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Collective excitations, pressure, and compressibility in multilayer systems
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We present a simple method to calculate the spectrum of elementary collective excitations in semi-
conductor superlattices. It is based on a variational many-body calculation with the hypernetted-
chain approximation and the transformation of the structure functions and other quantities depend-
ing on the lattice layer indices into Bloch sums. In this method, we can calculate the excitation
spectrum for electron and electron-hole superlattices and other more complicated structures. We
also calculate the pressure and compressibility in a system of arbitrarily many electron (or hole) gas
layers.

The collective excitations in semiconductor superlat-
tices and multilayer systems have been studied theoret-
ically by many authors over recent years. s A simple
model that describes infinite lattices consists of an infi-
nite number of planes stacked upon each other. In gen-
eral, these planes need not be identical but can consist
of electrons or holes that can have different masses on
different layers. The layers need not, in general, be at
the same distance from each other. For example, they
can exist in groups consisting of 6 planes, these groups
in turn being periodically stacked upon each other at
a distance c. With our present method one can calcu-
late excitations in both type I (electron layers) and type
II (alternate layers of electrons and holes) and also in
more complicated structures. We also discuss briefly the
pressure and compressibility for finite layer systems. A
two-layer system is of particular interest because such
a system is used in a recent experiment for measuring
compressibility in a two-dimensional electron gas. An-
other interesting system is a double layer consisting of
electrons and holes. Recently, transport measurements
on such systems have been reported. 5 We should also
point out that the occurrence of the even-denominator
fractional quantum Hall effect was predicteds and sub-
sequently observed7 in double-layer electron systems. In
all of these studies, the layers are considered to be close
enough such that the Coulomb interaction is operative
but no tunneling is allowed between the planes.

Our approach is based on the method developed ear-
lier for multicomponent systemss. As a starting point we
use the Jastrow variational wave function for a system
of M species each consisting of n, a, = 1, ..., M par-
ticles. For infinite type-I superlattices we use a model

where all planes are stacked at equal distance c from
each other. Each plane is assumed to be identical with
every other plane. Thus the pair-distribution functions,
structure functions, and all other quantities which were
dependent on twolayer in-dices now depend only on the
difference of the layer labels, i.e. , fop = fa go = fa p
for any function depending on two layer indices. Us-
ing the hypernetted-chain (HNC) approximation for the
pair-distribution function, gap = e" s+ s, we can now
write the energy per particle as

p) ~gV' ~gdr

+ p) g V N dr+2ip) Vg dr, (I)
Sm

where p is the common areal density of the layers, m
is the electron mass, and V is the interparticle poten-
tial. In order to find the pair-distribution function which
minimizes this energy, expression (I) must be varied with
respect to ~g. In that case, the nodal sum N has to be
solved from the Ornstein-Zernike relation. s It turns out
that by a suitable transformation the Ornstein-Zernike
equation can be cast into a linear equation for N.

Let f be any quantity depending on layer label n. We
define a transform F„by

M —1

) 2mi Kot f

The index r can have M different values 0, M, . . . ,
when periodic boundary conditions fa+M = fa are im-
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posed. The transform thus obeys periodicity I„+i = I'„.
The crystal momenta k, and K are related by k,
(2'/c)e. The transforms of the quantities

S (q) = p je''i'[g (r) —ljd~r+b p,
N (q) = pl e'"'N (r)d2r,

where S (q) is the structure factor, can be written as

(q) Q e27I'IKEY S

(q) Q e21t Ltccx'N

Using these transformed quantities, the Ornstein-Zernike
equation can be solved for N, N„= (S„—1)~/S„. We
can now vary the energy expression with respect to ~g~
and get the Euler-Lagrange equations

2 f 2

g~~g — W (r)~g+ V~(r)~g = 0, (5) 0
0 0.5 1.5

where the induced potential W~ results from the varia-
tion of the second term in Eq. (1) and is given by

W„(q) = q 2S„(q) —3+ 1

(q)' (6)

5 xe2pc q

[
sink, c/2['

which is a dispersion relation for a sound mode. We
are thus dealing with acoustic plasmons, which is consis-
tent with previous calculations on type-I superlattices.
This linear dispersion has also been experimentally
confirmed. io

Figure 1 presents the excitation energies for a type-I
superlattice. Clearly, the fully iterated solutions of Eq.

I

The potential V~(r) = e /v r2+ a c is the Coulomb
interaction and has a Fourier transform V (q)
(2vr pe2/q) e ~ ~q'. The Bloch transform is easily evaluated
to be

2vr pe2 sinh qcV„q
q cosh qc —cos 2vrr

'

When the correlations are very weak g differ only
slightly from unity. In this case, called the uniform limit,
we can solve Eq. (5) and get

2

S.'(q) =
& . (8)4m g ~ 22rpe sinh qc

4m q q cosh qc —cos 2m'

The excitation energy is then evaluated from 8'

(h q )/2mS„(q), which is a straightforward extension of
the Feynman excitation formula. Considering the limit
q + 0 while k, g 0 we get

q (1/ro)

FIG. 1. Excitation curves for a type-I superlattice at val-
ues A: = 0 and k = m. The dashed lines represent the uni-
form limit solution and the solid lines are thy fully iterated
solutions of the Euler-Lagrange equations. The energy is in
units of 1 Ry = e /2eao, r, = 1 and the layer separation is
0.5 in units r, ao = 1, here ao = eh /moe .

(5) give slightly smaller energies than the ones obtained
within the uniform limit approximation. This is expected
because of the variational nature of the Euler-Lagrange
equations. The two curves coincide at larger values of q,
where the structure functions S„(q) go to unity.

