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Two unrelated problems can be reduced to a model of a Bose gas interacting with a gauge
field: (i) the efFect of thermal fluctuations on a system of vortices in bulk superconductors in fields
H, i « H « H, 2, and (ii) charged, spinless excitations in two-dimensional (2D) strongly correlated
electron systems. Both problems are important for the theory of high-temperature superconductors.
We study this model in three regimes: at Rnite temperatures, assuming that the gauge 6eld is purely
transverse; at T = 0, for the purely static (2D Coulomb) interaction; and at T = 0, for a weak
Coulomb interaction and a strong transverse one. Transverse interactions suppress the temperature
of the superQuid transition significantly. A suFiciently strong transverse interaction is shown to
produce a phase separation as the temperature decreases (in the absence of Coulomb repulsion).
If there is Coulomb repulsion, the ground state does not have o8'-diagonal long-range order but
the superQuid density is not zero unless the Coulomb constant exceeds a critical value. SuKciently
strong coupling to the transverse field destroys super8uidity as well. In the normal state formed at
large couplings, the translational invariance is intact. We propose a bosonic ground state that is
not superHuid at T = 0. We discuss the implications of these results both for vortex liquids and
strongly correlated electron systems.

I. INTRODUCTION

Two seemingly unrelated problems in the theory of su-
perconductivity can both be reduced to the general prob-
lem of the two-dimensional Bose liquid strongly interact-
ing with an Abelian gauge field. The first of these prob-
lems is the nature of the intermediate state between the
conventional Abrikosov Aux lattice and the conventional
normal state in high-T, superconductors (HTSC's). This
state can be visualized as a liquid of Abrikosov vor-
tices. The second problem is the Bose condensation of
the holons that is predicted by the resonating valence
bond (RVB) theory of the doped Mott insulator.

We start, in the Introduction, with a brief review of
these physical problems and their reduction to the Bose
liquid model. Then, in the bulk of the paper we consider
the Bose liquid model itself in different regimes. Finally,
we apply the results obtained in the bulk of the paper to
these two physical problems.

angular lattice. However, it has been recently suggested
that thermal fluctuations are much more effective melting
the Aux lattice than completely destroying the supercon-
ductive order parameter. In this case an intermediate
phase, in which the vortices form a liquid rather than a
solid, becomes possible.

Although there is no small parameter that ensures the
existence of this intermediate phase (as there is no small
parameter in the theory of conventional liquids), the esti-
mates of the numerical factors indicate that this interme-
diate liquid state exists in a relatively wide temperature
range. The temperature scale of this range is governed
by the strength of the thermal fiuctuations.

Certainly, in conventional superconductors the thermal
fluctuations become strong only in the neighborhood of
the transition temperature: In weak magnetic fields the
width of this region is rs = (T, —T)/T, g, where g is
the Ginzburg parameter:

A. Liquid of Aux lines in superconductors

Consider a usual three-dimensional (3D) type-II super-
conductor in a magnetic field H: H i & H & H 2. The
conventional wisdom is that in such a system the normal
metal undergoes a second-order phase transition into the
Abrikosov state where the flux lines form an ordered tri-

For a clean isotropic superconductor g (T /e~) . The
width of the fluctuating region is increased in the mag-
netic field: rs = [II,2(T)/H 2(0)]2~sgi~s, but it is still
very narrow for conventional superconductors. Within
this temperature range the thermal fluctuations are suFi-
ciently strong to decrease the amplitude of the supercon-
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ducting order parameter substantially. The properties of
this region deserve a special study; we shall not consider
them in this paper. The intermediate liquid vortex state
exists in a wider temperature range 7 ~t ) v ) vg, but
even this wider range remains narrow for conventional
superconductors.

The situation changes in the family of high-T su-
perconductors (see Ref. 4 for an extended discussion
of that problem). So in Bi2Sr2CaCu20s (2:2:1:2) the
Ginzburg parameter becomes as large as g 0.5 and
is less but still signiflcant in other high-T superconduc-
tors, g 0.01 in YBa2Cus07 material, and is still less
in the La2 Sr Cu204 family. To avoid. confusion, note
that in strongly layered materials the value of g defined
by (1.1) might be difFerent from an actual width of the
fluctuational region around T, e.g. , in 2:2:1:2w 0.1.

For such a large value of the Ginzburg parameter, as
in 2:2:1:2material, the phase diagram looks qualitatively
difFerent from that of a conventional superconductor. We
discuss the phase diagram of a more conventional super-
conductor (with g ( 0.01) first and then turn to an ex-
ceptional case of a large g.

The difference between 7,~t and vg is due to the nu-

merical factors only: 7,it, /ws ——0.32cl —3—7, where-4/3

cI. is a Lindemann number. ' The estimate of the w

is based. on the Lindemann melting criterion; i.e. , the
melting of the lattice is believed to happen when the av-
erage square of the atomic thermal displacement (u2)T
exceeds (cl.ao) where ao is the lattice constant. As is
well known in the theory of conventional liquids, the Lin-
demann number is small: cI, ——0.1—0.2. The value of the
Lindemann number for the quantum melting is known
from Monte Carlo simulations: cl, ——0.2—0.3; the same
number is also given by Monte Carlo simulations of the
model vortex lattice. Two eKects combine to make the
ratio r, it/rs large: (i) The shear modulus of the trian-
gular lattice is small, and. so the fluctuations are large,
and (ii) the Lindemann number cl, is also small. The
latter eKect is well known in the theory of liquids and is,
actually, responsible for their very existence, whereas the
former is speciflc for the 2D triangular lattice.

The effect of this large numerical factor is even more
pronounced in a weak magnetic Geld, where the melting
temperature is close to T,(0). Namely, for a sufficiently
small g, there is a range of magnetic fields
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close to T ) for the material with moderately low g (such
as 1:2:3compounds) in Fig. 1(a). The melting line was
calculated with the use of general expression using the
parameters g = 5 x 10 and cg = 0.25. This value of
g was extracted from the width of the transition as ob-
served in the resistivity measurements in B = 0, which is
about 5 times less than g; the value of cL, was chosen to
give the correct position of the melting line as observed
in Refs. 8 and 9. Note that, because of the extremely
high value of K = A/( 100 in these materials, the field
scale of H q is not visible in Fig. 1.

For 2:2:1:2material the Ginzburg parameter is so large
that coefficient P in front of H 2 in (1.2) exceeds unity,
so the melting of the flux lattice happens in much lower
magnetic fields than H, 2 even at T T /2. Only at
much lower temperatures does B ~q become compara-
ble to H,2. For such materials the temperature depen-

B & Bp --pH 2, P = 02ci g, (1 2)
0-
0.5 0.6 0.7 0.8 0.9where w, it is even larger than [T,(B) —T, (0)j/T, (Fig.

1). Because of a large numerical factor in front of g,
the condition (1.2) is compatible with B ) Bs = gH 2,
which ensures that we are outside of the scaling region. In
these fields even the temperature dependence of B ~t(T)
becomes different from that of H,2(T):

(1.3)

The melting of the flux lattice occurs in a Beld
B~,lt (T) (( H~2 (T) in this region of the phase
diagram. ' ' ' ' This Beld range becomes broad. in high-
T, materials. We show a typical phase diagram (at T

FIG. 1. Phase diagram of high-T superconductors.
cr, = 0.25, t = T/T„and Ii = B/H, ( 2):0(a) 1:2:3material,
(b) 2:2:1:2 material. Solid line is the melting field B~(T),
dotted line is the upper critical field H, s(T), and the fiuctu-
ational region is shaded. (a) Dashed lines correspond to the
field H 0.5H 2. The transition to the normal state happens
either around this line or in the shaded area. (h) The hori-
zontal dashed line shows the region where layered structure of
the material become important. The transition between vor-
tex liquid and normal metal occurs in the shadowed region
and around the dashed line.
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dence of the melting field (1.3) holds in the field range
B « min(H 2/P, B'), where B' is the field range where
the layered structure of 2:2:1:2becomes important (see
below). We show a typical phase diagram for the mate-
rial with a large Ginzburg parameter in Fig. 1(b). In this
diagram we used the parameters of the 2:2:1:2material:
A(T = 0) = 200 nm, $(T = 0) = 3 nm, d = 1.5 nm,
M/m = 2500, H, 2(0) = 65 T, which gives g 0.5 and
~» —01

For B B,it(T) « H,2(T) the distance between
the vortices is much larger than their core size which
simplifies the problem considerably. In this paper we
shall consider this field range only.

Undoubtedly, at T,it, (H) a genuine phase transition
takes place and the long-range translational order is bro-
ken by the Aux lattice. The phase formed right above
T it(H) is a vortex liquid. We shall show that the vor-
tex liquid has zero resistance in the direction parallel to
the magnetic field and is separated from the normal metal
by a genuine phase transition.

The phase diagram of real high-T superconductors,
such as 2:2:1:2is additionally complicated by weak cou-
pling between layers. In low magnetic fields B ( B' =
7l @pm/(d2M) (where 4p is the flux quantum, d inter-
layer spacing, m/M is the mass anisotropy) the layered
nature of these superconductors is not important and the
problem can be reduced to that of an anisotropic super-
conductor [Fig. 1(b)].

The opposite limit B ) B was considered in Ref. 11.
In these fields one expects two phase transitions as well,
but the reason for this is very difFerent: The melting
of the 2D Abrikosov lattice leads directly to the nor-
mal metal, whereas the second phase transition occurs
at lower temperatures, in the state in which the trans-
lational invariance has been already broken. These two
phase transitions should not be confused with the two
phase transitions at lower fields which we discuss in this
paper.

B. Vortex liquid: Reduction to the boson model

We use the London approximation to find the free en-
ergy of the vortex system. This approximation is very
good for a type-II superconductor with large lr, = A/( ((
1 (where A is London penetration depth, ( is the coher-

I

ence length) if the magnetic field B &( H, 2(T). The free
energy of the arbitrary curved vortices becomes

/
32vr2A2 4'

7

(1 4)

where the sum runs over all Aux lines and dr, is the tan-
gent vector element of the ith vortex.

Far from the fluctuating region (r )) 7s) the vortices
are curved smoothly and have no overhangs. The num-
ber of the thermally activated vortex loops is also expo-
nentially small at these temperatures. All this makes it
possible to view the Aux lines as world lines of Bose par-
ticles. In this representation the integral over all possi-
ble configurations of these lines that yields the partition
function becomes the path integral of a nonrelativistic
quantum Bose system in imaginary time. The direction
of the "time" coincides with the direction of the external
magnetic field in the original superconductor. The tem-
perature T of the superconductor becomes a "Planck con-
stant" h~ of the Bose system (below we will put h~ = 1
in the bulk of our discussioii). The inverse temperature
of the Bose system is then given by T = T/L„where
L is the length of the superconductive sample in the di-
rection of the magnetic field. This useful representation
was invented by Nelson.

