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The one-dimensional Hubbard model with repulsive interaction is studied. We calculate the
asymptotic correlation functions in the less-than-half-filled band case. In particular, our approach
centers on the large-U wave function and emphasizes the finite phase shifts on the Fermi surface.
This is important since the concept of finite phase shifts can be easily applied to higher dimensions.
We then discuss the non-Fermi-liquid behavior of this model and the relevance to the understanding
of the two-dimensional Hubbard model, which is believed to give a good description of the high-T
sup erconductors.

I. INTRODUCTION

Although it is one of the simplest models in statis-
tical physics, many important and interesting questions
about the Hubbard model still remain unanswered. It
has recently attracted a lot of attention because of the
belief that it is the right model for high-T supercon-
ducting materials. So far, very little knowledge has been
gained about the two-dimensional Hubbard model, al-
though progress is being made. On the other hand, fol-
lowing the recent excellent numerical work by Ogata and
Shiba, and Sorella et al. , the low energy behavior of
the one-dimensional (1D) model has been clarified. Here
we discuss this development and the implications on high-
T superconductivity.

II. LIEB-WU SOLUTION

o. = 1, 2, . . . , M,

0(p) = —2 tan '(2p/U), —~ «0«
Is's are integers (half-odd integers) for M even (odd),
and J 's are integers (half-odd integers) for N —M odd
(even). N is the length of the system. The momentum
and energy of the state are given by

N

p=) k, ,

M

N ks =2vrIs+) 0(2sinks —Ap),
P=1

j =1,2, . . . , N,
N M

—) 0(2A —2sinks) =2vrJ —) 0(A —Ap), (3)

Following Yang's solution of the one-dimensional
Fermi gas with b-function interactions, Lieb and Wu
succeeded in solving the one-dimensional Hubbard model

II= t) ct cs. +—U) n;gn, g

N

E= —2) cosk~. .

For a half-filled band, Lieb and Wu calculated the
ground state energy

using the Bethe-ansatz wave function
Eg, ———4N Jo(~)J'(~)

(v[1+ exp (~(uU)]

N

@ = ) [Q, P] exp
( i) kp, gq,') (2)

and the Mott-Hubbard gap

A=U —4+8) (—1)"[(1+n U/4) ~ —-nU]. (6)
n=l

where P =(P', P2, . . . , P") and Q =(Q~, Q2, . . . , Q") are
two permutations of the numbers (1,2, . . . , N) for a sys-
tem with N electrons and M down spins. It is supposed
that N «N. and 2M & ¹

The equations determining the ¹!x N! coeKcients
[Q, P] lead to coupled equations for quantum numbers
k~ and A

They showed that for U ) 0, the ground state energy
and wave function are analytic in U, and concluded there
is no Mott transition at finite U. The low lying exci-
tation spectrum has been studied by Ovchinnikov and
Coll. They calculated the velocities of the spin wave and
the charge density wave in various limits. More recently,
Woynarovich studied the excited states of a half-filled
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band with electron pairs occupying the same sites. These
correspond to states in the upper Hubbard band.

in which electrons of opposite spin cross the Fermi surface
in opposite directions and the umklapp scattering

III. THE g-OLOGY THEORY H„~ = gs dxe' "
vPI &gl &g~gg~t + H.c.

The bosonization technique has been successfully ap-
plied to the one-dimensional electron models. For spin-
less fermions with the Hamiltonian

H = vp- ) ikiatkak + ) Vyp(k) p( —k),

the transformation to the bosonic representations

p(k) = pi(k) + p2(k)

tpi(k) = ) .a„
p)0

1/2

p2(k) = ) ap ki, aI,+k(2 = b k-
p(0

makes both the kinetic term and the interactions
quadratic in boson operators,

~ —vt" ) ikibkbk + ) ikii k(bk + b k)(bk + b —k)
k k

The Hamiltonian including the backward and umklapp
scattering cannot be diagonalized exactly. Luther and
Emery showed, at particular values of g's, it is possi-
ble to reduce H and H, to a free fermion Hamiltonian
by a canonical transformation, and the resulting Hamil-
tonian can again be diagonalized. The result combined
with the renormalization group analysis determines the
ground state properties in difFerent regions of interaction
parameters. In the case of the Hubbard model, for re-
pulsive U the backward scattering Hamiltonian has the
wrong sign for producing a gap in the spin wave spec-
trum while the umklapp scattering responsible for a gap
in the charge density wave spectrum is only important
when the Inomentum transfer to the lattice is 4k~, i.e. ,
at half filling. This agrees with the Lieb-Wu result.

