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We calculate the single-particle excitation spectrum of holes in the Emery model thereby ex-
tending and improving previous calculations. The system is considered at half filling (ni, = 1, one
hole per Cu02 unit) and for hole doping, where the on-site hole-hole repulsions are kept finite. A
paramagnetic form of the ground state is used. For the determination of the retarded Green's func-
tions of copper and oxygen holes, the projection technique is applied solving the resulting equations
of motions self-consistently. At half Ailing, the excitation spectrum exhibits a charge-transfer gap
bounded by Zhang-Rice singlet states and the upper Hubbard band. Upon hole doping the Qat
singlet band crosses the Fermi level giving rise to a large Fermi surface at a hole concentration of
np, ——1.25. Moreover, spectral weight is shifted from the upper Hubbard band to the states near the
Fermi energy. The calculated spectral densities, the singlet dispersion for the doped system, and the
transfer of spectral weight are in good quantitative agreement with exact diagonalization results for
2x2 Cu02 cluster.

I. INTRODUCTION

A satisfactory theoretical description of single-particle
excitations in the normal state of cuprate superconduc-
tors is still a challenging problem. Their surprising ex-
perimental properties as well as the theoretical intricacies
originate from the strong Coulomb interaction between
the charge carriers in the copper-oxygen planes, the char-
acteristic structural unit of this class of materials. Due to
the strong Coulomb repulsion Ug, which two holes on a
copper site experience I a2Cu04 for example is a semicon-
ductor with a charge-transfer gap, whereas conventional
band-structure calculations predict metallic behavior.

An adequate treatment of strongly correlated charge
carriers remains a diFicult task even if the physics of
real solids is condensed into simplified Hamiltonians. In
the case of high-T, cuprates the Emery model, which
is a three-band Hubbard model on a two-dimensional
square lattice provides a good starting point for a
theoretical analysis. The parameters of the model
Hamiltonian can be derived from band-structure
calculations ' or quantum chemical approaches. Its
ground-state properties and excitation spectrum have
been intensively studied by numerical methods like ex-
act diagonalization of small clusters or Monte Carlo
techniques. Furthermore, the Emery model formed
the starting point of numerous analytical approaches
for cuprate superconductors. Several authors applied
the slave-boson formalism or used the equation-of-
motion method. ' In other works the Hamiltonian of
the Emery model was further simplified by canonical
transformations. This way one is finally led to the
t-J model, which seems to describe accurately the low-
energy excitations of the Emery model. Finally the pro-
jection technique, which will be used in this work, has
already been applied to determine the spectral densities
for copper and oxygen holes (Refs. 34—37).

The theoretical results must be compared with photoe-

mission (PES) and inverse photoemission spectroscopy
(IPES) measurements. For exainple, angular resolved
PES on Bi2Sr~CaCu208, a self-doped material, give
a rather Bat band, which is crossing the Fermi level and
is also detected above the Fermi energy by IPES. In
YBa2CusOq „, doping with holes (0.1 ( y ( 0.7) leads
to a remarkable increase in intensity of these low-energy
excitations. Additional information is obtained from 0
18 absorption edge measurements, where a simultaneous
decrease in spectral weight of states, which are about 2
eV above the Fermi energy, is observed. 4~ 44

As mentioned before, due to strong Coulomb interac-
tions several of the high-T compounds exhibit an en-
ergy gap at half filling of about 1.5 —2 eV. However, if
the systems are far from half Ailing the measured Fermi
volume does not correspond to the number of addi-
tional charge carriers introduced by doping but rather to
the total number of electrons in the system, in accordance
with the picture of independent quasiparticles and with
I uttinger's theorem. But the details of the transition
remain a puzzle, i.e. , from an insulating state without a
Fermi surface at half filling to a metal with a large Fermi
surface as a a consequence of doping.

In this paper we present a calculation of the single-
particle spectral densities of copper and oxygen holes in
the Emery model. We consider the system at half filling
and for low levels of hole doping and assume a para-
magnetic ground. state. The long-range antiferromag-
netic order present in a cuprate such as I a2 Sr Cu04
at half filling (x = 0) is rapidly destroyed by hole dop-
ing. For doping concentrations of 20%%up, the ground state
is paramagnetic although with strong short-range anti-
ferromagnetic correlations. The retarded Green's func-
tions will be determined by the projection technique solv-
ing the resulting equations of motion self-consistently.
The present approach extends and completes our previ-
ous study of the excitation spectrum, where we started.
from a copper spin system with long-range antiferromag-
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netic order and made a perturbational ansatz for the
ground-state wave function.