The statistics of these particles is determined by the
condition that all configurations of the Aux lines result in
positive contributions to the partition function. Unfor-
tunately, the conventional partition function of the Bose
system implies periodic boundary conditions in imagi-
nary time. Translated into the language of the original
problem such boundary conditions mean that the sample
is a torus. Free boundary conditions would be much more
appropriate for a physical superconductor of finite width.
However, the properties of the superconductors should
have the same thermodynamic limit at L, ~ oo regard-
less of their boundary conditions, and so the results for
the Bose system at zero temperature can be translated
directly into the bulk properties of superconductors.

The effective action of the quantum Bose system fol-
lows from (1.4). It is useful to view the interaction be-
tween these bosons as being mediated by an auxiliary
gauge field (ap, a) P

m /dr, b' . (.8=) dz —
~

'~ —p + dxi~g
2 (dz)

1 1, 1
e p~Vp&~ ~

a +,f'p+ —(V x A)' (1.5)

where A is the electromagnetic vector potential (V x
A = B), f p = 0 ap —Bpa, the coupling constant g =
@p/(%+4'), the bare vortex line tension m = g2/4a,
p = (@pH, t/4m —mine) is the "chemical potential" for
vortex lines, and j = (n, j) is a three-component vector
defined by a vortex line configuration:

(1.6)

I

Actually, n and j represent the density and current of the
2D Bose liquid we are going to discuss. To reproduce the
interaction energy (1.4) from the action (1.7) one has to
integrate out the Quctuations of the electromagnetic field
first. This yields the gauge-invariant mass A of the field
a. Then the Gaussian integral over the remaining field a
results in the interaction (1.4).

The action (1.5) is written in terms of vortex configu-
rations or, in other words, in terms of world lines of Bose
particles. Instead of doing a Feynman path integral over

trajectories, we go over to a coherent-state formulation
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(see, e.g. , Refs. 13 and 14) where the integration is over
complex Bose fields g and gt:

S = [L~(@,a) + L~(A, a)]d rdr, (1.7)

1 2(V —ia) + iao —p2m

+&.(V*M)+ 4, f'p

L~(A, a) = e p~A fp~ + —[V x A],

(1.8)

Lagrangian (1.8) simplifies to (1.7) at c = 1; at c P 1 it
describes a more general situation when the strength of
the scalar interaction is diBerent from that of the trans-
verse one. This situation is realized in another physical
context, e.g. , in strongly correlated electron systems.

C. RVB theory of the strongly correlated
electron systems

The nature of the ground state of a lightly doped. Mott
insulator remains an unsolved problem. Even the ground
states of the simplest models of it such as the t-J or

where V„(g*g) represents the short-range repulsion be-
tween the bosons cores. In the new representation, p is
the chemical potential of the bosons, whereas m is their
mass. Its bare value corresponds to a small-scale defor-
mation of the flux line and equals m = (C'o/4vrA)~

g /4vr. At larger scales it renormalizes significantly
due to the self-interaction of the flux lines. It reaches
min(A/() at scales A for a single-line problem. The char-
acteristic scale of the many-body problem (1.7) is set by
the distance to between the flux lines (or bosons) which
is governed by the average external magnetic Beld B:
lo ——n i~, where n = B/@o is the fiux line density. We
shall consider only strong fields B )) H i, so that the
distance between the lines lo (( A. In these Gelds the
Bose mass becomes min(lo/() at scales lo.

In such fields one may neglect the screening of the in-
teraction (1.4) which occurs at scales A. This approxi-
mation should have almost no eKect on the liquid-state
properties governed mainly by the short scales. In the
formalism of a Bose model (1.7) it amounts to neglecting
the electromagnetic Geld fluctuations. We shall use this
approximation ig. the main part of the paper and treat
the electromagnetic field A in (1.7) as a source field. The
problem is reduced then to the problem of bosons inter-
acting with a gauge Geld a as described by the Lagrangian
L~(g, a) alone.

Below we shall discuss the generalized version of this
model described by Lagrangian (which we now rewrite in
real time):

. (8 . 5 1
LQ(g o) = g* &

~

——&&o
~
+ (V —ia)(Br j 2m

Hubbard model are subjects of controversy. Quite a few
ground states were proposed. 2

Phenomenologically, the uniform RVB state proposed
in Ref. 15 seems to be the most likely candidate for the
description of high-T oxides at moderate temperatures
(see Refs. 18—20 and references therein). In this state
the spin and charge degrees of freedom are decoupled.
Formally, the operator of the physical electron (c+) in
this state becomes the product of the fermion (spinon,
f+) and the boson (holon, ti) operators: c+ = bf+.
This decoupling implies gauge invariance: 6 +ex-p(io)b,
f + exp(i0) f . This is why the gauge field inevitably
appears in the spectrum of the low-energy excitations as
a consequence of spin charge separation.

Most physical responses in this state (such as electri-
cal and thermal conductivities, Hall coefficient, etc. ) are
governed by the Bose subsystem. ' In other words, the
effective theory of these properties contains the Bose par-
ticles and the gauge field only, but no spin degrees of
freedom which are integrated out of the e8'ective action:

—iao+ (V —ia) g d rdr(
1 2 2

87 2m

+—) [II~~(cu, k)ao(u), k) + II~(~, k)a2(cu, k)].

(1.9)

Instead of the usual term f2p describing the action of
a free gauge Geld this action contains the polarization op-
erators II~~ (w, k) and II~(cu, k) of longitudinal and trans-
verse photons. Formally, these terms appear after the
spinons are integrated out of the effective theory. The
behavior of these terms at small u, k depends crucially
on the spectrum of the spin excitations which were inte-
grated out or, in other words, on the state of the spinon
subsystem.

In the uniform RVB state the spinons form a Fermi
sea with a large Fermi surface. In this state the spinons
screen the fluctuations of the scalar part of the gauge
Beld very efFectively: longitudinal polarization operator
II~~(oi, k) = v at oi, k +0, where v-is the density of states
of the spinons at their Fermi surface. The vector part
of the gauge Geld remains unscreened but its dynamics
is overdamped: IIi (u, k) = p~w[/k + yk, where p is
the I andau damping coeKcient and y is the orbital sus-
ceptibility of the spinon fluid. . A very soft overdamped
spectrum u oc k of the transverse gauge field means
that these fluctuations are very slow. If their dynamics
is ignored completely, the model (1.9) is reduced to the
model (1.8) with c —+ 0 but finite ratio c2/g2 = y.

In the straightforward RVB scenario nothing happens
to the spinon subsystem at low temperatures until a Bose
condensation of the holons occurs, resulting in a Fermi
liquid. Another scenario seems to be more likely to de-
scribe most of the high-T materials. In this scenario
the gap (or the pseudogap) is formed in the spinon spec-
trum at moderate temperatures (T 200 K), far above
the superconductive transition temperature. Significant
experimental evidence seems to indicate that some pseu-
dogap is really formed above T in a lot of materials,
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such as the 60 K 1:2:3material, 2:2:1:2compound, and
La family of high-T, superconductors. 2 In this state the
spinons can no longer screen the scalar part of the gauge
field, and so the longitudinal polarization operator be-
comes II~~(w, k) = k /A (where A is the formed gap)
at small frequencies and wave vectors. Landau damp-
ing caused by the gapless spinons on the Fermi surface
also disappears and the transverse polarization operator
becomes II~(w, k) = cu /A + yk2. Thus, in this case
the model (1.8) is reproduced identically with g = b,
c /a =X.

D. Formulation of the problem

Now we return to the basic model (1.8). The quali-
tative properties of the model are governed by three di-
mensionless parameters. The most important are the two
dimensionless coupling constants of the gauge field:

g m g
O.'g

167r~n ' Svrmc2
(l.10)

The third dimensionless parameter is related to the
strength of the hard core interaction [described by
V„(Q*@) in (1.8)]: h = nvo, where n is the density of
the bosons and vp is the volume of their hard core. At
small 8 (( 1 (and in the absence of other interactions)
bosons form a gas; at larger b 1 they constitute a liq-
uid, but the properties of these states are similar at low
temperatures. To simplify the problem we shall consider
only the dilute gas limit b « 1 from now on.

Even in this limit, quite a few qualitatively difFerent
phases are possible depending on the values of the other
two dimensionless parameters. In the following we con-
sider them one by one.

sation temperature we find the susceptibility of the ideal
Bose gas:

m~(0) e~ ~~ —1

247rm 247rm

2"n0— )m
(2 2)

where Ngy(e) = exp[(e —p)/T —1] is the Bose dis-
tribution function, and we use the chemical potential
for the ideal Bose gas of fixed density: po ——Tln[1-
exp( —To /T)]. The susceptibility (2.2) is small compared
to the "vacuum" one (c /g ) at high temperatures, but
grows rapidly below Tp and reaches the "vacuum" value
at

Tp

ln [24vrmc2/(g')]
' (2.3)

which sets the temperature scale. If condition (2.1) is
satisfied, this temperature is lower than the superfIuid
transition temperature of the dilute Bose gas: 3'

Tp

ln in(1/8)
' (2.4)

E„= ' ln A~/Qy,
m

(2.5)

Thus, the Bose condensation happens at the tempera-
tures at which the efI'ects of the gauge Geld are unimpor-
tant. Below the Bose condensation temperature the usual
superfluid order parameter is formed in the Bose liquid.
at short scales. However, the effect of the gauge field
changes the qualitative behavior of this state at larger
scales. The reason for this is that the gauge field screens
the interaction between the vortices in the superBuid,
and so the energy of a single vortex is no longer infinite,
but

II. WEAK COULOMB AND TRANSVERSE
INTERACTIONS

g ln(1/8) « 1,16' mc2
(2 1)

where we retained. a large numerical factor which invan-
ably appears in all estimates. The easiest way to esti-
mate the efI'ect of the transverse interaction on the Bose
system is to compare the characteristic temperature at
which this efI'ect would become important in the ideal
Bose gas with the Bose condensation temperature. To
avoid confusion, we emphasize again that the tempera-
ture of the Bose gas corresponds to the thickness of the
sample in the vortex problem. It is this "temperature"
that we shall mean by this word and denote by T in this
and the following sections. To obtain the Bose conden-

We start; with the simplest case: a vanishing Coulomb
interaction and a weak transverse one. Quantitatively it
means that g2m/n -+ 0 and g /mc (( 1. As we shall
see below we need even more bounding condition on the
transverse interaction to ensure that its eÃect on the Bose
system is small (however, even this very small interaction
changes some properties qualitatively):

where n, is a superfluid density, A~ = [g n, /(mc )]
is the penetration depth of the gauge field in the Bose
liquid, and (~ is the coherence length of the superfiuid
which is conveniently expressed through the scattering
amplitude I'(p, ) of the Bose particles at energy p: 2

——4mn, l'(p, ),
4'

m ln(l/8)
(2 6)

Certainly, the formula (2.5) is valid (and the vortices
themselves are stable) only if A~/(~ & 1. This ratio is
actually Ginzburg-Landau parameter of this Bose liquid:

16@me
g2 in(1/h)'

(2.7)

n„(~ exp( —E„/T)
167m, ( 7m, jn(~~) &

ln(1/h) ( mT
(2.8)

The condition (2.1) ensures that r )) 1 and the vortices
are stable and well-defined excitations in this state.