The renormalization group analysis for the model been
done by Solyom. The charge renormalization is only rel-
evant at half filling. The spin renormalization flow has a
fixed point at g&ll g

IV. THE MODEL IN THE LARGE-U LIMIT

and the Hamiltonian is easily diagonalized. For spin 1/2
fermions, it is convinient to introduce the charge and spin
operators

ct = (bt + bti)/y 2,
(10)

To get a better understanding of the ground state wave
function given by the Lich-Wu solution, we rewrite the
wave function in the infinite-U limit, after Ogata and
Shiba, ' as

Q(x„.. . , x~) = (—1) det exp(ik, x~. ) P(yi, . . . , yM).

If the original Hamiltonian is invariant under spin rever-
sal, there will be no terms in the product of one charge
and one spin creation (annihilation) operators and we
may say the charge and spin degrees of freedom are sep-
arated. . This is a consequence of the fact that in one
dimension the only possible excitations are density fluc-
tuations:

H=H +H,
= v ) ikic&ck + —) (gi —2g2)ski(ctkct k + c kck)

k k)0

+ v ) ikisksk + —) gI ski(sks k + s ksk).
k

' k)0

However, the existence of the spin degrees of freedom al-
low more possible terms to appear. There are the back-
ward scattering

The P(yi, . . . , y~) is the Bethe solution to a 1D Heisen-
berg model on the "squeezed" lattice x, (i.e. , all hole
sites are squeezed out). Here yj, . . . , y~ are positions of
the down (or up) spins on this squeezed lattice of the
spins. The wave function now is an explicit product of
a charge part and spin part and this kind of separation
in the ground state wave function only happens in the
large-U limit. The form of the wave function immedi-
ately tells us that the charge part is renormalized to a
spinless fermion system, and most properties are eas-
ily understood in this picture. Naively, the correlation
functions are just simple products of the spinless fermion
charge part and the Heisenberg spin part, but there is
an important constraint to be taken into account. While
the quantum numbers A depend only on J 's, the k~'s
depend on the sum of all J 's through

%.k, =2~1, + —) J .
2K

dxWRg4'I, g@RglL,g + H.c.t t (12)

When only charge or spin density excitation exists; i.e.,
the I~'s and J 's do not dier from their value in the
ground state value simultaneously, and the coupling be-
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tween charge and spin may be neglected. However, when
an electron excitation is created, the last term in the last
equation generates a phase shift for the charge part. Let
us say that we remove an electron of momentum kF from
the system. The way that costs the least energy will be
removing the I~ at the "charge Fermi surface" 2kF and
removing the J at the "spin Fermi surface" kF. This in
turn will shift all the rest of the k~'s, in terms of phase
shift, by

The overlap above, that of the state of N + 1 with to-
tal momentum kF with the ground state of K particles
plus a free particle of momentum kF, can be calculated
using the technique developed by one of the authors in
the treatment of the Kondo problem. The method is for
finding overlaps between wave functions of deterteminan-
tal forms in terms of the single particle phase shifts. For
two single particle wave functions difI'ering by a phase
shift of b, the overlap is

b=N bk
N 2

which is equal to vr j2 for equal numbers of up and down
spins. Let us consider the change in nk when we add one
particle to the system at kF. This is given by

(18)

thus the overlap integral between the determinants made
up of states QI, and g'„ is

Detl(&I @t)I

= Det
vr ng —n'„

N N
— sin orb

m(n
(n —m + b„—8 ) (m, —n)

N

(n —m+ b„)
m )n

1
oc exp

2

1= exp
4

r'b in' .
(7r

The extra factor 1/2 in the formula is due to the fact
that we should only pair particles with the same spin di-
rection while we have a determinant of both up and down
spins. If the Bethe solution were at the exact free fermion
fixed point described by Sutherland, Haldane, and
Shastry, the overlap used here turns out to be a con-
stant. As it is, there may be at least logarithmic correc-
tions to correlation functions due to spin function over-
laps. The annihilation operator for the spin commutes
with PG. ,'thus the overlap between the spin part of the
wave functions before and after taking one spin out is a
finite constant independent of ¹ We have

wave functions of the left and right moving branch

e~4 R(~)

with

4&(x)= ) l I
lbtee

'" + bye'" ]e I II
qlklL

I/2

( )= ) l l
[ate '"~

b '"~]

(22)

(23)

this implies near the Fermi surface,

nI, = ng —const lk —k~l ~ sgn(k —k~). (21)

