Wilson Hamiltonian3?

H=fdr[%y|Q|2+%|VQ\2+uo|Q|4

’

3, |’ s
E ] +EI %aiein

(21)

'*‘UOEQ:—%fE
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where e,-,sz are symmetrized elastic strains and corre-
sponding Q? representations respectively. The free ener-
gy of the system can be written as

F=— k—;an . 22)
Here Vis the volume and Z is the partition function
Z=T e H/AT (23)
Q

The summation runs over all relevant configurations of
the order parameter, which are allowed by the symmetry

J

16 759

of the system. According to the definition of elastic
moduli, we get the isothermal change of elastic constants

AC,,, as
(2 o) _(om) o)
de; Oe; de; [\ Qe;

The thermal average of some quantity P is now found
as (P)=(1/Z) 3, Pe "/*T. Note here that higher or-
der terms have been dropped. After inserting Eq. (21)
into Eq. (24), we obtain

AC,; = L

i T v . (24)

2
ACy=— kc;zVfdrfdr'{(IQ(r)!2lQ(r')l")—(IQ(r)IZ)(lQ(r’)Iz)} , (25)
4b?
AC“————F;/fdrfdr'{([Q%(r)—Q%(r)][Q%(r’)—Q%(r’)])} (26)

-1 :
A(Cy;+C)y) kTVfdrfdr

(
a

b
allQ(r)lz——;—Ql(r)Qz(r)

b
a1 1QU— 220, (r)Q,(r) b <

b
aliQ(r’)|2“72Q1(r’)Q2(r’)

)

b
01|Q(r’)|2—72Q1(r’)Q2(r')

)

+ antisymmetric terms] . (27)

The expression for A(C;; —C,,) is similar to expres-
sion (27) except for the minus sign in antisymmetric
terms. Two important conclusions could be drawn from
the expressions given above.

(1) Although C5; and C,, +C,, belong to the same ir-
reducible representation as can be seen from the model
Hamiltonian, they will behave differently in the critical
region.

(2) The expression for ACj; is essentially the same as
that for the change of specific heat. Therefore, AC;; will
vary with the reduced temperature t —|[(T —T,)/T,| as
[

The behavior of ACg4, A(C;; —Cy,), and A(C;+Cyy),
on the other hand, is more complicated and will depend
on the properties of a particular SPT. We will discuss
this in Sec. VII.

Without loss of generality, we discuss the behavior of
the symmetry-breaking elastic constant. The exponents
for such elastic constants can be derived from the scaling
hypothesis,?

h ©m

— 42—
F=t an ?A_’-t_d’ (28)

where the symmetrized strain e,, has been taken as a
relevant field. A is the gap exponent and ¢ is the cross-
over exponent. For T <T, the mean value of the order
parameter {Q)#0. The coupling energy can be written
as

H.~e, (Q,+80)=e,,(Q3+20,6Q +5Q80) . (29)

Here Q, is the thermal average of Q and 8Q is the fluc-
tuation relative to Q. It is easily seen from Eq. (29) that
there is one “field” e,,Q, coupled linearly to the order
parameter fluctuations in addition to the quadratic cou-
pling. This field e,,Q, can be regarded as representing
the field 4. Hence, we may write

e, Q0 e,
F:tz_an ”;Ao’t_d) (30)
Therefore,
AC,, ~3°F /el ~t?P~ 7+t 142794 (31)

In writing the expression like this, we have used the re-
lation Qy, =t # and the scaling laws*’ a+28+y=2,

vy=a+2A—2, and up=a+2(¢—1). For T>T,,
(Q@)=0. So

F="cy, |<m (32)
and

AC,, ~3*F /de2 ~t . (33)

For our purpose, we have discussed here only the
behavior of the elastic constants in the hydrodynamic
limit. In the region where the correlation length is com-
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parable or larger than the sound wavelength, the calcula-
tions should be performed using the classical fluctuation-
dissipation theorem.** The detailed treatment is lengthy
and the resulting expressions for real and imaginary parts
of the elastic constant are expected to depend on many
exponents. Since large and good-quality single crystals of
high-temperature superconductors (HTSC’s) are still not
available, no reliable data so far could be used to extract
meaningful exponents in this region. Thus we will not
discuss it here. The interested reader is referred to Ref.
34,

V. THE EFFECTS OF EXTERNAL CONSTRAINTS,
DOPING CONCENTRATION,
AND OXYGEN DEFICIENCY ON THE
STRUCTURAL TRANSITION TEMPERATURE T,

A treatment of this problem was proposed in a recent
paper.!® For the sake of completeness, we outline the

main ideas and results here.