A finite value of the vortex energy (2.5) means that at
any finite temperature the density n of these vortices is
finite:
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Thus, at large scales L )) n the correlations of the
order parameter decay exponentially and all properties at
these scales are the same as the ones of the normal liquid
at all nonzero temperatures. The density of vortices goes
to zero exponentially at T + 0, and so the ground state
is a superfl. uid Bose liquid.

The crucial changes are induced in the ground state
by the transverse gauge field if the interaction constant
is larger than (2.1).

III. STRONG COUPLING TO THE
TRANSVERSE FIELD) THERMAL

FLUCTUATIONS

Now we turn to the case of a stronger transverse inter-
action (but vanishing Coulomb repulsion):

g' ln(1/8)
16' mc2

(3 1)

OEg
P =Pp+

Bn

d2t ~~ c2k2
ln —+ + II~((u, k)

27r g g

(3.2)
I

In this case the interaction with a gauge Geld becomes
important for the Bose system below Tg [Eq. (2.3)]. At
temperatures slightly below Tg the superfIuid correlations
are still weak, and so in this temperature range one may
neglect them and simplify the problem to the problem of
an ideal Bose gas with a transverse interaction.

We shall argue that in this system the phase separation
is likely to happen. This phase separation is reminiscent
of the intermediate state of type-I superconductors in
a magnetic field. Qualitatively it is due the fact that
magnetic fI.uctuations are suppressed in the superQuid
phase, and so the energy of zero point fIuctuations is
smaller in the vacuum than in the Bose liquid. Thus,
Bose particles are repelled from the regions where the
magnetic field fluctuates.

In order to describe this phase separation quantita-
tively we find the equation of state for this gas, namely,
the dependence of its chemical potential on the gas den-
sity p(n), and check it for the stability of the homoge-
neous solution. We restrict ourselves to a one-loop ap-
proximation in the gauge-field fluctuations. This approx-
imation is justified if the transverse interaction is not very
strong: g /(16nmc2) « l. If it is stronger, the results of
a one-loop approximation should be regarded as an esti-
mate of the effect only. Then, the chemical potential of
the Bose gas becomes

where pp is the chemical potential of the Bose gas without
gauge interactions; above T,r it is given by po ——T ln[1-
exp( —Ts/T)], and II~(u, k) is the polarization operator
of the Bose gas.

A small value of the charge g, but finite g /c, implies
that the spectrum of the gauge-Geld Huctuations w

ck is very soft since c is small. Thus, we may neglect
their dynamics in this limit. Formally, it means that
we leave only the term with w = 0 in the sum (3.2).
This is justified if in the next term of this sum (i.e. , at
u) = 27rT) (u2/g » c k /g + II~((u, k) for all important
wave vectors k. The important k are no larger than
max(mT, n) which sets the smallest scale of the Bose gas.
Inserting these scales in the above inequality we get a
sufIicient condition for the static approximation at T
Tp,

g g m))mc2 n
(3.3)

which is satisfied if the Coulomb interaction is relatively
weak. In this approximation the free energy (3.2) be-
coxnes

1 g2 dk
Fg —— T ln —1 + II~ (k)g (3.4)

where we have subtracted the constant part of the free
energy that does not depend on the Bose system. To
evaluate it we need the form of polarization operator. In
the one-loop approximation we find

Ilg (k) = — 1 — Ng (ep)
1 2[p2 —(p k)2/k2] d p

m m(ep+k —ep
" 2x 2'

(3.5)

where e„= p2/(2m) is the energy spectrum of bosons.
Integrating over the angles formed by p and k and intro-
ducing the dimensionless variable z = 4@2/k2 we simplify
(3 5):

k~ f zk'l
II~(k) = vl —zN~

~
~

dz.
16vrm q 8m p

(3.6)

The one-loop approximation employed in the deriva-
tion of (3.6) is justified only if the interaction is not too
strong: n~ = g /(8mmc ) && 1. Together with (3.1) this
condition determines the range of the interaction which
we shall consider in this section.

For such interaction the corrections to the thermody-
namical properties of the Bose system caused by the
gauge field are small at Tp, but increase at lower tem-
peratures. We find them at T (& Tp.

At these temperatures the integral in (3.6) can be eval-
uated analytically in two overlapping regions of k:
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' 1 —v'1 —z
f(y) = —in[i —exp( —y)] + y dz)

exp(zy) —1

where (& ———8my, s.
For a moderate transverse interaction the second term in the brackets in the expression (3.4) is small at k & 8mTs.

g211&(k)/(c2k2) & g2/(16mmc2) « 1. At these k the ln in (3.4) can be expanded. Using (3.5) for the polarization
operator we see that the integral (3.4) over this region of k leads to the terms in the &ee energy that are constant or
linear in the boson density. These terms do not affect the equation of state for bosons since they shift their chemical
potential by a constant value only. We neglect these terms and consider only the region of small A; (( 8mT in the
integral (3.4) which yields a nontrivial correction to the chemical potential of bosons. In this region we use small k
asymptotics in (3.7):

Eg ——
2 ~

ln 1+ — ln G +1+ G —1 d, (3.8)

where we introduced the dimensionless parameter G =
g exp(To/T)/(8mmc ) which measures the effective
strength of the transverse interaction. In (3.8) we ex-
tended the integral over k = g2Tg/(7rc ) to the whole
real axis including the region of large k where the large k
asymptotics in (3.7) should have been used. This changes
the free energy by irrelevant terms which are constant or
linear in the boson density.

At T » T, the interaction parameter G is small (G «
1), the argument of the outer ln is close to unity, and the
correction to the &ee energy does not depend on the state
of the Bose system. At lower temperature G increases
rapidly and becomes large at T « Ts [cf. (2.3)]. At
these temperatures we evaluate the integral (3.8) with
logarithmic accuracy and find the shift of the chemical
potential induced by the gauge field:

The phase with a higher concentration does not be-
come stable until the concentration becomes so high that
a Bose condensation happens. To find the compressibil-
ity in this phase we repeat the calculations resulting in
(3.10) for a phase with Bose condensation. To simplify
the problem we consider only very large concentrations,
so that the formed Bose system turns out to be at effec-
tively low T « T,f(n). The chemical potential po of the
Bose gas without gauge interaction at these concentra-
tion changes sign and becomes

4mn

m ln(1/b)
(3.12)

The polarization operator II~(k) = n/m depends
weakly on the wave vector A:, and so the &ee energy of
the gauge field is

p~ = p,o — in [ln G(Te)] .g T
(3.9) Pg ——— ln 1 + (dk).

2 mc2A2 (3»)

In (3.P) we emphasize by G(To, T) that the shift of the
chemical potential depends on the To and therefore on
the concentration of bosons. As a result of this shift the
compressibility of the Bose system becomes

Opsy 271 —&o
T

On m
g T

8vrmc2 To + T in[g2/(8vrmcz)]

mT
2~ 1n(8vrmc2/g2) ' (3.11)

the compressibility becomes positive and the phase is sta-
ble.

(3.io)

At low temperatures, T & T~ = T /1o[(8n7rm)c/2g ], 2

the compressibility (3.10) becomes negative, signifying
the instability of this phase with respect to a phase
separation. The phases which are formed have smaller
and larger concentrations of bosons than a homogeneous
phase. To find these states we must find the stable so-
lutions of the equation of state with lower and higher
densities than the original one. The existence of a stable
solution with a lower concentration is clear from (3.10):
At a concentration n~ & n

This free energy results in the correction to the chem-
ical potential of the super8uid (3.12) similar to (3.9):

47m g2T ln[mc2/(g2n)]
m ln(1/b)

+
8mmc2

(3.14)

In this superfluid phase the compressibility becomes
positive at sufFiciently large densities n & n

g2 1n(1/b) mT
16' mc2 2m

(3.i5)

' The dependence p(n) in the whole region of the den-
sities is given by the combination (3.9,3.14). The Bose
liquid with the density n;„& n & n „(3.11,3.15) is
absolutely unstable. The ratio

g ln(1/b)
16~mcz ln(8vrmc2/gz)

(3.16)

is large if g ln(1/b)/(16mmc ) » l. In this case the
dilute phase can be named a normal gas and a dense
phase a superfluid liquid of bosons. The densities of these
phases become comparable close to a critical point where

g in(1/b)/(8vrmcz) = 1 and T T~ = T,g.
The density of the normal gas n is less than n;„and
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the density of the superfluid liquid n, f is greater than
n „. To find their equilibrium values at the tempera-
tures at which these phases coexist we have to find the
chemical potential from the equilibrium condition:

p(n)dn = 0. (3.17)

Thus, we have shown that a moderate interaction with
a gauge field makes the Bose system unstable with re-
spect to the phase separation below Tg. Two phases are
formed: one with a lower concentration of bosons and an-
other one with a higher concentration. The phase with
a higher concentration is superfluid, since the density in
this state is large enough to suppress the Quctuations
of the gauge field. Such phase separation is suppressed
even by weak Coulomb repulsion. A weak Coulomb re-
pulsion leads to a formation of finite size droplets. Strong
Coulomb repulsion leads to a homogeneous phase.

IV. STRONG COULOMB REPULSION

A. OfF-diagonal order in a Coulomb gas

We begin with a weak Coulomb interaction o.~ (( 1.
In this case the e8'ects of the Coulomb interaction are

In this section we consider the Bose gas with Coulomb
interaction only, i.e. , model (1.8) in the limit c —+ oo.
The strength of the interaction is measured by the di-
mensionless parameter o.c defined in (1.10).

In the limit of very large interaction the Bose gas con-
denses into the Wigner crystal breaking spontaneously
the translational invariance of the original model. We
shall argue below that, for intermediate values of the in-
teraction, the Bose gas forms a normal liquid at zero
temperature. This transition is associated with a spon-
taneous breaking of a Galilean invariance.

This statement needs elaboration. If the Galilean in-
variance is exact—i.e. , it is not broken by any boundaries
or arbitrary weak impurity potential the superfluid den-
sity is p, = n/m at T = 0. However, it is possible that an
arbitrarily weak pinning potential or other mechanism vi-
olating the Galilean invariance leads to a complete loss of
superfluidity. We call this state the normal liquid. Below
we discuss this definition for the special case of annular
geometry.

Unfortunately we cannot prove this conclusion rigor-
ously; we can present only qualitative arguments sup-
porting it. Since each of these arguments has loopholes,
we shall present few of them. These arguments are based
on the long-range behavior of the oK-diagonal order pa-
rameter.