As before, we find an insulator at half filling, which
turns into a metal if the system is doped with holes.
For a hole concentration of nh ——1.25 a large Fermi
surface is obtained lying close to the experimental re-
sults. Additionally, the dispersion of the band crossing
the Fermi level coincid. es with angle-resolved photoemis-
sion data (ARPES). As a consequence of hole doping,
spectral weight is shifted from the upper Hubbard band
to states near the Fermi energy. The efFect is in agree-
ment with exact diagonalization studies. The accuracy
of our approach is tested for a 2 x 2 Cu02 cluster by
comparing the excitation spectrum to exact results.

We start with the introduction of the model Hamilto-
nian in Sec. II and continue by explaining the formal-
ism of the self-consistent projection technique (Sec. III).
The search for relevant projection operators is the deci-
sive step in the calculations. We discuss our choice in
detail in Sec. IV. Thereafter, the resulting spectra are
presented. . We begin with a comparison to the results
of exact diagonalization (Sec. V). Then we analyze in
Sec. VI the results for the Emery model, in particular
the peak structure, consider the shift of spectral weight
(Sec. VII) and finally the doping dependence of the Fermi
surface (Sec. VIII). Several details of the calculation are
presented in the Appendix.

II. THE MODEL

The Emery model describes the motion of holes in the
copper-oxygen planes of the high-T materials. Three
types of local states form the basis of the square lattice,
i.e. , a Cu Sd 2 y2 a 0 2p, and a 0 2p„orbital (see
Fig. 1). A hole can hop from an oxygen site to the near-
est copper orbitals via a matrix element tpg and. to the
nearest oxygen orbitals via the hopping term t„„. On a
copper site, two holes experience a Coulomb repulsion Ug
and on an oxygen site a repulsion Up. The orbital ener-
gies for Cu 3d 2 y2 and 2p ~y~

are denoted by ep and e„,
respectively. They are separated by the charge-transfer
energy 4 =e„—ep. Using a basis of oxygen orbitals, which
is diagonal with respect to oxygen-oxygen hopping tpp the

Hamiltonian of the Emery model can be written as

H = g Cmk Cmk~Cmk~ + Up Cmk&C
mko. mk

+eg) d„" dk~+Ug) d„,d„,
ka. k

+'&" ) (4 ~"..d..+ &-'.4.~-..)

e k = e„+2t„„fcos[k(ri+r2)]—cos[k(r2 —ri)]). (2)

The vectors r~, r~ are shown in Fig. 1. Due to the difFer-
ent orientations of the 0 2p (y) orbitals the sign of the
nearest-neighbor oxygen-oxygen hopping depends on the
direction. It is positive in the directions ri+r2, —(ri+r2),
and negative for r~ —r2, r2 —rz. The copper and oxygen
systems are connected by the hopping term tpp. The
corresponding phase factor P k, m= 1, 2, is of the form

„=—i2 ~ [sin(kr, ) + sin(kr2)].

The hopping matrix element tpg is negative for copper-
oxygen jumps within a unit cell, and positive for jumps
to neighboring cells.

General agreement has been achieved with respect to
the values of the paraIneter set in cuprate supercon-
ductors. Hybertsen et a/. for example, give the values
U& ——10.5 eV, Up ——4.0 eV, A=3.6 eV, tpQ —1 3 eV, and
tpp 0.65 eV. These results have been extracted from
band. -structure calculations.

It is useful to introduce a linear combination of oxygen
orbitals that possesses the same symmetry on a Cu04
plaquette as the tpp-matrix elements and that is called
the symmetric one:

The operator c k creates a hole in oxygen band m with
wave vector k and spin 0.. A copper hole is generated

by dk . The operator dkt is the Fourier transform of
the local operator dI„——dl„nl„(nl ——dI dI„), where I
is the ceB index. According to this definition drt creates
exclusively doubly occuPied Cu 3d 2 y2 orbitals. In the
same way the operator c k acts on oxygen sites.