A. Effects of applied pressure

From the preceding section we see that the interaction
between the strain field and the order parameter in the
absence of external constraints only renormalizes the pa-
rameters ¥ and v resulting in different SPT’s and without
any effects on the transition temperature T,,. However,
in the case of applying a pressure to the system there is,
of course, a nonzero strain field above T,. This strain
field (denoted as d;, i =1-6) is different from the spon-
taneous strains e; caused by the SPT. As shown previous-
ly'8 it is the coupling between the applied strain field and
the order parameter, which creates a change of T, rather
than the coupling between the e; and the order parame-
ter. As an example, let us look at the transition
HT-—->MO. When the system is subjected to a hydrostat-
ic pressure P, a strain field d; is produced. d; are related
to P through Hooke’s law

di=—(S1,+S1, +S;)P=d,,
dy=—(28;+S55)P .

(34)

Here S,-‘j are the elastic compliances in the HT phase.
We replace the e; by e; +d; in the coupling part of the
Landau free energy in Eq. (10). Collecting the (Q%+Q3)
terms and taking the derivative of the (Q%+Q32)
coefficient with respect to P, we obtain

dTo/dP =2[2a,(S}, +S8!, +5)+a, (25 +S4)]/a .
(35)
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The generalization to other ways of applying pressure
or stress, or to other SPT’s is straightforward.

B. Effects of doping concentration x and oxygen deficiency y

We suggest that the dependences of T, on the doping
concentration and oxygen deficiency are closely related to
the pressure effect. The influence of partial substitution
of La by Sr or Ba on the T, is physically equivalent to in-
troducing an average internal static strain field, which
can be expressed in terms of d, d,, and d, formulated by
the following consideration: Let us look at one unit cell
in La,_,(Ba,Sr),CuO,. The ratio of Sr or Ba to La is
x /2. There is one La in the [1,0,0] or [0,1,0] direction,
and two in the [0,0,1] direction. If we use R and r to
denote the radii of Sr or Ba and La, respectively, and x
for the Sr or Ba concentration, the average strains may be
expressed as

dy=dy=—x(R—r)/a,, dy=—2x(R—r)/c,. (36)

Here a, and ¢, are the lattice parameters. In this way we
obtain the relation

dT,/dx =4(R —r)[(a,/a,)+(a,/c,)]/a . (37)

The influence of oxygen deficiency can be formulated
similarly.'® Therefore, we expect that the SPT tempera-
ture T, decreases with increasing oxygen content. So for
the La,_,(Ba,Sr),CuO,_, system, the SPT temperature
To(P,x,y) from the HT phase to the MO phase is deter-
mined completely by the following relation!®

To(P,x,y)

P[Zal(sn +S]2 +S13 )+a2(2sl3 +S33)]

a a
+ 1.4_2

2, ., [2(R —r)x —roy]

+T,(0). (38)

Here r, is the covalent radius of oxygen and T(0) is the
SPT temperature of pure La,CuQ, at P =0.

It should be pointed out that the above discussion is
valid only in the region where the applied pressure does
not exceed the elastic limit of the samples. For a poly-
crystalline sample, this elastic limit is defined as the ap-
plied force which creates the first deformed grain inside
the sample.

VI. ULTRASONIC MEASUREMENTS
ON A La, 4Sr, ;,CuO, SINGLE CRYSTAL

In the preceding sections of this paper, the results of
mean-field theory as well as scaling analysis have been ob-

TABLE IV. Elastic constants C;;, C3;, and C4 at 297 K for single-crystals La; g3Srg ,CuOy,

La, 4Sry.14Cu0y, and La,CuQ, in 10'? dyn/cm?.

Mode C Cy3 Cy
Sample Reference
La, 4381 ,CuO, 2.33 1.94 0.677 This work
La, 46Srj 1,CuO, 2.48 2.05 0.674 39
La,CuO, 1.72 2.00 0.656 39
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FIG. 6. The temperature dependence of C;; mode in
La, 43St 1,CuQy single crystal.

tained. As is clearly seen from the expressions given
above, in this mean-field theory we introduce only six in-
dependent parameters, namely a,, a,, b, b,, u, and v.
Once these six parameters are determined, the behavior
of various physical quantities near T, is fixed. Therefore,
the next task is then to try to evaluate these six constants
experimentally. Ultrasonic measurement on single crys-
tals is one of the obvious choices for this purpose.

We have performed ultrasonic measurements on a
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FIG. 7. The temperature dependence of Cs; (upper curve)
and C,4 modes in La, gSr; 1,CuQOy single crystal.
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La, ggSry 1,CuO, single crystal. The superconducting on-
set temperature of the sample was 12 K, measured by ac
susceptibility. A standard pulse-echo method with time-
of-flight technique was used for the measurements.

