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Surface paraconductivity induced by an external electric field
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The fluctuating properties of the surface superconducting layers created by an electric field perpendic-
ular to the surface are investigated. Shifts of the critical temperature, heat capacity, and the conductivi-
ty above the critical temperature have been calculated for arbitrary relations between the screening and

coherence lengths.

I. INTRODUCTION

For more than 30 years, there have been efforts to im-
prove the properties of the superconductor by applying
an electric field.! Indeed the external electric field which
increases the density of charge carriers at the surface was
expected to increase the critical temperature depending
strongly on the charge density, as can be seen from sim-
ple BCS formulas. It seems that the shift of the critical
temperature should be large. However, the results of the
first experiments were disappointing.? Only for a very
strong electric field (E=10% V/cm) was the shift of the
critical temperature observed.3

Details of theoretical studies show the very important
role played by the proximity effect in suppressing the sur-
face superconductivity by electrons from the bulk.*?
Considering this theory, the relatively large effect has to
be observed for superconductors with a low concentra-
tion of mobile charge carriers n (large screening length)
and a short coherence length (in order to suppress the
proximity effect). From this point of view the supercon-
ducting ceramics are the best samples in which to observe
this phenomena. Indeed, these systems such as
BaPbBiO;, YBa,Cu;0,, and Bi,Sr,CaCu,0; have an in-
trinsic carrier concentration n=(2-5)X 10?! cm 3 which
is relatively small. The coherence length in these struc-
tures is also extremely small. The shift of the critical
temperature for monocrystal BaPbBiO; was observed
(AT=0.3 K) by Venevtsev and Bogatko.® This result
was in a good agreement with theoretical prediction.’
Field effect studies of several high-temperature systems
have been carried out in the past few years by a number
of groups. These studies included experiments in which
an electric field was applied to a semiconductor
YBa,Cu;0,_; in order to investigate the possibility of in-
ducing superconductivity® as well as investigations of su-
perconducting films.°"!! In the first case, by applying
electric field of only 3 X 10° at 160 K, the conductance of
the semiconductor film was increased to about 0.1 e2/h.
In the latter case, the critical temperature 7, of
YBa,Cu;0;_; films was shifted by as much as 0.1 K.'*!!

Besides shifting T, the electric field also modifies trans-
port in the normal and superconducting states.'” In par-
ticular, the electric field increases critical current.
Another result of the external electric field is its effects on
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superconducting fluctuations. For usual superconductors
these fluctuations do not play a significant role in thermo-
dynamic properties because of a very large coherence
length £,.'> On the other hand, the magnetic moment
and the conductivity of the superconductor may be large
enough at temperature T >T7,.'*'* The temperature
dependence of these functions is strongly dependent on
the dimensionality of the system. In low-dimensional
structures the fluctuation phenomena are strongly mani-
fested. From this point of view the fluctuation phenome-
na in the surface layer are expected to exhibit very in-
teresting features.

II. BASIC EQUATIONS

Let us consider the Ginzburg-Landau functional for
anisotropic superconductors with an inhomogeneous con-
stant of electron-electron interaction g=g(x) in the
form”?

HgL =N, [[a(x)|W]2+b|W|*+£2](i8,—2e 4, /c)¥[?
+(B—H)*/8x]d’r ,

a(x)=[T—T,(x)]/T.(x),

b=17£(3)/87°T? ,

a=mv,l, /24T, ,

5 (1)
T,,=1.14Qpexp(—1/g,) ,
80=NoVy ,

T.(x)=1.14Qpexp[ —1/g(x)],

g=N(x)V[N(x)],

V is the superconducting gap, 4, is the magnetic vector
potential, B and H are the induction and external mag-
netic field, respectively, N is an unperturbed value of the
density of states (DOS) at the Fermi level, v, and /, are
the Fermi velocity and free path of the electron, u==x,y,z
(Fig. 1), Qp is the Debye frequency. (We assume that the
surface of the layered structure coincides with the layers.)
The coordinate-dependent critical temperature 7,[N (x)]
has a well-known form [see Ref. 5]:

T.[N(x)]
=T,(No){1+3InT,(Ny)/dInNo[8N(x)/No1} ,
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FIG. 1. The typical MOS structure to investigate field effect
in superconductors (see Ref. 1).

8N(x)=N(x)—N, , 2)
y=[0InT,(Ny)/31nN,] .

(In the framework of the model with electric-field-
independent value ¥, we get for y, ¥y =1/g,.) In the
framework of the Thomas-Fermi approximation 8N (x)
has a well-known form (for zero electric potential ® far
from the surface inside the superconductor):

8N (x)/No=xexp(—x/I), k=e®d,/2E,

(3)
l_2=z-:/417'N0e2 R

where € is the dielectric susceptibility, ®, is the electric
potential at the surface, E is the Fermi energy.