V. MORE CORRELATION FUNCTIONS IN THE
LARGE-U LIMIT

where n is introduced for convergence. The P fields are
connected to the density field p(x) by

Each time a fermion is added, P(x) increases by 27r, and
so $(x) is the properly normalized "phase shift" field.
The eKect of interaction is to change the phase shift co-
efIicients, i.e. ,

e'@~ ~ e' ~~, for example, by mixing the
left and right branch through a Bogoliubov transforma-
tion as we usually observe in the Tomonaga-Luttinger
model:

We want now to show that by further formalizing the
phase shift idea, more correlation functions can be "vi-
sualized" in the large-U limit. For a 1D fermion system
with linear low energy excitations, we can write for the

/II (x)~ cosh ppR(x) + slI111 (pQL, (x),

QI, (x)~ cosll +pl, (x) + slIlll (ppR(x),
(25)
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For our purpose here it enough to write down the expres-
sion for calculating the correlation function

(26)

Let us define the "holon" as the excitation associated
with adding or removing one I~, which are called type-
II, type-III excitations in Lieb and Wu. The Green's
function for the holon is easy to find. When we add one
I~ to the system, the A 's do not change. We are simply
adding one k~ to the Slater determinant, which behaves
like a noninteracting spinless fermion system, filled up to
momentum 2k~. So we have

((b(z, t)@t(o, o))
xkFz

(x —v, t)'&' ' (28)

[The 2k~ contribution in the spin-spin correlation func-
tion of the Heisenberg model consists of one left (right)
moving particle and a right (left) moving hole, and so

We next consider the excitation associated with remov-
ing one of the J 's, i.e. , type-I in Lich and Wu. When we
remove a J at —k~, we get a spinon —a spin half excita-
tion with momentum k~, basically an electron removed
from a Heisenberg system,

G'(z, t)- 2ikF z

x —v t+ ibt' (27)
(S(x, t) S(0, 0))

S

where v, is the velocity of the charge excitations in Hub-
bard model, which together with the velocity of spin ex-
citations v, have been calculated by, e.g. , Coll. The ib
term is put in in such a way to make the analyticity cor-
rect.

see, e.g. , Luther and Peschel. ] Moreover, each k~L is
shifted by 2, compared to the interspacing 2'. This leads
to 1/4 for the phase shift coeKcient we mentioned earlier,
and since there appear a right moving particle and a left
moving hole, we have

G'(x, t)- eikF z

12
(x —v, t + ibt) (z —v, t + ibt) (x + v, t —ibt) (

eikF z

(x —v, t + ibt) ~ (x —v, t + ibt) ~~ (x + v, t —ibt) ~~
(3o)

The spin-spin correlation is now given by the joint spinon-(spinon-hole) correlation. For the 2k~ contribution, the
phase shifts are in the same direction, which determines the relative signs when we perform the calculations in the
bosonization formalism. We easily get

cos 2k''x

(z —v t) 2 (z + v t) 2 (x —v t)(4+4)'(z + v t)(4+4)'
cos 2k''x

(x —v, t) ~ (x + v, t) 2 (x —v, t) 4 (x + v, t) 4

This gives

(S(x) . S(0)) x & cos 2k~x (32)

(except, again, for logarithmic corrections). This is con-
firmed by numerical calculations by Ogata and Shiba
and Sorella et al. On the other hand, when the calcula-
tion of the susceptibility involves only the zero momen-
tum contribution of the spin-spin correlation function,
we will get exactly the same result as in the Heisenberg
model. The T = 0 susceptibility has been calculated by
Shiba. ~4

Another correlation function of interest is the density-

density correlation. The 4k~ contribution is rather sim-
ple:

cos 4k' x
( (* ) (o o))-

also confirmed by Sorella et aL

Finally we calculate the electron Green's function and
the momentum distribution. To make an electron hole,
we have to remove a I~ at 2k~ and a J at —k~, but
then the shifting of k~ 's adds a quarter kz at 2k~ and
removes a quarter k~ at —2k~. Thus at 2k~ we have two
opposing phase shifts. Noting this, we immediately have

eikF z

(x —v, t+ ibt)(~ ) (x+ v, t —ibt)( ) (x —v, t+ ibt)

eikF z

(x —v, t + ibt) ~~ (z + v, t —ibt) '8 (x —v, t + ibt) ' (34)
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which also leads to the momentum distribution

n(k) = —i
1

dxe '" G(x, 0 ) = const —constIk —k~I8sgn(k —k~).