The phase sequence superfluid —normal liquid —crystal
taking place in a charged Bose gas should be contrasted
with two phases (superfluid-crystal) that are realized in
a charged Bose gas on a commensurate lattice. ' The
difference between the models is due to the fact that in
the lattice model the Galilean invariance is broken ex-
plicitly by the lattice.

small at short scales. To analyze the long-wave proper-
ties in this limit one can use a "hydrodynamic" approach
and derive the efFective action of the Bose gas at inter-
mediate scales. These scales should be larger than the
correlation length, which in the dilute Bose gas is due
to the hard core repulsion. The state of the Bose gas at
these scales is characterized by two variables: phase P
and density p = n + bp, which are canonically conjugate
to each other. At the intermediate scales the Lagrangian
has the usual form

L($, 8p) =i bp+ —— v 8p + —(9'Q)
dt 2( m

+—ln(r —r') 8p„8p„, (4.1)g

where v is compressibility of the Bose gas due to the hard
core repulsion, and the last term describes the eÃects
of the Coulomb interaction. At large scales the Bose
gas can be described by the phase P only. The effective
Lagrangian of the phase is

1 dP q 1 dPq nLee'(p):
d i 2/ 2 d

+ 0 qV 0q

(4.2)

The Quctuations of the phase described by the action
(4.2) are large and lead to the decay of the off-diagonal
order parameter at large scales:

1
(~o~ ) = n(expl'~(") '~( )j) (4.3)

since ([P(r) —P(0) j 2) = 2n ln r.
The power law decay of the ofF-diagonal long-range or-

der does not necessarily imply the absence of the super-
Quid density, as demonstrated by the Berezinsky phase
in a 2D Bose liquid at finite temperature. In a 2D Bose
liquid the exponent of the power law increases with tem-
perature, and at T = TBKT the transition into the normal
state occurs. At the transition the exponent is 1/4; the
superfluid density does not change much between 0 and
TBKT, but jumps to zero at TBKT.

At zero temperature the exponent increases with in-
crease of Coulomb repulsion. Below we argue that when
this exponent exceeds a critical value o." 1 the transi-
tion into the normal state takes place.

However, before that we shall show that Eq. (4.3)
relating the exponent o. to the strength of the Coulomb
interaction derived in the hydrodynamic approximation
is actually an exact result in the superfluid state. There
are two ways to prove it.

Galilean invariance ensures that there are no correc-
tions to the superfluid density in perturbation theory. So
the coeKcient n/m in the action (4.1) is not renormal-
ized until the transition into the normal state happens.
In this respect the Bose problem with Coulomb interac-
tion at zero temperature is diferent from the dilute Bose
gas at finite temperature. The Coulomb interaction be-
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tween total densities is not renormalized as well. Thus,
the coefIicients of the action (4.2) are not renormalized.

In a different approach one considers a Hamiltonian
that contains a Coulomb long-range interaction and a
specific short-range interaction in which the ground state
is known exactly. In this ground state the off-diagonal
correlator obeys (4.3). Then one may prove that the
effect of the short-range interaction at large scales is
negligible.

Apart &om the Coulomb repulsion this Hamiltonian
contains a short-range three-body interaction

g
2

II;„,= — ln(ri —r2) bp(ri) bp(r2)d r, d r2+ H„,4'

[~p(r)]'d" (4 5)

+ ~p(ri) ~p(») ~p(rs)

xV(ri —rq, ri —rs)d rid r2d rs,

V(r, r') = 20! T F

fn r2ry2

The ground state of it is given by the Jastrow form wave
function

4(r„.. . , r„) = (r; —r, ) exp nun)—

(4.6)

PE = ——) 4nln(r, —r, ). (4.7)

The energy of this ground state is exactly zero.
The simple form of the wave function (4.6) allows one

to evaluate equal time correlators. Given the wave func-
tion (4.6) Girvin and MacDonald have shown that the
ofF-diagonal correlator obeys the power law (4.3). Such
correlators are given by the integrals over all coordinates
of l@l . The particular form of the integral depends on
the correlator considered, but all of them are similar to
the correlators of the 2D classical problem with energy

goes the transition into the solid Wigner crystal. The
charge at which it happens turns out to be numerically
large: o.~ 30. Thus, the Wigner crystal state is re-
alized only for n~ ) ni2v = 900 in the model (4.5) which
contains, apart &om Coulomb interaction, also a short-
range potential. This value of o«' would correspond.
to the Lindemann number cl. = 0.08 which is less than
usual. This discrepancy is not surprising since the short-
range part of the Hamiltonian, (4.5), afFects the value of
shear modulus of the crystal and, therefore, the melting
criteria.

In the crystal phase superfluidity disappears. Below
we shall argue that it disappears at n 1 long before
the transition into the Wigner crystal happens. To deter-
mine the superfluid density it is not sufBcient to know the
wave function of the ground state. Many equivalent def-
initions of the superfluid density exist. We shall use the
one that relates the superfluid density to the difference
between the energy of the ground state with periodic and
antiperiodic boundary conditions. The following discus-
sion is similar in spirit to the old arguments of Leggett.
However, because of the presence of the long-range inter-
action, the conclusion that we reach is difFerent.

To simplify the discussion we consider a Bose gas that
fills an annulus of outer radius L and an inner radius L/2.
In this system periodic boundary conditions correspond
to zero Qux of the magnetic 6eld through the hole, the
antiperiodic to a half quantum of a fiux. The energy of
the state with a Qux does not depend on L in the limit
L ~ oo in the superfluid state and goes to zero in the
normal state.

In the absence of any impurity potential the Hamilto-
nian commutes with rotations around the center of the
annulus. It will be convenient to describe each particle by
axial coordinates (0,, r;). The phase of any wave function
should be linear in 0 = g, 9, , and so the wave function
that satis6es the antiperiodic boundary conditions con-
tains an additional factor exp(i8/2), which costs finite
energy. Thus, in the absence of any pinning perturba-
tion, superfluidity is preserved for any Galilean invariant
interaction.

The wave function (4.6) obeys periodic boundary con-
ditions. We shall try to construct a trial wave function
which obeys antiperiodic boundary conditions. We shall
look for the trial wave functions which have the form

B. States of Bose gas with strong Coulomb
interaction

Let us consider the Coulomb gas with a three-body
short-range interaction (4.5), the ground state of which
is described by the wave function (4.6). The explicit form
of the ground-state wave function makes the discussion
of the three-body case easier; however, all following ar-
guments can be also applied to the Coulomb problem
without a three-body interaction with only minor modi-
fications.

This wave function looks deceptively simple, but it de-
scribes both the liquid state (at small n) and the crys-
tal (at large n). The energy (4.7) describes a Coulomb
plasma with effective charge 4o.. At large o. it under-

e~(r„.. . , r~) = exp[i/(r„. . . , r~)]4(ri, . . . , re�).

The energy of this wave function is

j[&4(ri ". riv)]'l@(ri ". r~)l'«i. "«~
j l@(ri, . . . , rg) l'dri . .dr g

{4.S)

The phase P(ri, . . . , re�) should obey the condition that
it changes by m when the particle is moved around the
hole.

Qualitatively, if the wave function of each particle is
localized, its phase can be changed only in the region
where the wave function is small. Such a change would
not cost a considerable kinetic energy. For the parti-
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cle to be localized, its wave function should decay faster
than 1/r [then the integral J' ~4(r)

~

is governed by short
scales]. The analog of the one-particle wave function for
the many-body problem is the equal time Green's func-
tion (4.3) which measures how the wave function decays
as a function of one variable with all others being Gxed.

In an attempt to formalize these arguments for a many-
body problem we consider a path in 2N-dimensional
space that connects the points

A = [(0 r) (02 r2) " (0~ r~)]

and

If the wave function satisfies antiperiodic boundary con-
ditions, the phase changes by vr along this path. In the
following we shall try to construct implicitly the phase
that obeys this condition.

If the amplitude of the wave function is small some-
where on this path, one can construct a trial wave func-
tion whose phase changes only in the region where the
amplitude is small. Then the energy of this trial wave
function is small provided that two conditions are satis-
fied.

(A) The region in which the phase changes does not
contribute much to the average (4.8).

(B) Each path connecting the two points A and A'
passes through the region where the amplitude of the
wave function is small.

In a crystal state the wave function is small unless al-
most all particles are close to their equilibrium positions
in a periodic lattice. In this case the path in configura-
tion space that connects points A and A' can be viewed
as a path in 2D space with all other coordinates being
fixed. The wave function along this path decays to a
value of 1/L at 0' = 0+ ir. Thus, in a crystal state one
may change the phase of the wave function only in the
region where the wave function is small, proving that the
superfluid density is zero in this state.

In the liquid state the wave function along an analo-
gous path (in which all coordinates but one are fixed)
decays as 1/r . Consider an integral over this variable
in (4.8). The distant parts of this path do not contribute
to this integral (4.8) if n & l.

This construction can be generalized to paths in which
a small number (N (( L~n) of coordinates is changed.
Such a path necessarily goes through the region where
the 2D "energy" is at least E & ln(L/N). This "en-
ergy" is attained in the configurations where the average
distance between "moved" particles (and their initial po-
sitions) is r L/N. The contribution from this region
to the integral (4.8) contains a small factor (N/L) and
a phase volume (L/r) ~. Thus, although such con6gura-
tions have smaller "energy" than a one-particle motion,
their contribution is additionally suppressed by a small
phase volume. Thus, the contribution of these regions to
the variational energy is small.

We were not able to extend this construction and show
that it is possible to define the phase so that it changes
by vr on arbitrary path and that this change happens

only when the amplitude of the function is small. The
fundamental difBculty of such construction can be traced
to the fact that the wave function (4.6) contains large
components which correspond to the creation of large
but smooth variations of the density. If this variation
happens on a macroscopic scale (L) and the total charge
of this fluctuation is 1, the corresponding 2D "energy" is
only E o.. The motion of such configuration as a whole
around a disk does not pass through the regions where
the amplitude of the wave function is small. Instead,
such conGgurations give small contributions only due to
weak pinning by defects or by the sample boundary.

We believe that in the full problem that includes
boundaries (or weak pinning by defects) it is possible
to construct the phase of the wave function so that the
boundary conditions are satisfied and the variational en-
ergy is small provided that o. & 1.

The same conclusion is reached if one introduces the
auxiliary complex field h coupled to the superfluid order
parameter (HI, = Reh4') and compares two field config-
urations.

(A) The field is nonzero and real in narrow radial re-
gions around angles 0 = 0, 0 2m/3, and 0 = 4ir/3:
h = hp.

(B) The field is nonzero in the same regions, but ac-
quires a phase: h = hp expo.

In the second case the phase of the order parameter
turns by 2' around the circle. It is natural to attribute
the difference between the energies of these conGgura-
tions to the rotation of the phase. In this formulation
the field itself provides the pinning perturbation, and so
the difhculty associated with the implicit introduction of
weak pinning is removed.

Comparing the energies of these two Geld configura-
tions evaluated in the perturbation expansion over hp

(8E Ix f (@,@,, )d rd r', where the integral over r and
r' is performed over difFerent narrow regions), we see
that the second configuration costs more energy: LE oc

const + L . The energy cost does not grow with I if
o. & 2. From this argument we conclude that the su-
perfluid density is zero if o. & 2. We note that the dis-
tribution of Bose particles nI, has no singularity at zero
momentum at n & 2 [n~ = j(4't(r)4(0)) exp(ikr)d r],
and so this value of a is most likely an upper bound for
n„at which superfluidity disappears.