The oxygen-oxygen hopping tpp leads to two tight-
binding bands m = 1, 2 with the dispersion relations

t x- t
pkcr 2 ~ ~~k mkcr',

Only this linear combination of oxygen states with wave
vector k couples to the copper system as can be seen from
Eq. (1).

III. PROJECTION TECHNIQUE

FIG. 1. Unit cell of the copper-oxygen plane: Two oxygen
2p orbitals (open circles) and one copper 3d orbital (black
dot) form the basis. The dotted lines connect the four oxygen
orbitals of a Cu04 plaquette.

The one-particle spectrum of holes in the Emery model
can be calculated by considering the corresponding re-
tarded Green's function. For two arbitrary operators
A. (k), A (k) it is defined as

G „(k,t) = —to(t)([A' (k, t), A„(k)]+).
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The expectation value denotes the thermal average over
a grand canonical ensemble: (A (k)At (k)) = der S„(k,(u) f(~),

(A) = —T--i'( -~ )A, Z = T--i'("-~ ).z
Here, Tr implies taking the trace of an operator, N is the
electron number operator, P = (kT) is an inverse tem-
perature, and p represents the chemical potential. The
time dependence of the operator At (k, t) is given by

(k t) it(FI PN) At—(k) it(JI g—sN)—

The function 8(t) equals 1 for t ) 0 and 0 for t ( 0.
After a Laplace transform the frequency-dependent

Green's function G (k, cu) may be written in the form

G „(k,(u) =
i

At (k) A„(k) i
. (8)

Thereby, the anticommutator has been absorbed in the
definition of the parentheses, i.e. , (At~B) = ([At, B]+).
Furthermore, the Liouvillean 8 is a superoperator, which
acts on an operator A according to l:A = [H, A]

Equation (8) is in a proper form to be evaluated by
the partitioning or projection technique. ' The basic
principle of this approach is to divide the total space of
the operators, i.e. , the Liouville space, into a relevant and
an irrelevant part. Only the relevant part is kept, while
the irrelevant part is neglected. Let us assume that the
relevant subspace is spanned by the set of operators 'R =
(Ai(k), ..., AM(k)). The following projection equation is
found for the retarded Green's function matrix G of the
operators (Ai(k), ..., AM (k)) if the coupling of G to the
irrelevant part of the Liouville space is omitted (see, for
example, Ref. 51):

G=X[~ X —F] X.
The susceptibility matrix X and the frequency matrix F
are de6ned as

X „(k)= (At (k) i A„(k)),

E „(k)= (At (k) i
ZA„(k)).

(10)

Provided that all static quantities appearing in X and F
are known, the dynamics within R is treated exactly.

From the retarded Green's functions G (k, w) the
corresponding spectral function S (k, w) is obtained by
using the familiar relation

1S „(k,~) = —— lim Im[G „(k,(u+ ~q)].
g-+0+

The spectral functions are the quantities we are finally
interested in, since they can be compared with measured
photoemission and inverse photoemission spectra of the
high-T materials. As will be shown in the next section,
the matrix elements of X and P depend upon static ex-
pectation values of the form (A (k)At (k)), i.e. , expec-
tation values within the relevant set 'R of the Liouville
space. On the other hand, these static expressions are
obtained by a frequency integration over the correspond-
ing spectral function

where f(w) = [e~( ~) + 1] i is the Fermi distribution.
Starting Rom an initial set of static expectation values
(A (k)At (k)) the frequency and susceptibility matri-
ces can be calculated. After solving the matrix equa-
tion (9) the retarded Green's functions G (k, u), the
spectral functions S „(k,~) aiid finally new values for
(A (k)A" (k)) are obtained. The described loop has to
be continued until self-consistency is achieved. Along
these lines accurate excitation spectra, as well as precise
ground-state expectation values are determined without
making an explicit ansatz for the ground-state wave func-
tion of the system. The self-consistent procedure forms
the main difference to our former usage of the projection
technique, where we applied degenerate perturbation
theory to construct a ground-state wave function with
anti ferromagnetic long-range order.