But there are other ways of making an electron excitation; we can remove a I~ at 2k~, and remove a J at k~. This
gives an electron excitation at momentum 3k', with the Green's function

G3kF
e

3ikF z

(x —v, t + iht) f +4l (x —v, t + ibt) ~4l'(x —v, t + ibt) ~

The momentum distribution singularity is given by Ik-
3k~I ~ . We will have more discussions on the Green's
functions later.

can be rewritten in the low energy regime as

H = — dx vg(V'Q) + v~(V0 —7rpo)
2 2

27t

VI. HALDANE'S LUTTINGER LIQUID
CONCEPT

A better framework for formulating the low energy
structure of one-dimensional models has been developed
by Haldane in a series of papers. The basic idea is
that the low energy effective Hamiltonian of 1D quan-
tum models could be mapped onto the spectrum of
the Tomonaga-Luttinger model. In particular, Haldane
demonstrated the applicability of the Luttinger liquid
formalism to several Bethe-ansatz-type systems.

The "Luttinger liquid" is a universality class of 1D
fermion systems with a gapless linear low energy spec-
trum. The structure of such a model is determined by
a single parameter e +. In the long wavelength approxi-
mation, a fermion field can be represented as

4~(x) -
I p(x) I"""*'"~"

0(x) = 0+ +i) —„e'"*e (bg+bt „),
k 2L

k~o
'

(42)

and choosing

k+0

VJC = V~t = VS,
—2(p 2(p

and so

H = vg1 + v~(N —No) ] + hvs ) IkIb&bg,
k

where vg = nhpo/m and v~ = K/7rhpo are the current
and number velocity, and r is the compressibility per
unit length. The Hamiltonian can be diagonalized by
introducing a Bogoliubov transformation parameter e~,

here we define P(x) and 0(x) as

[p(x) &(x')1 = i~(x —*')

V'0(x) = 7rp(x).
(38) with the selection rule

dxIV'gI'+—
2 dxdyV (x —y) p(x) p(y)

(40)

p(x) is the density so P(x) is the phase field and 8(x) is
the "phase shift" field. The factor e' & ~ comes from the
"jordan-tA'igner" transformation for 1D fermions. The
Fourier transforms are

X/2

p(*)= p+ ) e '"* — (b~+b'~)j 2vr
k

Z/2

0(x)= 8+ +i ) — e '"
(by + bf „), (39)

k/0

~(*)=~+ *+').
k+0

The Hamiltonian

(-~)"= (-~) (45)

jj = — dx(v [e ~(V'P ) + e ~(VO —7rlVo/L) ]

+v [2(V'P ) + -'(V'8 )']). (46)

Here, we have taken into account the fact that the charge
part does not get renormalized from the umklapp term
when the band is not half-filled, and that the marginal
backward scattering term for the spin part renormalizes
logarithmically to zero. In the limit of large U, the charge
density velocity v and spin wave velocity v are given
by14

vs = (r/mpo) i~ is the velocity of the density oscillation,
or "sound velocity. " For free fermions e ~ = 1 and for
free bosons e ~ = 0.

For the Hubbard model, we have



48 ASYMPTOTIC CORRELATION FUNCTIONS IN THE ONE-. . . 16 667

(. 7rN) I
v, = 2t~ sin

N )N'
1 /4t ) f sin27rN/N ) L

i, U ) q 2vrN/N

(47)

and so we have

ln2
e ~ m 1 — sinQ.

AU
(56)

For convenience in the following formulas, we redefine

The parameter e+ is decided by the ratio of the two ve-
locities VN and v, . It is easy to determine e~ in both the
large- and small-U limits. For large U,

L Op

~ON
L= 2t sinQ

vcj (48)

L Bp
BN
L= 2t sinQ

2%

—VcI
2

i.e. , e ~ = 1. This is expected since in the large-U
limit the charge part renormalizes to free fermions. In
the small-U limit,

e =2[e ] id. (57)