Finally, we explain why the Landau conclusion that
superfluidity is present if the interaction is Galilean in-
variant and the spectrum of quasiparticles is not softer
than linear does not work here. This conclusion is, based
on the following argument: Consider the Bose liquid in
a coordinate system moving with the liquid. In this co-
ordinate system impurities (or the boundaries) are mov-
ing with velocity v. The dissipation of the supercurrent
would mean that these impurities can excite quasipar-
ticles. Since the impurities are connected with the ves-
sel, they are inGnitely heavy. In this case, the energy
transferred to the quasiparticle is e = pv, where p is the
transferred momentum. Such a process is impossible if v
is less than velocity of the quasiparticle. This argument
does not work if the state has broken translational order
and processes in which momentum is transferred to the
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crystal as a whole are allowed. This process is also possi-
ble if the interaction is long ranged (as is the case here),
so that the momentum is transferred to the system as
a whole even in the absence of the broken translational
order.

V. COULOMB AND TRANSVERSE
INTERACTIONS: GROUND-STATE

PROP ERTIES

In this section we study the effects of the transverse
interaction on a superfluid ground state formed by a rel-
atively weak Coulomb interaction (i.e. , with n ( 1). The
transverse coupling constant o.s = g /8mmc will also be
considered to be relatively small, o.g & 1. We shall use a
perturbation expansion in o.~ around superfluid ground
state in order to calculate a depletion of the superfluid
density n —n, at T = 0. This depletion is entirely
due to the breaking of Galilean invariance caused by the
retarded nature of the gauge-Beld-mediated interaction.
Then we shall go beyond perturbation theory and use a
self-consistent approach to calculate n, when it becomes
small.

A. Perturbation theory

1. Green's functions at as = 0

I.p —— @t l.—+
( Ot 2m )

2

(gtg —n), . (Qt@ —n)„ln(r —r')d rd r'.

(5.1)

The idea is to represent Bose field P as the sum
of a condensate (zero-momentum) part go and a
nonzero-momentum part vPi, to neglect terms higher
than quadratic over vPi, gi, and to calculate nor-
mal and anomalous Green's functions G(x —x')
—i(T@i(x)@i(x')) F(*—*') = —i(T&i(x)&i(x')) Equa-
tions for the G and E functions can be derived in a stan-
dard way; in the Fourier representation we obtain

—&o (e, p) l
G(e, p) —Eo (e, p)F(e, p) = 1,

2

f p2

2m
—~o( p) lF( p) —~o( p) ( p) =

(5.2)

We start with the calculation of bare Green's functions
for the superfluid ground state at ng = 0, o. & 1. In this
case a kind of Bogolyubov (Hartree-Fock) approach can
be used for a bare Lagrangian (cf. Refs. 32—34):

iF(p t) = — q e -'(")I
2eo(p) p2

(5.5)

where eo (p) is bare excitation spectrum in the superfluid
state given by

2

'o/u) =
I 2 ) + (5.6)

This energy spectrum has a finite energy gap which
corresponds to a bare plasmon frequency eo ——gg2n/m,
as could have been anticipated for a problem with a
Coulomb interaction. Another feature which is common
for a system with the Coulomb interaction is a screen-
ing of a longitudinal potential. In the lowest-order ap-
proximation we are using here the effective longitudinal
interaction is

=1 1 gV. (p) = ——2—[G(a, p)+F(O I)]-
p2 p2 p2

p'
p4 + 4ng2m

(5.7)

In the real-space representation the effective potential
is equal to

1 1
.V, (rs) = ker(V2q—ir) = —ReKo[qir(1+ i)], (5.8)

27t 2'
where ker(x) and Ko(x) are Tompson and McDonald
functions of the zeroth order, and qi ——(ng2m)i~4. At
large r the potential V,&(r) decreases exponentially with
a characteristic Debye length rD = qz, but also oscil-
lates with a wave vector qi (cf. Refs. 33 and 34). Usu-
ally the mean-Geld-type approximation works well for a
Coulombic problem if the number of particles within a

Diagrams for Ep and Zz are shown in Fig. 2. In the
mean-field approximation employed here we neglected
the difFerence [of the order of nlnL; cf. Eq. (4.3)] be-
tween the total density n and the density of the con-
densate gogo. This is justified since this difFerence does
not contribute to the correction to superfluid density n,
which we study.

In the time-momentum representation the solution of
Eqs. (5.2) is given by

iG(p, t) =
l

+
I
+ —sgn(t) e ' o(u)l I

( p' g'nl
2"(») E2 &' )

(5.4)

ng
~o(e p) = ~o(e p) = „, . (5.3)

where lowest-order expressions for a normal (Zo) and
anomalous (Zo) self-energy parts are given by FIG. 2. Normal (Z ) and anomalous (Z ) self-energy

parts within Bogolyubov-Hartree-Fock approximation for the
Coulomb Bose liquid. Lines with arrows denote Bose conden-
sate $0, wavy line stands for the Coulomb potential.
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sphere of the Debye radius is large; in the present case
this condition reads

given by

4m n
4~nrD = ——) i;

g fA
(5.9)

J(u) =
o Qx + lgux+ l(A+2+ 1+ Qux+ 1)

(5.i5)
i.e., it coincides with the inequality o. & 1 which we as-
sumed to be vahd.

2. I cetus'bative corrections to n,

2nII,( ) = i,D(*)[G(*)+S(*)] (5.10)

where D(x) is a bare photon propagator in a superfluid
state,

D(q t), g e
— o(a) lil

2~o(q)
(5.11)

where bare photon spectrum is

Now we are in a position to Bnd corrections to a su-
perfluid density n, = mli~(q = 0). To do that, we take
into account a coupling between transverse bosonic cur-
rent and the gauge Beld a perburbatively, using, for the
bare Green's functions, the functions determined above
in the context of purely Coulombic interaction [cf. Eqs.
(5.4,5.5)]. Then the transverse current-current correlator
is given by Il~ = Il~o+ Il~i, where II~o ——n/m. The di-
agrams giving the lowest-order contributions to II~q are
shown in Fig. 3; the corresponding analytical expression
becomes simpler in the x = (r, t) representation:

At small u, J(u) = ln(2/u), whereas at u + oo,
J(u) = (i/2u) ln(2u'). The function uJ(u) is plo~~ed
in Fig. 4. We use Eqs. (5.14,5.15) to estimate the den-
sity range, n, in which n » n, . To do that, we solve
numerically (5.14) with n, = 0 in the left-hand side for u
at moderately small values of a~ and then find the value
of the parameter n = ngu. In the case of ag = 1/2
(which corresponds to the vortex liquid problem) one
Bnds that the vanishing of the superHuid density takes
place at n = n" 0.3 [i.e. , at n" = (n") 0.1]. The
cr"(erg) dependence is shown in Fig. 4(b). This curve
is reliable in the range 0.3 & o;g & 0.6 where both o.g
and o. are considerably less than unity, so that low-o. , o.g
perturbative expansion can be trusted.

8. Cot v ections to the spectf'urn
of longitudinal excitationa

It is also instructive to check what is the efFect of the
coupling to a gauge field on the excitation spectrum (5.6) .

To do that, we calculate self-energy parts Z and Z in
the lowest order in o.g and add them to the bare func-
tions given by the (5.3). There are two types of these
corrections: Zq containing a vector vertex part and Z2
with a scalar vertex part; the corresponding diagrams are
shown in Fig. 5. The renormalized energy spectrum is

2

~o(q) = c q

Combining (5.10,5.11), we get

(5.i2)
2.5-

II~i(q = 0) =— d'J p2/2m

(2 )'"(~) .(S) ["(~)+ .(p)]

(5.13)

1.5-

0.5-

Finally, using Eq. (5.13) and the definition of n„one
gets

ns
1 ——= 2crsu J(u),

n
(5.14)

where u = rr/ns and the dimensionless integral J(u) is
3.2-

1.0-

0

rr

0.32-

0.1-

FIG. 3. Lowest-order perturbative corrections to the trans-
verse polarization function II~. Straight line stands for the
bosonic Green's function, the line with arrows in opposite di-
rections represents the anomalous Green's function I", and
the dashed line stands for the photon propagator D.

0.2 0.4 0.6 0.8

FIG. 4. (a) The function uJ(u), (h) critical line o(ng) de-.
termined within erst order in a perturbative expansion.
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g—0,'g'2gmn '

(5.21)

r eP ~ %a ~
)k

~t
rr

~rr

eP ~%~
r ~ dk

r

where the radiative correction is given by the last term
in the square brackets. Obviously, the minimum (over
q's) of the expression Eq. (5.21) never touches zero in
the range o,z & l.

Thus, we conclude that the corrections to a Bose par-
ticle excitation spectrum are noncritical in the region of
parameters where n, vanishes.

FIG. 5. Self-energy parts giving liest-order corrections to
the plasmon spectrum eo(p).

given by

2
= eo + —[&i (ep, p) + z2 (e„,p)]

n 2

+2 [Z", (e„,p) + Z" (e„,p)p'
(5.16)

In the following we shall need only two features of the
renormalized energy spectrum: the renormalized value
of the plasmon frequency e(p = 0) and the dispersion
of the spectrum at small p « qi —— (ng m) ~ . The
calculations simplify noting that at low p, ZI' cx p
whereas Z2 ——Z2 const. We get

B. Self-consistent calculation ef n,

Clearly, the above arguments for the vanishing of n,
are based on the erst-order perturbation expansion over
o.g and are not quite conclusive. We improve the ap-
proximation deriving a self-consistent equation for n, and
looking for the value of o. where the solution of this equa-
tion with positive n, ceases to exist. This is analogous to
the Pokrovsky-Uimin approach to the problem of phase
transition in a classical 2D XY model. To use a similar
procedure in the present problem, we prefer an approach
based on the functional integral representation over the
diagram expansion that is used above.