As a by product of this study, the values of elastic con-
stants C;;, C33, and Cy, at 297 K were determined and
are given in Table IV. Included also in the Table IV for
comparison are the reported corresponding values for
La,CuO, and La, 4Sr, ;4CuO, single crystals.

Results for the temperature dependence of the C;
mode are shown in Fig. 6. These results were confirmed
later by other groups.’®3® The large anomalies in both
velocity and attenuation were tentatively attributed to
the HT—MO SPT.!?2 However, it was noted that the ob-
servations could also be well explained if we suppose the
SPT was of HT—LT type.!”

Further measurements of C;; and C, modes were
done recently as shown in Fig. 7. Measurement below
165 K was impossible due to serious distortion of the
reflection signal and overlap of echos. Nevertheless, the
data at temperatures above 165 K are reliable, since dur-
ing the measurements more than a dozen echoes could al-
ways be clearly separated and detected. As expected, the
C 4, mode shows no change in velocity in passing through
the high-temperature SPT, regardless of whether the SPT
is HT—->MO or HT—LT.

VII. COMPARISON WITH EXPERIMENTS
AND DISCUSSION

In this study, we have proposed several alternative
ways in which successive SPT’s may occur in
La, ,(Ba,Sr),CuO,_,. A comparison with available
structural data has been made in a previous paper.!” In
order to compare the calculated results with experiments,
we need to know the value of the coupling constants. In
Ref. 17, we have estimated the three coupling parameters
a;, a,, and b, in the case of the HT—-MO SPT for
La, g4Sry ;,CuO, by employing the La,CuO, elastic
moduli of the HT phase calculated by Allan and Mack-
rodt.>” These calculated elastic moduli, however, have
turned out to be different from those determined by later
measurements.>® Therefore the estimated coupling pa-
rameters need to be corrected. Recently measurements
on the La; 4¢Sr, 4CuQO, single crystal done by Migliori
et al.,* giving a complete determination of all elastic
moduli in the HT phase, enabled us to calculate the cou-
pling parameters more accurately.

A. Evaluation of the coupling constants a,, a,, b,,and b,

The evaluation is performed in the following way:
From Sec. V, we know that the coupling parameters a,
and a, can be obtained from the measurements of pres-
sure and Sr or Ba concentration dependences of the
high-temperature SPT T,. In order to do so, first we
need to know the value of the parameter @, which is cal-
culated to be 1.83X 10* N/m*K from the measurement
of the soft-mode vibrational frequency above T, (Ref. 40)
(Table II) and taking I ~!—the inverse of the mass densi-
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ty of oxygen atoms participating in each vibrational
mode to be 8.78X10™* m®/kg. The radii of Sr and La
are easily found from the Periodic Table to be 1.91 A and
1.69 A, respectively. Q3%,0,,0, were taken from the in-
elastic neutron-scattering measurement*® as Q2=8.23
X 1072 m?, w;=1.06X 10'? rad/sec, and w,=2.20X 10'?
rad/sec at 150 K. For the La,_,Sr,CuO,_, system, if
we choose the lattice parameters a,,c, to be 3.7709 A and
13.2009 A, respectively,*! taking dT,/dP =—10 K/kPa
(see Fig. 8) and dT,/dx = —2454 K (see Fig. 9), and
adopting the elastic moduli of the I4/mmm phase from
Ref. 39, the coupling constants a; and a, can be evalu-
ated quantitatively by resolving Egs. (35) and (37). The
results are

a;=—2.10X10”° N/m*, a,=6.52X10%® N/m*.

The other two coupling constants b, and b, are expect-
ed to vary with x and y of different specimens. Therefore,
each set of b, and b, corresponds to a particular system
and has to be calculated for each sample. Here we take
La, 43Sry ;,CuO,4 as an example to show how to evaluate
them from experimental results.

The absolute value of b, can be evaluated by using Eq.
(16). The jump of C,; is determined from Fig. 6 to be
2.6X10'° N/m? after subtracting a linear background.
The result is |b,|=1.21X10*®* N/m* Measurements of
Ces Vs temperature provide a way to obtain the value of
b,. Due to the limited size of single crystal, however, so
far only one measurement of Cg above T, using a reso-
nant ultrasound technique has been reported.’® Below T,
the signal disappears because of relaxation effects.>® This
prevents an accurate determination of the softening of
Cgs- If we use the difference between the value at T, and
the value at room temperature as the reduction due to the
SPT, we get |b,| =3.12X10% N/m*.