Now we can write down all kinds of correlation functions

by using the bosonization technique for the Tomonaga-
t.uttinger model. 1A'e have

l/2
vrN x . 1, ark

g(x)= g + ' +i ) — e ' e~(ci +c „),
k L

k+0
l/2

rt. (x)= g. + ' + i) k&
e'"*e (c„—c—i),

k/0
(58)

l/2
7t-N, x . .1 ~&

g (x)=g, + ' +i) — e ' (sA+s „),L k
kgO

l/2

P, (x)= P, + ' +i ) e'"*(s„—s i),
k~o

'"

so e 2~ = 1/2. For general U, one can obtain e~ us-
ing the method similar to that given by, e.g. , Haldane
for a Bethe-ansatz system without internal degrees of
freedom. The results of Bethe-ansatz-soluble models
are given in terms of a linear inhomogeneous Fredholm
integral equation of the second kind:

and

0 =Op+Op,
9,= Og

—Og,

= (O'T + p4)/2,
0"= (&~ —&~)/2

N = Ng+Ng,
N, =Kg —Ng,

J.= (J~ + J~)/2
J, = (J~ —Jl)/2,

(59)

2vrp(k) = 1 +

If we define o(k) by

2vro. (k) = 8(k, Q)—

then

dk' ' (k').
ak

„,08(k, k')
Ok'

(5o)
Note that according to this definition, at large U e ~ =
1/2, and for U = 0, e2~ = l.

In calculating the correlation functions, we have to fol-

low the selection rules

( 1)~N, ( 1)z Z,

(6o)

e ~ = 1 —o.(Q) + o-(—Q).

In the large-U limit,

c)8(k, k') ln 2

(52)

(53)

( 1)DNg ( 1)d Jg

and the term to enter will be

( q i&N P (a) AJO (x)

or

this gives

ln2
8(k, k') = (sin k —sin k');

ln2
0 —0 — = Sin

mU

(54)

(55)

i&N, P, (a) AJ, O (x)'ps (

which will have LJ x 2k~ oscillations The leading term
in the electron Green's function is given by a A%~ ——1,
A Jg = 1, AKg = 0, AJg = 0 (k~) piece and a AN~ ——1,
A Jt = 3, ANg = 0, A Jg ——0 (k~) piece:

G(x, t) = (@g(x, t) @tt (0, 0) ) —e*"~ (x —v, t) (x —v t) /
~
(x —v, t) (x + v, t)

~

+ 3i jce e
( t)

—(3e++e +) /8( + t)
—(3e+ —e +) /8( t)

—i/2 (62)
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with

This gives

n = (e ~ + e ~ —2)/8.

n, - -sgn(k —kF)~k —kF~~
"+"'-'l/'

—sgn(k —3kF)ik —3kFi~ ' +'

(63)

(64)

The first two terms come from the k = 0 piece in
V9 (x)VO, (0):. The last two terms correspond to

LJ = 1, AJ, = 1 and LJ = 2, AJ, = 0 respectively.
For large U, we expect the 4k~ term to be dominant.
The leading terms in the spin-spin correlation are

1
(S,(x, t) S,(0, 0)) = const + D1

The erst few terms in the density-density correlation
function are

n(x, &) = Wq4'g+ 4J4'i
cos 2k~x

(X2 —V t2) e/ (X2 —V2t2)1/2

(n(x, t)n(0, 0)) = no+
C

cos 2k~X cos 4kgx
1 2(p(X2 —V t2)e'~/ (X —V t )1/ (X2 —V2t2) e'~+C2

(65)

(66)

The singlet pairing LNg ——LNg ——1 has leading terms
LJg ——+1, LJg ——+1:

Osp(*) = 1/' (x)0 (x),

1 x2kF z
{OSPOsp) oc + EoX2 —V t2~ /2~X2 —V2t2~1/2 (X —V t)( + +) / (X + V t)( ) /2

e —i2kFz

(X+ V t)~ ~+ ~)~/ (X —V t)l ~ ~)

(67)

The triplet pairing LNg ——2, A%g ——0 has leading terms
AJ =LJ, =0:

N

k, L = 27rI; —) 8(k;, k~), k c [
—Q, Q]. (69)

OTp(x) = g (x)g (x), Consider the single particle Green's function

(o' o,&~
V2t2)

—
2[ 2 V2t [1/2

1
G ~

(X t)V(e+ e++)~/4(X + Vt)(ee —e —&)~/4'

+terms oc e' "~ /x + + etc. (68)

In the Luttinger liquid language, e & and e~ are re-
lated to v~ and vJ respectively. Actually, Haldane has
shown that e ~ is proportional to the phase shift on the
Fermi surface when we add equal number of electrons on
both sides of the Fermi surface; similarly, e~ is propor-
tional to the phase shift when we add some number of
electrons on one side and the same number of holes on
the other. What we did in Sec. V is to consider what
happens if we add electrons only to one side of the Fermi
surface. This turns out to be proportional to 2 (e~ +e ~)
and gives exactly the same result obtained in this section.