To use this representation we note that the corrections
to n, calculated above come from the following term in
the Lagrangian Eq. (1.8):

2 2 2 1( P»P) i( Pi P)
1
—~o+ 2ng p'

for the plasmon frequency and

2

e (p) —e i = —Z2(epl) p = 0)

p=0
(5.17)

(5.1S)

(5.22)

where we introduced a density Huctuation field bp. Here
and below we mean by a transverse (i.e., gauge-invariant)
part of the a field. We need to evaluate the functional
integral

DQDgt Da exp(zS).
for the dispersion of e(p) at low momenta. The diagrams
for Ki' /p are the same as the ones for Il~i [cf'. Eq.
(5.13)]. As a result,

e, = eo [1 —nguJ(u)], (5.19)

2

e (p) = e i
—Agep

2 2 P
2m' (5.20)

i.e. , e(p) decreases at small p and thus has a minimum at
some Gnite value of p. This minima never falls as low as
e = 0 (if it happens it would indicate the instability of the
charge-density-wave type). To prove it we consider the
"radiative" correction to a functional E(bp) determining
an energy of a static inhomogeneous density distribution:

where J(u) is defined in (5.15). From (5.19) we see that
the relative reduction of the plasmon frequency is 2 times
smaller than the reduction of n, . This conclusion does
not change if we take into account a weak frequency de-
pendence of Zq 2 which makes the reduction of plasmon
frequency even smaller. The calculation of Z2(0) gives
the dispersion

t
exp

~

— hp hp C '(x —x')dxdx' ~,(2
(5.23)

where C(x) is the correlation function of the density fluc-
tuations. C(x) can be obtained from the hydrodynamic
Lagrangian (4.1):

nq2/m
—(q2/2m)' +io

= 2n [G(u), q) + F(iv, q)],

C(iv, q) =

(5.24)

where the functions G and F are defined in Eqs. (5.4,
5.5). Certainly, the transformation from the functional
integral over @ to the one over hp is not exact: It is just

We shall keep only term (5.22) in the interaction part
of the action S. Then we simplify the functional inte-
gral passing from the integration over g to the integra-
tion over density Quctuations bp. The integral over den-
sity Huctuations should be performed with the Gaussian
weight
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the same kind of mean-field approximation valid at n «
1 that we have used in Sec. VA. After the integration
over bp the effective action acquires an additional term
originating from the second term in (5.22):

0.8

0.6

S.s(a) = — d xa
2m

0.4

0.2

8m2
d xd x'a a, C(x —x') + So(f),

(5.25)
0.05 0.1 0.15 0.2 0.25

where So(f) is a bare part of the gauge-field action. Then
we use mean-field decoupling to treat the quartic in the
a term of the action (5.25). We represent the gauge field
as a sum of the slow ao and fast parts ai and integrate
over ai in order to obtain an effective Lagrangian

~s 2 C 2 1
~( o)= o A2+ &o2m 2g 2g

(5.26)

for the slowly varying field ao, where n, is given by

n. = n + — d xC (x) (ai (0)ai (x)) . (5.27)

~sg
(u (q) = c q +

m
(5.28)

The idea of the self-consistent calculation is that the
propagator of the "fast" Geld aq and the propagator of
the slow field ao are determined by the same Lagrangian
(5.26), and so the correction term Ii~i is given by (5.13)
with the renormalized photon spectrum

FIG. 6. The solution of the self-consistent equation. At( 0.38 the ratio w = n, /n goes to zero continuously; at
larger o.~ the solution with positive m disappears abruptly.

fiuid state whereas a true phase transition line should be
determined as a point where the ground-state energies of
both phases are equal. Thus, the true first-order transi-
tion line may fall below the dashed line in Fig. 7. Actual
calculation of the position of the first-order transition line
requires the knowledge of the ground-state energy of the
normal state formed above this transition. At present we
can only guess the nature of this state but are unable to
calculate its energy.

In the self-consistent calculations that lead to the
phase diagram in Fig. 7 we implicitly assumed that the
velocity of the photons, c, is not renormalized so that the
only effect of the renormalization on the photon spectrum
is the change in the superHuid density n, . To check this
assumption we use the self-consistent approach that re-
sults in Eq. (5.29) to derive the renormalization of the
photon velocity. We get

Finally, the self-consistent equation for n, is

1 —to = 2nguJ(u), u),

where ur = n, /n and

(5.29)
xdx 8a2+ 9ab+ 36

b as(a+ b)s

4a+ 26

as(a+ b)z

v = (c„/c) = 1 ——nQ(n, /n, n/ng),
2

xdx
J(tv, u) =

o Qx' + 1+ux + ut(Qx' + 1+ faux + u))

(5.30)

a = i/to+ ux, t = /1+x'. (5.31)

Equation (5.29) can be solved numerically for n, = mn
as function of n at a given ng. Unlike the analogous
equations in Ref. 36 Eqs. (5.29,5.30) have no singularity
at n, —+ +0. Therefore n, may go to zero with a finite
slope at some critical value n,", with a finite slope [n, cc

(n,",—n)j. The other possibility is a hard-type instability
(disappearance of the solution with nonzero n, ), like the
one obtained in Ref. 36. Actually both of these scenarios
realize at difFerent values of ng, as is seen &om the results
of numerical solution of Eq. (5.29) shown in Fig. 6 for
n~ = 0.35, 0.5, and 0.65.

In the small-ng region the self-consistent critical value
n,"can be determined as a function of n~ via the solution
of the equation 1 = 2ngu J(0, u) for u = n,",/ng, whereas
at larger ng the critical value n'„' corresponds to the point
where the solution of Eq. (5.29) disappears. The corre-
sponding "phase diagram" in the n~-n plane is shown in
Fig. 7. In the region of hard instability (ng & 0.38) the
dashed line corresponds to the instability of the super-

0.8- normal
liquid

0.4-

0.2- superflm
liquid

0.2 0.4 0.8

FIG. 7. The phase diagram of the Bose liquid at T = 0
in the plane of the coupling constants o. and o.~. Solid line
designates a second-order transition line in which n, varies
continuously. The solution with n, g 0 becomes completely
unstable at; the dashed line. Actual line of the first-order
phase transition is somewhat below the dashed line. Dotted
line is a conjectured transition line matching the results of
Secs. IV and V.
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We plot the renormalization of the velocity at the tran-
sition line n(ng) in Fig. 8. As is evident from this plot
the renormalization of the velocity is small everywhere
outside of the vicinity of the tricritical point o,g = 0.38
where the order of the transition changes.

C. Nature of the normal Bose liquid at T = 0

1.4:-

1.2 .
-

0.4-

0.2 0.4 0.6 0.8

FIG. 8. The ratio of the renormalized squared light velocity
c„ to its bare value c at the transtion line shown in Fig. 7,
as a function of n~.

Summarizing results of the previous subsection, we
have found that above a critical line shown in Fig. 7 the
superfluid (n, ) 0) ground state is unstable. This con-
clusion is in qualitative agreement with the arguments of
Wheatley and Hong that strong interaction with gap-
less degrees of &edom may lead to the normal Bose liquid
at T =O.

In the vicinity of this line the density-density correla-
tion function (corresponding to a plasmon branch) does
not show any anomalies; instead, a vanishing of n, (which
occurs at n~ ( 0.38) indicates that this transition is due
to the instability of the photon (transverse) spectrum. In
other words, a formation of a nonsuperHuid ground state
is driven by the changes in the Quctuation spectrum of
the gauge field.

What is the state which is formed above this line? Two
classes of normal states are possible: states with a new
order parameter and states that do not break any sym-
metry of the original Hamiltonian.

If a new order parameter is formed, the instability of
the photon spectrum which we found. in the vicinity of
the transition indicates that this order parameter is a
component of the gauge field. This component may have
nonzero wave vector. Clearly, in a state with the stag-
gered magnetic field the Bose condensation is suppressed.

If the new state does not break any symmetry, a com-
pletely di8'erent state may form in which large Huctu-
ations of the gauge field change the properties of the
Bose quasiparticles so drastically that; they would resem-
ble fermions more than bosons (statistics transmutation).

Thus, we have the following candidates for the normal
state: a state with a uniform magnetic field (orbital fer-
romagnet), a state with staggered magnetic field (orbital
antiferromagnet), a toroidal magnet, and a state where
the Quctuations of the gauge field lead to the statistic

transmutation. Now we discuss these states.
Orbital ferromagnet In this state a uniform magnetic

field violates time reversal symmetry. Formally, this state
may be realized only if the coefBcient in the effective
gauge-field Lagrangian (5.26) obeys a set of conditions:
First, the a term is absent; second, the coeKcient in
front of the fi2 term is negative. It is unlikely that both
of these conditions are satisfied for general values of the
coupling constants. We have found no signature that
these two conditions are satisfied for some particular val-
ues of the coupling constants.

Orbital antiferromagnet (OAF). In this state the stag-
gered magnetic field preserves the combined symmetry
under time reversal and translation but violates each of
them separately. This state was originally proposed
and then extensively studied (see, e.g. , Refs. 39 and
40) in order to describe the materials which have very
high diamagnetic susceptibility but are not superconduc-
tors. This property makes this state a natural candidate
for our intermediate (between crystalline and superfluid)
state.

If the OAF is formed in a second-order phase transi-
tion, the spectrum of the gauge field should acquire a
minimum at nonzero q in the vicinity of this transition.
The transition happens when the energy of this minimum
touches zero. As explained in the end of Sec. VB we have
checked that within the self-consistent scheme the pho-
ton energy increases with q at small momenta (c„)0;
see Fig. 8). It indicates that a deep minimum of the
photon spectrum at large q is very unlikely (though it
does not prove it, of course). This makes an orbital an-
tiferromagnet an unlikely candidate for the normal state
of the Bose liquid, at least in the region of parameters
o., o,g where the transition is of the second order.

Toroidal magnet (TM). This state was also expected
to produce a large (but finite) diamagnetic susceptibil-
ity like OAF. Unlike OAF it does not break the transla-
tional invariance. It is characterized by order parameter
T which has the same symmetry properties as the cur-
rent j. However, a simple proportionality between T and

j is forbidden by gauge invariance; instead j oc V' T. In
the case of a two-dimensional system the TM state can be
visualized as the state with an equal number of (+) and

(—) magnetic fluxes bonded in "dipolelike" pairs. In this
picture the toroidal order parameter (T) is proportional
to an average "dipolar polarization" produced by those
pairs. We have no indication in favor of this state, but
we cannot exclude it as candidate for a normal ground
state of the Bose liquid.

State with statistics transmutation. In this state the
strong Quctuations of the gauge field change the proper-
ties of the Bose particles entirely. In this scenario the
instability of the superHuid solution found in the previ-
ous subsection is interpreted as a signature of a quantum
phase transition to a state characterized by strong non-
Gaussian 8uctuations of the gauge field a. These strong
fl.uctuations can be viewed as Aux tubes carrying "mag-
netic" flux 2vr (in dimensionless units) within a space
scale of the order of the interparticle distance 1/~n.

Such Aux tubes, if bound to bosons, change their
statistics. 42 Indeed, when a composite particle (bosons



16 656 FEIGELMAN, GESHKENBEIN, IOFFE, AND LARKIN 48

4(l) = 4vrngl. (5.32)

Particularly, for the case ng = 1j2, it means that the
state with unit (l = +1) orbital momentum produces a
flux quantum 4 = +2m (note, to avoid confusion, that
in our units the flux. quantum is simply 2' as dis-
tinct from the flux quantum 4o of 3D electrodynamics).
Now let us consider two quasiparticles, each of them in a
quasilocalized state with angular momentum l = +1 (by
"quasilocalized" we mean that at a given position of the
center of packet the wave function decays rapidly away
from that center, but the position of the center itself is
not fixed and can drift). Then the phase the combined
two-particle wave function acquires after the particles are

+ flux tube) moves half a circle around another compos-
ite particle, it acquires a phase P = m. Since this process
is equivalent to the interchange of particles, this inter-
change leads to the additional phase P = m of the wave
function. Thus, this binding converts the bosons into
the fermions. If all bosons are bound to fluxes, the Bose
liquid becomes a Fermi liquid which remains a normal
liquid even at zero temperature.