III. THE CRITICAL TEMPERATURE

In the vicinity of the critical temperature the order pa-
rameter W is very small and one can neglect the fourth-
order term in Eq. (1). As a result we get a Schrodinger-
type equation for ¥ ( 4 =0) (see Ref. 5):

—&2d2W /dx?+[ 17— (ky Jexp(—x /1) ]¥ =0, 4)

where 7=T/T,—1. In order to obtain the shift of the
critical temperature one has to obtain the minimum ei-
genvalue of Eq. (4) taking into account the boundary con-
dition

(—id—2eAd/c),¥=0. (5)
The solution of Eq. (4) has a well-known form:’

Y (x)=J, [exp(—x /Da] (6)
for which

vi=4l%r /€2,
7,=(T,—T,)/T,,
a’=(41%y /E%) .

The equation used to obtain all of the eigenvalues of the
discrete part of the spectrum and satisfying the boundary
condition (5) has the form

ve/a=J, @)/, (). (7

The maximum value among T, (T) is the critical tem-
perature of the surface superconducting state creation.
We get from (7) both for “weak electric field” (a<<1)
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and for “strong electric field” (a >>1) limits:

(kly /€)?, a<<1,

a>1. ®

AT/T, = [(Ky) ’
The solution of Eq. (7) for all values of « is presented in
Fig. 2. It is clear that at a=3.8 the second eigenvalue
appears. The wave function corresponding to the lowest
eigenvalue determines the spatial behavior of the order
parameter.*> It means that the characteristic size of the
surface superconducting state resulting from the electric-
field action has the form

ﬁ/kl'y , a<<l1,

=121 /ky) 1 | a1, ©

To use the Ginzburg-Landau theory one has to demand
the condition d >>§£,. This is the main restriction for our
parameters.

IV. SMALL FLUCTUATIONS OF THE
ORDER PARAMETER

Let us consider the free energy of our system at tem-
perature T > T,. In this region the mean value of the or-
der parameter is zero and the Ginzburg-Landau function-
al is the effective Hamiltonian for fluctuations.!®> The free
energy of these fluctuations may be represented in the
form

=—TInZ,
Hg {W} =N, [ {a(x)|¥[?
+£21(i3,—2e 4, /c)¥|*}dr , (10)
Z= [exp(—Hg {¥}/T)DYDV* .

Looking for the order parameter V¥ in the form

V=3 [ M,f (xexplik-p)d*k/(2m)?, (11)
va)
(o]
8_
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2_
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FIG. 2. The eigenvalues of the Schrédinger equation (4) vs
parameter a.
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where f, are the eigenfunctions of Eq. (4), p is a two-
dimensional vector directed parallel to the surface. Using
Eqgs. (10) and (11) we get for the mean-square module of
amplitude M,

(IM 4| =T/[Nof2EKk*+7—1,)S], (12)

where S is the area of the surface,

fi= ff%,(x)dx.

Let us consider the heat capacity, for example. This
function may be easily obtained from Egs. (10) and (12) in
the following way:

C(E)=T'3%F /3r*

sample

_ Sy [N® B ® B
(4mg)) > V/r—r,)+ 3 1/(r—71) |,

0 v=0
(13)

where N (E) is the number of discrete levels in “potential
well.” (Here index v denotes the continuous spectrum.)
The second term in Eq. (13) appears to be due to the con-
tinuous part of the spectrum of Eq. (4). Its contribution
to the sum can be calculated exactly. Taking into ac-
count the completeness of the system of eigenfunctions
(see Ref. 12), both in the zero electric field (E =0) and
also the system of eigenfunctions in the field, we conclude
that the DOS at v—0 must change drastically. Indeed,
as it was shown by Zel’dovitch and Rabinovitch,!? the
DOS at value v=0 must compensate the contribution of
the discrete part of the spectrum.

The completeness of the system of eigenfunctions tells
us the evident condition:

[ 1w 0%t ydr,= [ ¥, (x0)%(r,)dT, , (14)

where p(7,) and p(7,) are the DOS of Eq. (4) with and
without potential energy, respectively. For a sufficiently
weak potential (k <<1) in Eq. (4) the wave function of the
continuous part of the spectrum may be replaced by its
quasiclassical value practically everywhere excluding ex-
tremely small v. [It is clear from Eq. (5) that p=v/2lis a
momentum.] It means that the small v in Eq. (14) must
be taken into account exactly. Performing integration in
Eq. (14) on x we represent the left-hand side of Eq. (14) in
the form

N(E) e )
S W, (x)|2+ fop(‘rv)l\l/v(x)| dr,

n=0

+ [ 7 plr )0 %dr, . (15)

Here € is a small parameter where the quasiclassical
behavior of the wave function ¥, (x) becomes incorrect.

In the third of the integrals one can substitute v by
momentum p and perform the integration. It is clear that
the result is identical to those obtained from the integral
on the right-hand side of Eq. (14) (in the lack of the po-
tential). Two of the rest integrals in Eq. (15) must com-
pensate each other if the DOS p(r,) at 7,—~0 has the
form

p(1,)=—N(E)d(T,) . (16)
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Substituting Eq. (16) in Eq. (13) we get

S r—1)=1/4V1—1/T . (17)
v=0

Taking into account the well-known relation for the heat
capacity in the absence of electric field C(0),13
c0)=1/ l67r2§ﬁ, we derive for the difference AC
=C(E)—C(0),
N(E)
AC(E)=4ng)™ ' 3 [1/(r—7,)—1/7] . (18)
n=0

As is clear from Eq. (18) the heat capacity in the electric
field has “jumps” at the electric-field values for which an
additional discrete level appears. These values have been
obtained from the solutions of Eq. (7) (see Fig. 2). In par-
ticular, k;=3.8£2/1%y, k,=T7E2/1%y.