Since we have to use data from different groups and
different specimens, the Sr concentration and oxygen
deficiency may differ somewhat between these measure-
ments. This affects the accuracy of the determination of
the coupling constants, particularly the b,,b, values,

F T T T
200 Laqgg Srgqg Cu0y_s
< 1505 Tetragonal
2 L
3 r
o 1001
o L
g— - Orthorhombic
(0] 50 f—
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0 C N TS TR S TS O TN TR EN TR S S N
0 5 10 15
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FIG. 8. Transition temperature vs pressure for

La; g3Sr¢.1,Cu0,4_,. The line shows the value dT,/dP = —10
K/kPa. The size of the rectangles corresponds to the uncertain-
ties (data taken from Ref. 26).
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FIG. 9. Transition temperature vs Sr concentration for
La,_,Sr,CuO,. The line shows the value dT,/dx = —2454 K.
The size of the symbols shows the uncertainty.

which are expected to be sensitive to Sr or Ba concentra-
tion and oxygen deficiency. a, and a,, on the other hand,
will not change from sample to sample as long as they
have the same SPT sequence.!®

B. Anomalies of elastic moduli near T,

Having determined the four coupling parameters, we
are now able to predict the elastic moduli vs temperature
curves in the MO phase by resolving Eq. (16) (see Fig.
10). The values of Q3,w,,®, at each temperature are tak-
en from Ref. 39. Figure 10 shows that in the
La, g3Sr; ;,CuO, single crystal below about 200 K all
elastic moduli except C,; and C,, are almost independent
of temperature, which is a feature of the mean-field
behavior, indicating that Q32 and w;,w, have the same
temperature dependent character below 200 K. The cal-
culated jump of C;; is compared with the measured one
as shown in Fig. 11. We can see that the theory predicts
a correct direction of the jump, and the predicted magni-
tude of the jump agrees with the experimental data
within a factor of 2 in the temperature region 10 K below
T,. The difference can be explained by the uncertainty in
the determination of b, and b,. For C,, no noticeable
change was observed near T in our measurements as ex-
pected (see Fig. 7), since there is no coupling between e,
and the structural order parameter.

Close to the SPT, critical behavior will dominate. This
effect is expected to be quite significant for the
symmetry-breaking elastic moduli, in agreement with ob-
servation for C;; (Ref. 12) and Cg (Ref. 39). But for
non-symmetry-breaking elastic constants such as Cj;, the
elastic behavior very close to T is still governed by
mean-field behavior. In fact, the agreement between ex-
periment and theoretical prediction is almost perfect
within around 3 K of T, (see Fig. 11). From the data of
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FIG. 10. The predicted elastic moduli vs temperature curves
in the MO phase for La; gSrj 1,CuO, using Eq. (34). The corre-
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Ref. 12, a critical exponent pu near 0.5 is deduced after
subtracting a linear background, which is consistent with
the scaling analysis.'> X-ray and neutron diffraction ex-
periments on the same crystal were also carried out. An
order parameter exponent value S=0.34%0.02 was ob-
tained*? again in quite good agreement with expected
value for the d =3, XY model.”® The Cg mode exhibited
severe damping®®3 below T, due to the formation of
domain structure. This prevents us from making a con-
clusive determination of critical exponent. In Ref. 38, at-
tempts were made to extract the critical exponent from
the data above T, alone. Three different values 0.37, 0.5,
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FIG. 11. The comparison between the measured (open circle)
and the calculated changes of C;; mode at T, in
La; 3Sr 1,CuO, single crystal.
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and 1 were obtained depending on the way of subtracting
a background.

Furthermore, elastic data also gives strong evidence for
the necessity of including the bilinear coupling energy in
the Landau free energy. Recent experimental data on
La, 4581y ;sCuO, single crystal®® showed that C,; and
C,,-Cy, displayed exactly the same feature at T,, namely,
a step down jump during cooling. This behavior would
not have appeared without the bilinear coupling term in
the Landau free energy [see Egs. (16)]. Besides, that
study revealed that the behavior of C,; +C,, was totally
different from that of C;; as expected from the scaling
analysis in Sec. IV. This result again proves that the bi-
linear term must be included in the Landau free energy.
However, this is not the only important information pro-
vided from the measurements. The most important
consequence is that it implies that the tilting axis of CuOg¢
octahedra does not lie exactly on the [1,1,0] or [1,1,0]
direction. The reason is rather obvious if we rewrite Eq.
(27) in the following form:

AlCy +Cyp)

a
- kTIV Jdr [dr{{[Q1(DQy(D][Q}(r)Q5(r)])
+antisymmetric terms}  (39)

where  Qi(r) and Qj(r) are defined as
|Q(r)| —[(b,/2a,)Q,(r)Q,(1)]'/? and |Q(r)]
+[(by/2a,)Q,(r)Q,(r)]'?2, respectively. A similar de-
finition will be applied to Qj(r') and Q;(r’) too.
Since ([Q1(r)Q5(r)][Q1(r")Q5(r')]) is equivalent to
([Q3(r)—Q%(n)][Q3(r')—Q3(r')]),%° this explains why
both C,;+C,, and C¢ showed critical fluctuation very
close to T,. The key point in this discussion is that nei-
ther O, nor Q, must be strictly zero in the low-
temperature phase. Consequently, it means that at least
in that specimen the low-temperature structure deviates a
little from the Cmca symmetry. It may modify the Cmca
structure in the sense that the tilting axis of CuOg octahe-
dra deviate from the [1,1,0] or the [1,1,0] direction clock-
wise and anticlockwise by very small angle. This small
deviation could be smeared out in the structural measure-
ments, such as neutron or x-ray measurements, where
only an average of atomic positions in a large sample are
probed.