If this mapping of the Bose liquid with strong gauge in-
teractions onto the Fermi liquid is correct, the properties
of this state can be deduced from the known properties
of the Fermi liquid at zero temperatures. Note, however,
that these properties are difFerent from a conventional
Fermi liquid due to the presence of the long-range gauge
field 4' '4

This mapping implies that the excitations in the Bose
liquid become Fermi particles. Such statistics transmu-
tations are known in one-dimensional physics where the
particle bound to a soliton changes its statistics. In the
Bose liquid the role of the solitons is played by the flux
tubes of the gauge Geld which carry flux 2'. As well
as in 1D solitons these configurations of the gauge field
are very special even in the superfluid state: They carry
nonzero flux, but their energy is finite. Such flux tubes
can move; they can be characterized by their energy and
the mass.

Let us provide qualitative arguments which show that a
charged Bose excitation may form a bound state with the
flux tube and change its statistics thereby. Consider one
Bose particle interacting with one flux tube. Certainly, a
particle is repelled from the static magnetic field. Con-
sider, however, a state in which the flux tube is rotating
around the center of mass of the pair formed of a boson
and a tube. According to Ampere's law, this rotation
produces a radial electrical field, which (for the correct
sign of the rotation) may bind the charged Bose particle.
Likewise, the magnetic field created by the current of the
Bose particle may bind the flux.

In a difFerent approach we consider a charged 2D par-
ticle in a spatially localized state with nonzero angular
momentum L. The orbital motion of a charged particle
produces an electric current and, therefore, a magnetic
Geld. It is easy to show that the total magnetic flux pro-
duced by such a localized state is not sensitive to the form
of the wave function; it can be expressed only through
the orbital moment of the particle:

VI. APPLICATIONS

In this section we discuss implications of the nonsuper-
fluid Bose liquid ground state in two physical contexts de-
scribed in the Introduction: the classical statistical me-
chanics of the vortex liquid in HTSC's and the gauge
theory of the Mott dielectric.

A. Vortex liquid as an intermediate phase of a
type-II superconductar in a magnetic Beld

Super conductor —Bose-liquid duality:
Form. al des ivation

Now we return to the problem of a superconductor in
a mixed state and derive a duality relation between the
superfluidity of the 2D boson system and the supercon-
ductivity of the orginal 3D metal in a magnetic field.
From now on we will relax the condition A = 0 which
we used in the bulk of the paper. We will characterize
ground state of the 2D liquid by its response to a slowly
varying external gauge field a:

~(q) = —&~(q)»(q)
With the definition (6.1) an effective Lagrangian for

the slowly varying gauge field a = (ao, a) and the elec-
tromagnetic vector potential A becomes [see Eq. (1.5)]

I,s(A, a) = e p~A fp~ + —[V x A]

1 2 1+ 2f p + —&z&~ + L~~(&0),4g2 2
(6.2)

exchanged (via slow winding of one around another) is
exactly vr, as if they were fermions.

Two types of flux tubes are possible: +2' and —27t. .
Because of the physical eKects discussed above, both
types are attracted to bosons and may form a bound
state. If only one type is used to form a composite par-
ticle, the resulting state would have a nonzero average
magnetic field. Such a state has a larger energy than the
state in which both types of flux tubes are used so that
the average "magnetic" field is zero.

The state with two types of fluxes can be viewed as
an orbital antiferromagnet "melted" by strong quantum
fluctuations. The external magnetic field changes the
balance between positive and negative fluxes (like it does
with 6 spins in the case of usual Fermi liquid). Thus, in
this state there is an additional "paramagnetic" contri-
bution to a magnetic susceptibility.

Obviously, these arguments in favor of the statistics
transmutation are very far from a proof that such a state
is indeed formed in the strongly interacting Bose gas. A
proof of this conjecture would involve the construction
of those composite fermions and the calculation of the
ground-state energy of the Fermi liquid. Moreover, one
should check that no pairing instability happens in this
Fermi liquid, which would lead to a small but nonzero
+s'
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where the last term in Eq. (6.2) accounts for the Bose
liquid response to the scalar potential ao. The La-
grangian (6.2) allows us to express the correlation func-
tion (A, (q) A, (—q)) of the electromagnetic vector poten-
tial component along the background magnetic Geld in
terms of the Bose liquid polarization function II~ (note
that in this section we use the imaginary-time representa-
tion as it corresponds directly to the vortex liquid prob-
lem):

17„(q) = (A, (q)A, (—q)) = q'+ P(q)
'

(6.3)

Here and below in this subsection T means the temper-
ature of the 3D superconductor. The function 'P(q) de-
fined in Eq. (6.3) is nothing but the irreducible correla-

tor of superconductive currents J '
along the direction

of the external magnetic Geld H t. The relation be-
tween 'P and II~ [Eq. (6.3)] is just the duality relation
that we need. In the following analysis we will assume
that q, component of the wave vector q is set to zero
before the limit q~ ~ 0 is taken. This order of limits
is mapped to the limit II~(w = 0, q) in the Bose liquid
representation. Suppose, Grst, that the Bose liquid is in
a superfluid ground state; then II~(q -+ 0) = n, /m ) 0,
which leads immediately to a correlation function of the
electromagnetic Geld,

17, (q) = 4vrTpd/q,

i.e. , we get to a phase with a finite permeability pp which
does not difFer qualitatively from a normal state. If, on
the other hand, the Bose liquid is in a "normal" state
with a finite diamagnetic susceptibility y, then II~ (q)
(4vr/g2)y q2 and, with Eq. (6.3), we get

17, (q) = (6 5)

where A,s = Apl + 4m y+; i.e. , the "normal" Bose liquid
ground state corresponds to an anisotropic superconduc-
tive phase with a London relation between the current
and vector potentials when both are in the direction of
the background magnetic field. For the vector potential
which is transverse to the magnetic field H „t the su-
perconductive response is never possible in this problem
since, in the absence of pinning, vortices can move under
the action of the Lorentz force Fl, = —[J x B].

Qualitatively, the duality between superconductivity
in the mixed state and superfluidity of 2D bosons can be
understood as follows: These bosons represent Abrikosov
vortices which are topological defects of the superconduc-
tive ground state; therefore ofF-diagonal long-range order
in terms of bosons should appear as the disorder param-
eter for the original superconductivity.

Thus, the existence of a nonsuperfluid Bose liquid
ground state implies that there is an intermediate vor-
tex liquid phase of a superconductor in a magnetic field

where A and J' obey the London equation

J, = —p', A„ p-=
4vr %2~

(6.6)

2. Qualitative Irricture and estimates for resistivity

A useful description of the superfluidity in terms of
the Bose particle's world lines was given by Ceperley
and Pollock. They introduce a winding number W
as a quantitative measure for the role of multiparticle
cooperative-ring-exchange processes which are known to

Relation (6.6) holds also for the Abrikosov lattice state
(mapped to a Wigner crystal in the 2D boson representa-
tion), as can be easily derived from the expression for the
free energy of this state given in Ref. 45 in the mean-
field approximation (MFA). Within the MFA an eKec-
tive penetration depth A g coincides with a bare Lon-
don length A. We also calculated a fluctuational correc-
tion to it [it is mapped to the diamagnetic susceptibility

in the crystalline ground state of the Bose problem;
cf. (6.5)] and found that it is small even at the melt-
ing line: A+z~'/A —I & arel /2. Recently relation (6.6)
was shown also to hold in a vortex liquid model with
a wave-vector-dependent shear modulus Css(q g 0) g 0.
The existence of an intermediate vortex liquid phase with
a nonzero p, ' was also conGrmed by recent Monte Carlo
simulations. 4'

The Grst indications that this phase was observed ex-
perimentally were reported recently in Ref. 48. In this
experiment the resistivity p, in the artificially layered
MoGe/Ge materials was observed to vanish below some
temperature whereas the resistivity perpendicular to the
Geld varied smoothly in this temperature range.

The relations (6.3)—(6.5) are quite general and do not
depend on the approximation A —+ oo which we made
when discussing the Bose liquid ground states.

For intermediate values of nA one should take into
account the finite range of the interaction mediated by
the a Geld when calculating the boson polarization func-
tion II~. For example, at very low flux-line densities,
nA « 1, the Bose ground state is a superfluid, and
with Eq. (6.4) we get an effective diamagnetic perme-
ability of the vortex liquid, pg = nA « l; i.e., in this
limit one deals with an "almost superconductive" system.
On the other hand, the high-density Bose superfIuid cor-
responds to a weakly diamagnetic state, 1 —pd « 1,
that resembles fluctuational diamagnetism known to ex-
ist above H q.

The above discussion pertains only to the description
of equilibrium thermodynamic properties of the super-
conductive mixed state; kinetic quantities such as resis-
tivity have no direct analog in the 2D boson picture, and
so we are unable to extract any quantitative informa-
tion for resistivity from the study of the 2D Bose liquid
ground state. However, it is still possible to estimate the
rate of the dynamic processes which govern the resistivity
p„. (The resistivity in other directions is not sensitive
to the state of the flux lattice and is determined by the
flux flow. )
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be important in the superfluid phase. The superfluid
density in the 2D Bose liquid can be expressed through
the mean-squared fluctuations of the winding number:
n, = mT+(W2)/2h~&. In the limit T —+ 0 (mapped
to a bulk superconductor with thickness L, —+ oo) the
existence of finite n, means that (W ) oc 1/T oc L, .
Qualitatively, it implies the existence of arbitrary large
planar vortex loops in the vortex liquid phase (these loops
are the projections of entangled vortex lines onto the xy
plane). An equivalence between vortex line entanglement
and superfluidity of the 2D Bose liquid was first proposed
by Nelson.

We should differentiate between weak entanglement,
which is present even in the Abrikosov lattice state due
to elementary pairwise exchange processes existing in any
bosonic ground state, and strong entanglement, in which
planar loops of arbitrary length appear. These loops are
responsible for a finite value of (W )/L, . If only short
(like pairwise) vortex exchanges are present, the main
contributions to (W ) from the exchanging "partners"
cancel each other. Then n, = 0, despite that each vortex
line, if traced, becomes arbitrary far from its original po-
sition in the xy plane. In other words, the ever present
diffusion of the Bose particles does not lead to superflu-
idity.

The presence or absence of arbitrary large planar vor-
tex loops is directly related to the behavior of the resis-
tivity p, . Dissipation of the longitudinal current J is
due to the growth of planar vortex loops of appropriate
(for a given direction of current) vorticity. In a weakly
entangled vortex liquid (no superfluidity in the 2D Bose
liquid representation) the free energy of a large planar
loop is proportional to its size R: E = 2aBeq. The
line tension eq is some fraction of the vortex line tension:
e] ep = m = (C o/4'7rA) . In the presence of current
the free energy acquires an additional term proportional
to the current:

1
F(R, J,) = 27rRei — J@pvrR . —

c
(6.7)

E —J~/ J
z (6 8)

Thus, the resistivity p„= E,/J, goes to zero exponen-
tially as the current decreases.