It is very straighforward to show that the correlation
functions are directly given by the phase shifts in the
more general Bethe-ansatz soluble models. This is of
course trivial since the phase shifts approach will be cor-
rect even if a model is not solved by Bethe ansatz.

The central result of the Bethe-ansatz solution is the
equation relating various pseudomomenta k, 's to quan-
tum number I s:

e ~ = 1 —o.(Q) + o.(—Q), (71)

(Q)- (-Q) (72)

where

2vro(k) = 8(k, Q)— dk', 8(k, k') o (k') (73)

or

1

(x —vt)~' — l&l~'(x+ vt) l —&l~'
' (74)

We prove here that 1 —o (Q) and o ( Q) are noth—ing but
the phase shifts on the two Fermi points.

Consider adding a particle to the right Fermi point and
the shift in every pseudomomenta Ak,

Haldane has demonstrated that the Luttinger liquid pa-
rameter e~ can be derived from the kernel 8(k, k') in the
Bethe-ansatz equation
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N

k, L = 2~r, —) e(k, , k, ),
j=l

N

k,'L = 27rI, —) 8(k,', k') —0(k,', Q),

function

2vrp(k) = 1 +

1
—k )I. '

Q
dk' 8(k, k') p(k').

(k,
' —k, )I. = -~(k,', q) —) e(k,', k,') —e(k, , k, ) .

We have

AkL = (k,'. —k, )L

= —8(k, Q)— dk'p(k') v)(k, k') AkL

dk'p(k'), 6(k, k') Ak'L.

The density of the pseudomomenta k's is defined by the

We can then rewrite the equation for Lk,

2mp(k) d PI = —0(k, Q) —jdk', 8(k, k') p(k')d P.'L

(79)

Comparing this with the equation for o (k), we see

o(k) = p(k)A—kL

k,'- —ki

ki+1 —k,.

This is nothing but the definition of phase shifts.

VII. GREEN'S FUNCTION IN MOMENTUM SPACE

Following Dzyaloshinskii, we write the kF Green function in the form

=1 1 x —t + i/Asgn(t)
G(x, t) =-

2vr x —t + i8sgn(t) x —vt + i/Asgn(t)
A'(x —vt + i/Asgn(t))(x + vt —i/Asgn(t) j (82)

where v = 1, v = v, and A is a cutoff. The signs of the h and 1/A term are so chosen to satisfy the analytic
continuation condition. For example, to see that it has the correct analyticity, let us calculate the momentum
distribution

n(k) = —i —i(k —kp )xG( 0
—

)

—i(k —kp )x (1 + A2 2) —n1

x —ib

d .-*("-" )*' ~( )(1+A' ')-- ——1
27'

= ——const ~k —k~~ sgn(k —k~).=1 2w

2

For Green's function in momentum space, a naive Fourier transform gives

sin(k —k~)x

G(p, ~) = dte '~*e* 'G(x, t)

1
A' (su+ p)

— (~ —p)'—

To find the behavior of G(p, w) for various regions, we write G(x, t) in two parts:

[A (x —t + isgn(t) /A) (x + t —isgn(t) /A) ]

[A (x —t + isgn(t) /A) (x + t —isgn(t)/A)I

The second term is

1 1 x —t + isgn(t)/AGx, t =—
2vr x —t x —vt + isgn(t)/A

1 x —t + isgn(t)/A+—(—i~)sgn(t) h (x —t)
27r x —vt + isgn(t)/A

'L

G2b»~) = ——
2

2
—n —inurn/2 —im/4—ipt+iwt e

A 2+~(v ] )1/2t~+ 2

—imcx/2 —iver/4—ipt+iwt e

A~+ (v —1)'~2~t~ +'

when p, w (( A, the main contribution comes from t )) 1/A, so
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G2(p, Cd) = —(2A)
1

sgn(cd —p) (e
QA(v —1)

(87)

In particular

1 1 I'(-.' — )ImG2(p, cd) = ——(2A) sgn(cd —p), (sin vr n + —)
QA(v —1)

(88)

For small U, the main contribution from the first term in (85) can be obtained by approximating v to be 1 and
omitting 1/A terms. Define x+ = (x+ t)/2, x = (x —t)/2; then

OO

Gi(p, Cd) =-
27'

dte '" +* l+' 2 [A (x + i/2A)(x+ —i/2A)]2z
1

dx C
i (p+)—x i —

)
n—

tX + i(p—w)a—
( +)—cr

27r x

i (] e
—217I'cx

)
I'(—~)I'(1 —~) —2 sin ~a,

2~ lcd + pl
—

lcd —pli — 2 sin 7m,

, —i(1 —e 2* ),

M —p) 0, (d+p) 0
~ —p) 0, ~+p(0

p&0, u)+p) 0
~ —p&0, u)+p(0.