C. Behavior of specific heat near T,

Heat-capacity measurements** on single crystal
La,CuO, and polycrystalline La,_,Sr,CuO,
(0=x =0.20) revealed that the magnitudes of the jumps
in heat capacity for different Sr concentration were not
simply proportional to T,,. This was suggested** to be in
disagreement with Landau theory. Note, however, that
in the formulation of the Landau free energy of Ref. 44
the energy contributions from the strain field and the in-
teraction between the strain field and the order parameter
were neglected. Looking at Table II, however, we see
that AC due to the SPT depends not only on Ty, but also
on Y, which is a function of b, u, and v. In the region of



16 764

Sr concentration where all samples have the same low-
temperature phase, the ¥ and v will not change much
with different Sr content but rather with temperature.
The dependence is expected to be weak. Therefore, these
factors cannot account for the rapid change in the magni-
tude of the jump of the specific heat with different Sr con-
centrations. An alternative source is presumably a large
change in b;. This idea is supported by the vibrating
reed measurements*> on‘ceramic LSCO samples, where a
different magnitude of decrease in Young’s modulus for
different Sr concentrations near the HT—->MO SPT was
observed, also being controlled by the changes in b, and
b,. Since AC decreases with increasing Sr-doping con-
centration, b; is expected, therefore, to decrease as well.
This implies that the jumps in the elastic moduli Cgg,
Cj6, and C 4 are smaller for the samples with higher Sr
concentration. This prediction needs to be checked.

D. Doping concentration and pressure dependence of T,

Theoretically we predict (see Sec. V) that the SPT tem-
perature will change linearly with pressure and Sr- or
Ba-doping concentration. This has indeed been observed
in the La,_,(Sr,Ba),CuO,_, family.’*** We have used
the experimental data to calculate the coupling constants
a, and a, as given in Sec. VII A. Using these two con-
stants and Eq. (38), we now predict dT,/dx for LBCO as
shown in Fig. 12 without any adjustable parameters. It
should be pointed out that we have used covalent radii of
Ba, Sr, and La in order to get a good fit to the experimen-
tal data. Attempts to use metallic radii gave less good
agreement and even worse when trying ionic radii.
Therefore, in reality, a mixture of covalent and metallic
character may be the correct description. In fact, this sit-
uation has been elucidated in a “Wigner-Seitz local envi-
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FIG. 12. Predicted transition temperature vs Ba concentra-
tion for La,_,Ba,CuO,. The line represents the prediction
based on analysis of data in Figs. 8 and 9 with T, taken as 546
K (data taken from Ref. 46).
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ronment” study of the structure of the La 2:1:4 family
made by Melamud, Bennett, and Watson,*’ where they
used the atomic radii (either ionic or metallic) to con-
struct generalized space-filling Wigner-Seitz cells and the
same conclusion was drawn.

The measurement of oxygen-deficiency dependence of
TO,48 agrees with our calculation within a factor of 2.!%
Since only a few data points were available for the
analysis, we therefore conclude that the agreement is sa-
tisfactory. It is expected also from the present model
that upon substituting Sr for Ba in La, ,Ba,CuO, the
T, will increase with increasing Sr concentration. The
variation should not be so drastic in comparison with
dTy/dx due to the smaller difference in covalent radii of
Sr and Ba than in that of Ba and La. This expectation
was in fact verified experimentally in a recent report,*’
which  found that dT7,/dz=2.5X10> K in
(Lag 937sBag gg25—, ST, ),Cu0, compounds. What is ex-
pected from our calculation using Eq. (38) is
dT,/dz=3.88X10% K. The validity of our model can be
checked further by several proposed measurements as de-
scribed in our previous paper.!®

E. Comparison with the results of x-ray
and neutron-diffraction measurements

Recently Crawford et al.,>® have studied the SPT’s in
La; ¢ ,Ndg 4Sr,CuO, compounds using synchrotron x-
ray and neutron-diffraction. They confirmed the three
possible sequences of SPT’s as listed in the upper half of
Table III.