In the strongly entangled vortex phase (superfluid Bose
liquid), arbitrary long planar loops are present in ther-
modynamic equilibrium even in the absense of current.
In the presence of current the equilibrium between loops
with a positive and negative vorticity is biased. In this
case, an electric Geld is proportional to current and a
linear (at J, ~ 0) resistivity p'," appears. Its value is
determined by an energy barrier controlling the growth
of the planar loops. Since these loops are projections of
the entangled vortex lines onto the xy plane, the growth
of loops implies cutting and reconnecting vortex lines.

For the critical size of the loop the energy E aB eq.
The size of the critical loop and its free energy are in-
versely proportional to the value of current, F (J,) oc

]/J, . Therefore, an electric field E (J,) produced by
this current is exponentially weak at low J:

The energy barrier for such process governs the growth
of large loops and, thus, the value of the resistivity:

ih2

pzzoce)Fc+4+z(~)2~) (6.9)

where a numerical factor A„1.
At sufBciently low temperatures the energy barrier E'„

becomes signiGcantly higher than temperature. At these
temperatures the decay of a metastable state takes a long
time, and so the equilibrium is never reached. Such situ-
ation was observed recently by Li and Teitel in exten-
sive Monte Carlo simulations of the vortex line system.
In this case the behavior of a vortex liquid on finite time
scales can differ significantly from the results obtained
using equilibrium statistical mechanics. In particular,
this equilibration time problem may invalidate the direct
use of the results obtained from the Bose liquid map-
ping of the vortex problem. From the viewpoint of the
2D bosons, this metastability does not correspond to any
physical reality, and so care should be exercised in any
quantum Monte Carlo simulation of the 2D Bose gas.

8. H-T phase Chagvam

The results obtained above show that the vortex liq-
uid state is a genuine thermodynamic state, intermediate
between vortex lattice and normal metal. This phase is
squeezed between vortex lattice on one side and normal
metal on another. The position of the melting line is de-
termined by the Lindeman melting criteria (Sec. I A). We
shall discuss here the position of the critical-line vortex-
liquid —normal-metal state.

We consider first the 3D superconductors with mod-
erate g, such as 1:2:3materials. Formally, one can use
the relations between parameters of the Bose liquid and
parameters of superconductor,

B
H, 2

(6.10)

in order to map the line of the superfluid —normal-ground
state transition, Fig. 7, into the H-T phase diagram of
a superconductor. Unfortunately, such a mapping would
lead to the wrong conclusion that the transition line is
above H, 2(T) line. It means that in the whole region
where the mapping is valid, the vortex system exists ei-
ther in a solid or in an intermediate liquid phase. The
transition to the normal metal occurs after this mapping
breaks down which happens at H 0.5H 2 when the
vortex cores start to overlap strongly. Thus, the line
H 0.5H 2 provides a lower bound for the position of
the critical line. It is also possible that the transition to
the normal state does not occur until one approaches the
region around H,2(T) line where the fluctuations of the
amplitude of the order parameter are large. This region
serves as an upper bound for the critical line. At present
we are unable to find the exact location of the critical
line. In Fig. 1(a) we have shown both upper and lower
bounds for the position of the critical line.

The situation is d.ifferent for strongly anisotropic ma-
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terials with large g, such as 2:2:1:2. To be specific, we
use the parameters of 2:2:1:2(g 0.5 see Sec. IB).The
actual width of the critical region in this layered material
is less than g: rs 0.1 « g. The mapping to the Bose
system is valid everywhere outside of the critical region;
the transition to the normal state occurs inside this re-
gion. At higher fields (E3 ) 1 T [we use II,2(T = 0) 65
T]), the layered structure of the material becomes impor-
tant. At these fields vortices in different planes decouple
and the transition to the normal metal follows. The phase
diagram in this range of fields is shown in Fig. 1(b).

B. Normal liquid of bosons in the strongly
correlated electron systems

Here we discuss possible implications for strongly cor-
related electron systems with spin charge separation, in
particular, for the theory of the normal state of high-T,
oxides (Sec. I C). In the metallic state of these systems
the charged excitations are gapless. The charge carri-
ers are Bose quasiparticles. As discussed in Refs. 18 and
20 such a theory provides a semiquantitative explanation
of the properties of the normal state, provided that no
Bose condensation occurs. Below we shall investigate the
validity of this assumption.

The important parameters of the theory are the mass
and the density of the bosons in the low-energy limit. The
density of the bosons coincides with the hole density. It is
difBcult to extract the mass from the experimental data,
because in this problem we expect a significant renormal-
ization of the mass, whereas conventional methods deter-
mine the mass of the quasiparticles at large energies. For
instance, the width of the Drude peak determines the ef-
fective mass of the charge carrier at E 1000 K; the
penetration depth determines the mass of the carrier in
the superconducting state where all fluctuations with the
energies below the superconducting gap (2A 700 K)
are completely suppressed. Thus, both types of measure-
ments determine the efFective mass of the charge carrier
at E 1000 K. The high-energy estimates based on these
measurements give the mass m~ —3m, i. As we shall see
below it is not possible to reconcile the experimental data
with the theory if the mass is so light. However, if the
renormalization increases the mass to m~ 15m I, the
agreement is much better. This value of the Bose mass
agrees with the value extracted from the diamagnetic
susceptibility measured in Ref. 53.

The spin excitations may be either gapless or have a
gap. We consider these two cases separately.

and III. We now apply the estimates of these sections to
90 K YBa2Cu307. In this material the density of holes
is large (ng —0.3), and so ln(l/8) + 1.

If the interaction constant o.g (( 1, the superfluid
phase transition is replaced by a crossover to a phase
with a finite concentration of vortices, n, [Eq. (2.8)].
At larger interaction constants, o.g + 1, phase separa-
tion happens. The value of the interaction constant for
the high-T, cuprates can be estimated using the values of
the resistivity slope to determine y = 500Ka2i [here a
is the lattice constant within (a, b) plane]. Using for the
Bose mass m~ —3.0m ~ we get the interaction constant
o.g 0.15. At such interaction strength the phase sep-
aration is unlikely to happen, but the phase transition
is smeared significantly. The effects of the superfluidity
do not show up until the density of vortices becomes less
than the density of Bose particles. Using (2.8) we get an
upper bound on the temperature at which the crossover
to the normal state begins: T„&0.15TO. Estimating the
transition temperature in the ideal Bose gas by (2.4) we
conclude that the effects of superfluidity are suppressed
by gauge-Geld fluctuations down to T„&600 K. Below
this temperature the conventional Fermi liquid is gradu-
ally formed. This conclusion is in obvious contradiction
to the experiments in which the anomalous behavior per-
sists to the transition temperature T, 100 K. Using for
the Bose mass m~ 15m, ~, we find a lower interaction
constant o,g 0 04 Still the phase transition is smeared
and the effects of superfluidity are suppressed down to a
temperature T„&200.

2. Spin gap

The results of the NMR measurements show that, in
some high-T cuprates, spin excitations acquire some sort
of gap well above the superconducting transition. This
effect is most pronounced in 60 K YBa2Cu306 5. We
believe that this spin gap is due to pairing between the
spinons in different planes. Such pairing gives a mass
to the symmetric combination of gauge fields in these
planes. The low-energy degrees of freedom involve bosons
in these planes and gauge field which is an antisymmetric
combination of the gauge fields in each plane. Bosons on
different planes have opposite charges with respect to this
gauge field.

The scalar potential corresponding to the antisymmet-
ric combination is not screened and the action of the
gauge field acquires the general form (1.8). The dimen-
sionless parameters of this model are

Gapless spin ezcitations
Ag

Sermon

3 6'mg
o.c ——

32m eFnp,

In this case, the low-energy excitations involve charge-
less fermions with spin 1/2, charged bosons, and a gauge
field. Neglecting the direct interaction between bosons
and spinons we conclude that charge transport in this
system is governed by bosons interacting with a slowly
propagating gauge field (Sec. IC). The properties of the
Bose system in this regime were considered in Secs. II

For the estimate of the spin gap we use the value 2L
700 K which was observed as a threshold in the infrared
reflectivity. This threshold persists well above T, es-
pecially in 60 K material, but it disappears at higher
temperatures. We associate this threshold with a spin
gap formed in the spinon subsystem.

Using the Bose mass m~ 3m ~, we get o.g 0 1,
o. = 0.06. According to the phase diagram in Fig. 7 and



16 660 FEIGELMAN, GESHKENBEIN, IOFFE, AND LARKIN

the estimates of the Sec. II, the Bose liquid with such
an interaction has a superfluid ground state at T = 0,
but the eKects of super8uidity are suppressed down to
the temperatures T„(400 K. Below this temperature a
conventional Fermi liquid is formed. This conclusion is
in contradiction to experiment.

The agreement improves for m~ —15m ~. For this
mass the interaction constants become o.g 0 02 o.
0.15. Taking into account only static thermal Auctua-
tions and using (2.8) we estimate that the superfiuidity
of the bosons is suppressed down to T„(150 K. The dy-
namic Huctuations suppress the crossover further down,
but are unable to destroy the super'. uidity completely at
T = 0 according the phase diagram on Fig. 7.

The Bose condensation discussed so far was the one-
particle Bose condensation. If bosons on different planes
have diferent charges, as happens in the model of Ref.
21, pair condensation of the bosons becomes more likely.
Pairs of bosons have zero total charge with respect to the
gauge field, and so the vortices in their order parameter
are not screened by the gauge field. If the attraction be-
tween the bosons is weak, the size of the pair is large and
such a transition is analogous to the Kosterlitz- Thouless
(KT) transition in the superconductive film. Unlike the
one-particle Bose condensation in a gapless spin situa-
tion, this is a real thermodynamic transition which leads
to a superconductive state. Combining KT estimates
with the value of the pair mass m„= 30m ~, we esti-
mate this transition temperature: T, 80 K.

Thus, the spin charge separation provides an explana-
tion of the experiments in both spin gapless and gapped
materials, if we assume that the mass of the boson is
renormalized to m~ = 15m ~.

Note added in proof

Recently the results of the transport multiprobe mea-
surements on Y-Ba-Cu-0 single crystals in a mixed state
were reported in Ref. 56 in which a sharp onset of
the vortex rigidity in the c direction was observed at a
temperature significantly above the vortex glass transi-
tion. Both position and nature of the new transition
line are in agreement with the prediction of the vortex
liquid —normal metal transition [Fig. 1(a)] if we assume
H 2 ——100 T for this material.

A separate set of recent experimental results seem
to indicate that the previously accepted value for the
anisotropy in 2:2:1:2material was underestimated by a
factor of 10: Mjm = 25000; in this case the vertical
axes of the predicted phase diagram [Fig. 1(b)] of the
2:2:1:2should be multiplied by an additional factor 0.1
suppressing the region of the existence of a new phase to
low fields H ( 500 G. Measurements of the resistivity in
the c direction in such fields on this material would give
the evidence for the existence of a vortex liquid phase.
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