That is,

Im Gi(p, cd) = ——9(cd —p )sgn(cd —p)(2 )A sin em
1 2 2 ,.r'(I— 1

7r l~+ pl

Re Gi(p, cd) = — A- -r(—o)r(1 —oc). . .(e(lcd I

—lpl)»n 27rci' + 0(lpl —lcd I) 2 sin 7rci')
2 -2- sgn(cd —p)
2~ l~ + pl l~ - pl'

(90)

For p, cd « A, G2(p, cd) « G, (p, cd), and so in what fol-
lows, we only consider the contribution from Gi(p, cd).

For small but finite o. , Im G does not contain a part of
the form Zb(cd —e); this means the quasiparticle picture
fails.

For general interaction, since three branch cuts exist
in G(x, t), the Fourier transform is rather involved. If we
throw away all the ib's first, we can show

1
G cd)p oc

(Cd —V p)1~2 n( —Cd V p)1~2 n

1 1 cd —vpixI'l n, ——n; —+n;p,
2 2 cd —v~p)

(91)

where p, = (v + v )/2v, and E(cx, P;p;z) is the hyper-
geometric function. The function has branch points at
the z = 0, 1, oo and corresponds to w = v p, u = —v p,
and u = v p respectively. The singularities at the three
points are

(p' = "' "
) and has nonzero imaginary part in othervc+e~

cd, p regions (Fig. 1).

VIII. A 2D LUTTINGER LIQUID7

The Luttinger liquids in 1D are alternative fixed points
to the Landau Fermi liquid. It is evident from our ap-
proach that the non-Fermi-liquidness only comes from
the finite phase shifts on the Fermi surface and does
not really depends on any special properties of the one-
dimensional systems as is commonly believed. It is pro-
posed that the normal state of high-T, superconductors
may well be described by a two-dimensional Luttinger

(Cd —V~p) i (Cd —V~p) z (Cd + VcP)
(92)

Since F(oc, p; p, x) is convergent for 0 ( x ( 1, and ap-
parently real, the Fourier transform is indeed real along
the ~ = 0 axis:

1

( -"p)'--( + "p)-
( 1 ~v~p+ Cdl

xE
l

—,1 —ci; 1 + o'; p,
'

(2 V~p —
Cd/ FIG. 1. Regions where Imc is nonzero.
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liquid. 23 As such, the correlation functions in such a sys-
tem will be similar to that of 1D Hubbard model. The
most immediate consequences are manifested by proper-
ties that are givien directly by the correlation functions.

One of the notable features of the Luttinger- Tomonaga
models is the phenomenon of conductivity enhancement
first pointed by Luther and Peschel. They found that
in the weak interaction regime, the dc conductivity is
modified according to

H'(0) = p—c„p,h 3„+ g2.-(S, + S„+-).
3

According to standard arguments, this will lead to

1 ~ Im g q~ (do
oc ) ' (cos q + cos q„) (97)

T~T c (2) ~o

and

[JI k&T/2W]
2I'(2g) sin(~g)

'

1

T&T o(2)

.Im(y +(q, (uo) j
OC 1+cosq

~0

where g = Vp/(1 + 2V p) and V, p, W are the interaction
strength, the density of states, and the half bandwidth,
respectively. Oo(T) is the Born approximation conductiv-
ity for the corresponding noninteracting electron system.
In the strong interacting limit, the above formula is es-
sentially correct except that the value of the exponent g
will be modified. In the resistivity of the normal state
of high-T, superconductors, the expected T electron-
electron scattering contribution is conspicuously absent
and replaced by a linear T term apparently caused by
neither impurity nor phonon scattering, yet the scatter-
ing rate T is still observed, e.g. , in the measurement of
the Hall angle. " It is interesting to ask if one equivalent
way of understanding this anomalous resistivity is that
the linear T resistivity is the enhancement of T scatter-
ing rate of electron-electron scattering (or spinon-spinon
scattering). On the other hand, the enhancement of the
impurity resistivity would normally lead to the onset of
localization. Such a contribution is not observed in the
resistivity measurement. We suspect that such a localiza-
tion is actually absent in the 2D Luttinger liquid, because
of the separation of charge and spin degrees of freedom.