The HT—-MO SPT also induces some spontaneous
strains, which are linked to the order parameter (see
Table II). Powder x-ray diffraction measurement of lat-
tice parameters on ceramic La; ¢sSty ;sCuO, (Ref. 41)
provides a means to evaluate e; caused by the SPT and
then to compare it with the calculated e;. Q3 values are
taken from Ref. 40. The two results are plotted in Fig.
13. We see that the two results agree qualitatively. But
the result obtained from the x-ray measurement is one or-
der of magnitude larger than the calculated one. We as-
cribe the discrepancy to the fact that in our calculation
using measured lattice parameters, we did not take the
thermal expansion into consideration, since no such data
are available in the literature.

The critical exponent for the order parameter obtained
from the measurements of powder neutron diffraction’!
on La 1:2:4 is B=0.372, which is in reasonably good
agreement with the calculated value for the d =3 XY
model.?> However, the critical exponents obtained from
measurements’ of inelastic neutron scattering on Li-
doped La 1:2:4 deviate remarkably from the expected
values for the d =3, XY universality class as pointed out
by Sokolov.’? It was noted that the critical exponents
were closer to those of a tricritical point rather than the
d =3 XY model. Recalling the form of Eq. (11), the con-
dition for the existence of a tricritical point is the disap-
pearance of the fourth-order invariant terms of the order
parameter. This may suggest that the low-temperature
structure could possibly be Pccn in the Li-doped La 1:2:4
samples.
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FIG. 13. The lower curve is the calculated e; employing Eq.
(24). The corresponding Q3 values are taken from Ref. 40. The
other curve is the e; obtained from the powder x-ray diffraction
measurement of lattice parameters (Ref. 41). (See text for more
detail.)

F. Structural instabilities and superconductivity

The present study has shown that the high-
temperature I4/mmm phase of the
La,_ ,(Sr,Ba),Cu0O,_, system is unstable against the
various collective tilting of the CuOg4 octahedra upon
cooling. The change of structure has a large effect on
many physical quantities, and the relations between these
physical quantities have been derived. However, so far
we have not touched upon one of the most attractive
questions: What is the interplay, if any, between these
structural instabilities and superconductivity? In which
structure can the highest T, appear and why? Clearly
answering this question is beyond the reach of the Lan-
dau theory used above. Still, it might be worthwhile, al-
though quite laborious, to make some valuable calcula-
tions and predictions by including the superconducting
Ginzburg-Landau free energy, and the interaction be-
tween the order parameter of the superconductor and the
order parameter of the SPT into our Eq. (11). Here we
would like only to make a few comments on the existent
experimental results from the structural point of view.

The La,_,(Sr,Ba), CuO,4_, system has been a popular
system for studying the physical properties of high-T, su-
perconductors because it possesses almost all the charac-
teristics of high-7, compounds. By varying the Sr- or
Ba-doping concentration, the system could exist in vari-
ous phases: antiferromagnetic, semiconducting, super-
conducting metal, and nonsuperconducting metal. The
superconducting-metal phase®® appears in the region
0.06 Sx <0.25, where the upper boundary is still debat-
ed. Inside the superconducting region of the 7, —x dia-

gram, T, exhibits two peaks and a local minimum at

16 765

around x =0.125 for LBCO while only one peak at
around x =0.15 and a kink near x =0.12 are seen for
LSCO. The location of the minimum in 7, in LBCO has
been observed™ to coincide with the maximum in the
SPT temperature from the MO phase to the LT phase.
Large anomalies in magnetic susceptibility,*® resistivity,
specific heat,’” thermal expansion coefficients,’® sound ve-
locity and attenuation,*® and thermal conductivity®® were
detected near the MO— LT SPT temperature for samples
with Ba concentration close to ;.. This SPT was claimed
to be responsible also for anomalous behavior in the iso-
tope effect,®! Hall coefficient,’® and pressure dependence
of T,.%2 For LSCO compounds, no clear experimental
evidence from neutron or x-ray measurements indicates

the existence of a low-temperature SPT in
La,_,Sr,CuO,. However, there are reports from the
elastic measurements'?>3%3% on several single crystals
pointing to the onset of an intrinsic lattice instability at a
temperature a few tens of degrees above T,.

Unfortunately, there are insufficient experimental data
in the literature to permit calculations of temperature, x,
and y dependences of the parameters v’ and Y. There-
fore, we are unable at the present moment to make pre-
dictions on what structural instabilities could occur for a
certain sample on cooling. Such a study could be highly
relevant for the discussion of the interplay between
structural instabilities and superconductivity. We believe
the present experimental knowledge of the phase diagram
of the La, ,(Sr,Ba),CuO,_, system is still inadequate,
particularly near the locations where superconductivity
starts, is suppressed, or disappears. The following two
aspects may contribute to this situation.