For a system which consists of different kinds of lay-
ers, the above treatment also applies with a few mod-
ifications. Consider a system of M groups each con-
sisting of 5 difFerent layers. The distance between the
first layers of adjacent groups is c and the distance from
the first layer of a group to the vth layer of the same
group is denoted by d„. We use the index n for label-
ing the groups. The Coulomb potential, structure func-
tions, etc. must now be presented in a matrix form.
These matrices A„"', '„„where v, = 0, 1, . . . , b —1 and
n, = 0, . . . , M —1 have the property A„,g+, „2g+, ——

A~„, „,lb+v, „, ——A„, „, „,&g+v, . Periodic boundary
conditions A„"'v' = A„"'+M are also applied. The Bloch
transform is then defined by

M —1

Avl v2 (+) g e27I'2KAAvlv2
n

n=O

The transformed Coulomb potential can now be written
as

2p sinh(qc —q~dv, —d 2~) + e 2 '"'s"~"' "'& sinhq~dv, —dv,
~

cosh qc —cos 2m'

where e„,(e, ) is the charge and x„,(x, ) is the concen-
tration of the component vi (v2). The Euler-Lagrange
equations for the transformed quantities can now be
solved analytically in the uniform limit. In the two-

I

component case which corresponds to the type-II su-
perlattice, if the components are ordinary electrons and
holes the excitation energies are found to be the square
roots of the eigenvalues of the matrix
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(r) —V (K) ) (0 o2) '

(12)

where 0. Q2 2

4 & s& and S~„&s the structure function

for the two-dimensional free Fermi gas. The dispersion
relation for the sound mode (i.e. , acoustic plasmon) is
found to be

1.5

0.5

(a)

8 QZ~ xypy + Z~x2p2

~~( 1 1 l c —d
x —

~ q + ~+ rRy,
-0.5

tot

where ~ ~&q, kz &~, Tp ——r, ap, where ap is the Bohr
radius, eh /moe2, where e is the dielectric constant of the
background medium, d = ~dq —d2~, Z = e /e, and p
m„/mo, where mo is the mass of the first component.
The energy is calculated in units of 1 Ry = e2/2eao. For
optical plasmons we get in the limit Q ~ 0

(b)

2
p

4vre . z In' n2
sin 8~ + ~+O(Q )

C (my mg j (14)
3

which is the same as in Ref. 3.
When 8 goes from 0 to vr/2 the energies obtained from

the equations above form two bands. These results hold
when the excitations are considered as a function of the
total momentum Q of the associated electric field. When
plotting the dispersion as a function of the in-plane wave
vector q, one gets two acoustic plasmon bands as in Ref.
2. Ignoring the second term in Eq. (12) leads exactly to
the excitation energies of Ref. 2. On the other hand,

eeping this term will give the correct single-particle dis-
persion in the large wave-vector limit.

For a finite number of layers we can express the pres-
sure as a function of the structure factor matrices:

FIG. 2. (a) The total energy and the correlation energy
(in Ry) as a function of r, for a two-electron-layer system
with the layer separation 0.5r, ao. (b) The pressure P and
compressibility K for the same system. The pressure is in
units of Ry/p and the compressibility is in units of R
where p is the total density of the system.

1 h, 1P = &~o~+ —,——
r2 8 (2~)2

$2tr[3M &S—& S—&M F

—4M S + S M S ]dk

h 1
4 (2~)2 p k'tr [SM 'S ' —S 'M--'S -']--F F F c)p

(15)

where the total energy is

1
r2

S

1

8 (2m)2

( ) —
4 ( )2

tr[(S —1)M R+ (S —1)BM ]dk

k tr[(S —l)M (S —1)+ (S —1)M 'SF~

—(S —1)M-'S-' —SF'SSF'M '(SF-
1 1+-, tr[(S —1)V]dk.
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The matrix R is composed of the pair-distribution
functions and their derivatives. s In Fig. 2(a) we have
plotted the total energy and the correlation energy E, =
Eto& —1/r, + 8~2/3~r, as a function of r, for a sys-
tem of two electron layers with the interlayer separation
c = 0.5r ao. The first and second derivatives of the total
energy correspond to pressure and compressibility, re-
spectively. These are plotted in Fig. 2(b). As in the
experiment of Eisenstein, Pfeiffer, and West for a two-
dimensional layer, the compressibility becomes negative
when r, reaches a certain value. According to the Monte
Carlo calculations of Tanatar and Ceperley, the com-
pressibility approaches zero at r, = 2.03 in the single-
layer case. In the two-layer system of Fig. 2 it becomes
negative at r, = 2.4. The stability of the system is there-
fore enhanced by introducing one extra layer.

In conclusion, we have developed a method for calcu-
lating the collective excitations in semiconductor super-
lattices. This method has the advantage of being compu-
tationally simple and is capable of describing most of the

physically relevant quantities. The Fermi correction is
taken into account already in the uniform limit approx-
imation, which corresponds closely to the random-phase
approximation (RPA) at the intermediate densities. At
lower densities the correlations become more important,
and the uniform limit (or RPA) is not sufficient. It is,
however, straightforward to go beyond the RPA and take
the correlations into account by solving numerically the
Euler-Lagrange equations (5). At large wave-vector limit
the Fermi correction in Eq. (12) has the effect of increas-
ing the slope of the dispersion curve by the amount which
is roughly proportional to the total volume density of the
charge carriers. Although at the values of the parame-
ters used in Fig. 1 this increment is negligible (= 1%), it
will be appreciable at higher areal densities or at smaller
interlayer separations. Details including the compress-
ibility as a function of the interlayer separation for the
electron-electron and electron-hole double-layer systems
will be presented elsewhere. i2
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