There is strong evidence of the existence of an incom-
mensurate magnetic order in the normal state of high-
T materials. Nuclear magnetic relaxation is one of the
most anomalous experiments, and also one that is easily
and uniquely explained by the Luttinger liquid theory.
Experimentally, it is found that there are two different
kinds of behavior when the temperature is above T . The
planar Cu(2) nuclear relaxation differs substantially in
its temperature dependence from that of the O(2) relax-
ation. Below T„ the two relaxation rates are similar, sug-
gesting there is a single species of fIuctuating electronic
spins relaxing the two neighboring nuclei. In YBa2Cu03,
the relaxation rate on "0 in the plane and Y is con-
ventional Korringa-like. The Cu(2) in the plane has a
very unconventional and large relaxation rate. This in-
dicate that there exists strong antiferromagnetic correla-
tions which get stronger at lower T.

To explain simultaneously the two different kinds of
NMR behavior, one has to understand the crystal struc-
ture of the CuO~ plane. The Cu atoms alone form a
cubic lattice and 0 atoms are located at the middle of
every Cu —Cu bond.

The effective hyperfine coupling Hamiltonian is

H'(Cu) = pc„p,h I„+g S„,3

where y (q, wo) is the spin susceptibility at nuclear fre-
quency uo.

+(q, ~o) i dte* "(bS (t)bS+ (0)).
0

oc T (100)
T1

But because of the form factor that is present in the
oxygen 1/TqT the 2k~ term will not be seen in the oxygen
relaxation rate, this explains the rather puzzling result of
two difFerent relaxation rates.

The Knight shift is decided by the static susceptibility
at q = 0 and thus is still Korringa-like, as the experiments
have shown.

For the relaxation rate of the copper atoms, the devia-
tion from the normal Korringa behavior is expected. For
large U, we would expect

1 1

T~T ~T
(101)

We have plotted the NMR data of Barrett et al. ; the fit
is remarkably good (Fig. 2). A more systematic inter-
pretation of the NMR data will be discussed elsewhere.

What we have learned in one dimension about the spin-
spin correlation is that because of spin-charge separation,
the spin-spin correlation has two parts; one is "half' the
free Fermi gas correlation, with a power law 1/r, and
only depends on spin wave velocity, in the Heisenberg
model, where the charge motion is frozen, this is the only
term. The other part is the disruption by the hole mo-
tion, which has a power of 1/r at small U and 1/~r at
large U. If we still believe in the spin-charge separation in

There are two momenta that contributes the most; one
is the zero momentum term that is proportional to the
susceptibiity, and proportional to 1/(x2 —v, t ). And
there is the 2k~ term which behaves like 1/xs~2 in the
large-U limit. What we have learned in one dimension
about the 2k~ spin-spin correlation is that because of
spin-charge separation, the 2k~ spin-spin correlation has
two parts; one is "half" the free Fermi gas correlation,
with a power law 1/x, and only depends on spin wave
velocity. In the Heisenberg model, where the charge mo-
tion is frozen, this is the only term. The other part is the
disruption by the hole motion, which has a power of 1/x
at small U and 1/~x at large U.

The temperature dependence due to the 2k~ spin-spin
correlation is then given by
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FIG. 2. Cu NMR relaxtion rate 1/TiT (Barrett et al. ),
fitted to power law 1/~T.

liquid behavior that can be understood rather well by
the one-dimensional large-U Hubbard model. Among
them the photoemission data clearly indicate there are
no Fermi-liquid-like quasielectron poles in the imaginary
part of the single particle Green's function. The re-
sistivity and NMR data also provide strong indication
that there might be something in common in the 1D and
2D Hubbard models. As has been pointed out, the
breakdown of the Fermi-liquid behavior in the 1D and 2D
strongly repulsive Hubbard models is caused by similar
mechanisms. In Ref. 23 we have proposed a "Luttinger
liquid" ground state for the 2D Hubbard model, based
on the idea that as in 1D charge and spin degrees of free-
dom separate and the only true Fermi surface is that for
the spinon gas. The charge degrees of freedom are then
reduced to collective modes of motion of this Fermi sea,
as in one dimension.

2D, we should still get some anomalous power law for the
spin-spin correlation. After all, finite phase shifts gives
finite power laws, and Anderson has recently proved that
in 2D the phase shift on the Fermi surface is Gnite.

IX. CONCLUSION

There are many experimental properties of the high-T
materials which show deviations from the normal Fermi-
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