(1) The conventional experimental methods, such as x
ray or neutron diffraction, cannot resolve sufficiently the
change of local structure in this system. It has been sug-
gested®® that it is the local structure that affects supercon-
ductivity. Moreover, since the structure of a certain
phase could always be regarded as a coherent superposi-
tion of the two domains of another phase, it is very
difficult to make a right justification for the structure,
especially when the system is located on the phase boun-
daries. In this regard, it may be advantageous to use elas-
tic measurements instead. Indeed elastic measurements
have made important contributions to the understanding
of the superconducting properties in 415 compounds.%

(2) The existence of the possible structural instabilities
for a certain sample depends on many intrinsic and ex-
trinsic factors, such as Sr or Ba concentrations, oxygen
deficiency, dislocations, stacking faults, etc. For in-
stance, it is not always true that all samples with a com-
mon Sr concentration would have the same structural
variations on cooling. Inhomogeneities of the sample and
the uncertainty in the determination of doping and oxy-
gen deficiency concentration also contribute to the com-
plications.

Keeping the above ideas in mind, now let us consider
three effects induced by Sr or Ba doping. The first one is
the suppression of antiferromagnetic correlations. The
second one is the introduction of mobile charge carriers
into the system. The final one is the possible changes in
the variations of the structures on cooling. It is likely
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that it is the mixture of all these three changes that
governs the variation of T, with x. This issue deserves
further study. Here we attempt only to discuss the
structural effect on superconductivity.

The question regarding whether the HT phase is super-
conducting is still unclear. In an early study®® supercon-
ductivity was found to disappear along with the suppres-
sion of the HT—-MO SPT. However later careful
study,’" %7 paying special attention to the oxygen vacan-
cies introduced by heavy doping, revealed that supercon-
ductivity could be retained up to x =0.26, and the
HT—>MO SPT ended at around x =0.19.% The latter
results implied only that the orthorhombic distortion was
not a necessary condition for the onset of superconduc-
tivity in the system and did not rule out the possibility
that the SPT was from the HT phase to the LT phase.
Recently, Takagi et al.%® reexamined this problem and
found evidence that both the HT—->MO SPT and super-
conducting phase transition terminated near x =0.2.
Thus until more careful experiments are done, this ques-
tion remains open.

Among the remaining three possible structures, the
MO phase has been investigated mostly and is found to
be superconductive. Recently Crawford et al.”° have
demonstrated that the other two phases are superconduc-
tive too. They also showed that T, is slightly higher in
the PO phase than in the LT phase. The order of T,
values from high to low for the three phases is MO, PO,
and LT. What are the microscopic origins of this order is
a challenging question. Since the conduction layers are
responsible for superconductivity, it is natural to look at
the changes in the CuO, planes caused by the three possi-
ble modifications. In the MO phase, the tilting of CuOq
octahedra around the [1,1,0] or the [1,1,0] direction
makes half of the in-plane oxygen atoms move towards
positions below the plane and the other half above the
plane (see Fig. 2). The distance of the deviation in both
directions is equal. Therefore the in-plane oxygen sites
are equivalent. In contrast, in the LT phase in-plane oxy-
gen sites have two distinctive locations. One is the loca-
tion in the plane, the other the location above or below
the plane (see Fig. 3). If we define the distance of devia-
tion of the oxygen atom from the conduction plane as X,
in the x direction, as X, in the y direction, and the degree
of inequivalence of in-plane oxygen sites (abbreviated as
“the degree of inequivalence”) as D =|X, — X, |, then we
can easily see that the degree of inequivalence increases
in the order MO, PO, and LT.

Experimental results seem to indicate that the
HT—MO SPT does not affect 7. too much except
perhaps it provides the necessary environment for the
emergence of superconductivity. An obvious fact sup-
porting this idea is that no superconductivity is observed
in pure La 1:2:4 without extra oxygen, although there is a
HT—MO SPT at around 500 K. Nor will the normal
electronic properties of the system be altered by the SPT.
It is interesting to note that the degree of inequivalence is
not changed either. Band-structure calculations®® on La
2:1:4 have demonstrated that no energy gap is opened by
the CuOy tilt mode. Neither is the transition driven by
Fermi-surface nesting.
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Recently, careful elastic measurements’® have been