V. PARACONDUCTIVITY

The phenomena described above have to be manifested
in all of the fluctuating phenomena. Let us consider the
conductivity above the new critical temperature T. It is
well known that the fluctuations of the order parameter
above the critical temperature change the conductivity of
the sample.!* !5 In our case a surface layer created by the
electric field is more favorable for superconductivity than
the matter in the bulk. In this layer the superconducting
fluctuations of the order parameter may result in an in-
crease of surface conductivity for current flowing along
the surface at temperature 7> T,. In order to investi-
gate this problem one has to use the equation for relaxa-
tion of the order parameter. The gauge-invariant equa-
tion of this type has a well-known form:

—B(3W /3t +2ie® W)= [ 8H sy (W) /8¥*d’r , (19)

where ®,=—Ep, P, is a potential of the electric current
flowing along the surface, B is the relaxation constant.
We are interested in the change of the order parameter as
a result of the electric field parallel to the surface (E, ).

It is clear that this term has to be proportional to the
electric field and as a result is not dependent on time.
Substituting Hg; from Eq. (10) to Eq. (19) we get, in our
case,

[2Bie®+a(x)]¥+EL(—ihd,—2ed, /c)¥=0.  (20)
Substituting the expression for ¥ from Eq. (11) to Eq. (20)

and representing M,, in the form M, =M, (0)
+M‘VL)(<I>”) we get, from Eq. (20),

2BeE dM ,(0)/3k +(r—7, +ETKDM P (®)=0, (21

here M, (0) and M (VL)(CDH) are the coefficients in the ab-
sence of electric potential along the surface and the first
perturbated term, respectively.

Using the Ginzburg-Landau current in the form

J = —ie&§iN(WOW* —¥*3¥) , (22)
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and substituting W in the form (11) we get as a result

J= [d%/Q2n) 3 k&N (1M, ?) (23)

n

where

J= fo"’J“(x)dx ,
(24)

J=[d%k/27)? 3 k&N (M (OM 5D (@) +c.c.) .

Substituting M} (®,) from Eq. (21) we get
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FIG. 3. The paraconductivity of the superconductor as a
function of the electric field above a new critical temperature
To.

J=—2Be*€N, [ d*k/2m)? 3 (1—7,+Ek?)'K(E-3/3K){ M, (0)[*) . 25)

Taking into account {|M, |*) from Eq. (12) we have as a
result

J=oE,

(26)
o, =2Be*TE [ k2% /2w 3 (r— 1,4+ .
Performing the integration we have for Ao =o0(E)

—o(0), in the manner described earlier [see Eqgs.
(16)-(18)],

N(E)
Ao =(Be’T/m) ¥ [(r—7,) 1=771]. (27)
n=0

The paraconductivity depending on the external elec-
tric field has the set of jumps when the new eigenvalues
appear (Fig. 3). From the formal point of view the sum
in this expression is the same as that considered earlier
[see Eq. (16)].

VI. CONCLUSION

Thus, in an external electric field both heat capacity
and paraconductivity are a steplike function of the exter-
nal electric fields. The origin of these steps is absolutely
clear. Indeed, at certain electric-field values [see (18) and
Fig. 2] new degrees of freedom for the fluctuating order
parameter are opened. It results in jumps in all fluctuat-
ing above-the-critical-temperature thermodynamical
functions. This effect is very sensitive to the type of ma-
terials. Let us consider three different superconducting
systems, namely, tin, YBa,Cu;0-, and Bi,Ba,Ca,Cu;Os.

r

For all of them we have the parameters /=1 A,
£=1000 A (tin), /=5 A, §, =5 A (YBaCuO), and [ =5 A,
£,=3 A (BiBaSrCuO).'® For y =1 and k=0.1 we obtain

AT /Te=10"8 (tin) ,
AT/T,=10""! (YBaCuO) , (Bi,Sr,CaCu,0y) .

The value of the ratio ! /£ is more dramatic for fluctua-
tion phenomena. Indeed, for the small ratio / /£ in sums
(16) and (25) there remains only the first term. In this
case both the heat capacity and paraconductivity have
two-dimensional behavior [(T—T,)~!] above the critical
temperature Ty. The value of the electric field has to be
large enough to create additional degrees of freedom
which cannot be realized in conventional superconduc-
tors. Let us estimate the shift of charge density («) in-
duced by the electric field at the surface which is required
to observe the jumps in the fluctuating phenomena.

For the first jump we get

k;=0.25 (YBaCuO) , «;=0.1 (BiSrCaCuO) .

These shifts of the electron density are achieved in the
present experimental situation.
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