done on a La; 4¢Sr; 14CuOy, single crystal. The onset of a
remarkable softening in C,;-C,, was observed at a tem-
perature a few degrees above T,. The temperature inter-
val of the softening was widened by applying a magnetic
field, which implied that a possible SPT below T, was
stopped by the appearance of superconductivity. This is
very similar to 415 compounds,63 where it was noticed
that the existence of the Batterman-Barrett instability
had a positive effect on 7,. Releasing the structural in-
stability by a SPT was shown to decrease T,.’° This in-
formation should be considered along with the fact that
the MO—LT SPT in La, ,(Ba,Sr),Cu0O,_, at around
x =+ suppresses superconductivity almost entirely. The
question is then whether the possible SPT below T, in
that La, 4cSr; 14CuO, single crystal is from the MO phase
to the LT phase. From the elastic data in the high-
temperature region, we could rule out the possibilities
that the transition is of LT--MO or LT—PO type.
Since the SPT is a second-order type, the MO—LT is ex-
cluded. The only possible SPT satisfying both high-
temperature and low-temperature elastic data is the
PO—LT transition (see also Sec. VII 13) by assuming
that D =0. This analysis implies that a lattice instability
associated with the structural deformation in the conduc-
tion planes is important for superconductivity. This lat-
tice instability may generate a compressional strain in the
basal plane of the structure. Phenomenologically one
could say that the facilitation of this lattice instability
could have a positive effect on T, as in 415 compounds.
This idea is supported by high-pressure experiments. It
has been shown that applying hydrostatic pressure on
LSCO could bring T, up to 50 K. This increase of T, re-
sults mainly from the compressional pressure applied
along the basal plane, since it has been shown that the
pressure along the ¢ direction had a negative effect on
T..”' Once this view is accepted, it is straightforward to
show that the application of a pressure on the basal plane
may facilitate the lattice instability associated with the
structural deformation in the conduction planes and thus
lead to the enhancement of 7,. Clearly, more measure-
ments are needed to test this idea. In particular, elastic
measurements on a series of well-characterized single
crystals should be performed, so that one could check (1)
in which range of Sr or Ba concentration the shear insta-
bility exists and (2) how the individual elastic mode varies
with applied magnetic field. As a by product of this
study, one could check the validity of our mean-field
theory and use the data to extract information about v’.
Furthermore, one could extend this mean-field scheme to
take into account the interaction between superconduc-
tivity and the structural order parameter and compare
the elastic behavior near T, with the calculated results.
What the microscopic origin of the strong suppression
of T. due to the MO—LT SPT is still unknown now.
Many researchers believe that the SPT is triggered by an
electronic instability. An oxygen-oxygen in-plane
charge-density wave coupled to the CuOy tilting mode
has been shown to give a negative contribution to v’ and
therefore tends to stabilize the LT phase.”? Maeno
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et al.” suggested that the MO—LT SPT is driven by a
band instability, leading to the creation of additional gap
structure with reduced N(E;) in the LT phase. Band-
structure calculation” indeed found a partially gapped
Fermi surface in the LT phase. The enhanced isotope
effect in the LT phase was explained in terms of an
electron-phonon pairing mechanism.”* Currently this is-
sue is drawing more and more attention from both exper-
imentalists and theoreticians.

VIII. SUMMARY

This paper shows that although La,_,(Sr,Ba),CuO,_,
are high-7, materials, their structural properties in the
normal state can still be very well explained by means of
Landau theory, just like other perovskite compounds
such as SrTiO;. Besides, in this paper the following re-
sults are obtained.

(1) We demonstrate explicitly that the Landau free-
energy density for the La, ,(Sr,Ba),Cu0O,_, system
must include the coupling term bilinear in the two order-
parameter components.

(2) The phase diagram of the La,_,(Sr,Ba),CuO,_,
system is obtained based on the constructed Landau free
energy. It is shown that several different consecutive
SPT’s can occur in this system under different conditions.
Most of the predictions have been verified experimental-
ly, while others may account for the reported anomalous
structural data.

(3) The changes of the various physical properties, such
as strain, specific heat, soft-mode vibrational frequencies,
and elastic moduli, due to the SPT are calculated in the
mean-field framework. The La, ,(Sr,Ba),CuO,_, sys-
tem is also adopted as a model system for performing
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scaling analysis in the hydrodynamic limit. It is shown
that the observed experimental results in the literature
could be understood in terms of Landau theory incor-
porating the scaling analysis near the SPT temperature.

(4) The Landau approach is extended to take the
influence of the applied pressure, doping concentration,
and oxygen deficiency on the high-temperature transition
temperature T, into account quantitatively. Good agree-
ment between theory and experimental results was ob-
tained.

(5) Some results of ultrasonic measurements on a
La; ggSrg ,CuO, single crystal are also reported. Our ex-
perimental results together with the results obtained from
other groups are used to extract the values of the cou-
pling constants.

(6) The possible interplay between the structural insta-
bilities and superconductivity is discussed. Analysis im-
plies that the existence of a structural instability associat-
ed with the lattice deformation in the conduction planes
in the low temperature region may have positive effect on
superconductivity and the release of this instability in any
form may reduce T, in this material system.
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