The projection equation (9) can also be derived by con-
sidering the equations of motion for the retarded Green's
functions. In that case one can identify the projection
onto a relevant subspace with a truncation of the hier-
archy of differential equations at a certain stage. Al-
though the projection method is more general, there are
indeed strong similarities to the conventional equation-of-
motion method. An advantage of the projection scheme
presented above is the inherent hermiticity of E and X
together with the positive definiteness of the suscepti-
bility matrix. If the commutators of operators with the
Hamiltonian are approximated directly, as often is done
in the equation-of-motion method, the mentioned charac-
teristics of the corresponding frequency and susceptibil-
ity matrices may be violated leading to spectral densities
with negative weight, for example.

IV. RELEVANT OPERATORS

For a successful application of the projection technique
the proper choice of the relevant subspace is essential.
In the case of holes in the Emery model a set of nine
operators A (k) for each k value turns out to be sufficient
for an accurate description of the excitation spectrum:

A (m, , k) = ct „,, A~(k) = d„,,

A„(m, k) = ct „,, A„—(k) = d„„
A. (k):~ pq& S(i

1
(k) = ) pq~ n(z q) „,N

At(k) g ) pq, tpq~g (q~+qm —k)g
t t

(14)

(18)

The operator S& is the Fourier transform of the local
spin-Hip operator on a copper site I, SI ——d& dI . The
corresponding quantity for the copper density operator
nl~ is denoted by np~. As before, m = 1, 2 denotes the
band index and N is the number of unit cells in the sys-
tem.
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The operators A„, Ag form the starting point for the
construction of the relevant subspace, since we are finally
interested in the spectral densities of copper and oxygen
holes. In principle, all other operators are found by con-
sidering the series ZAg, 8 Ag, 8 Ag, etc. , or ZA„, 2 A„,
8 A„, and so on. As we follow these lines we successively
create all operators which couple to the initial configura-
tions.

If the Liouville operator is applied to the creation op-
erators for copper and oxygen holes, the Coulomb inter-
actions Ud and U„ introduce new operators A& and Ap.

8 dk~ ——eg dk~ + 2tJ g pk~ + Ug dk„,

k c i g + 2ti& ~ i di g + +i c (2o)
—tAs described in the preceding section, the operators dk~,

c k„create exclusively doubly occupied copper and oxy-
gen sites, respectively. With the help of the operators
Ap Ap Ap and A&, single and double occupation can
be distinguished, thereby taking into account the eKect
of Coulomb repulsion from an atomic point of view. A
self-consistent solution within this operator space leads
to the well-known Hubbard I approach if the frequency
matrix is approximated in a certain way (for details see
the Appendix). The Hartree-Fock approximation is ob-
tained if we restrict ourselves to the minimal operator
space A~ and Ag.

In the Emery model, the projection onto single and
double occupancy is incapable of reproducing the essen-
tial features of its excitation spectrum. This fact is im-
mediately seen, if one considers the problem of two holes
on a single Cu04 plaquette, which can be solved exactly.
The simple model contains in a nutshell the basic in-
gredients of the strongly correlated three-band system.
One Ands the ground state to be a linear combination of
p„p„~), d~di)), and the singlet st~) = 2 2(ptd„—pid~)~),
where ~) denotes the vacuum. This singlet state is sepa-
rated from the higher-lying triplet state t t

~)
= 2 2 (@ldll+

ptidt) ~) by an energy difference of approximately St &/A.
The importance of the singlet formation for the low-lying
excitations in the Emery model was erst recognized by
Zhang and Rice and has been confirmed by exact diag-
onalization stud. ies of 2x 2 Cu02 cluster. For that rea-
son an acceptable set of relevant operators must at least
be capable of creating locally not only the states Jit~Jiit~),

dttdti~), but also pttdti~) and ptidt~).
Operators fulfilling the required properties are gener-

ated when 8 acts on dk ..

A, (k) = ) e '" ' pl„SI+,

A (k) = ).e pl nl„,X

(22)

where RI is a lattice vector pointing to cell I.
Figure 2 shows the two basic processes on a Cu04 pla-

quette connecting the configuration p~d~ with p~~d~. In
Fig. 2(a) the intermediate state is a doubly occupied
copper site, which can be created by the operator A&.
In contrast to that, two oxygen holes surround an empty
copper site in process 2(b). The corresponding configu-
ration is produced by the charge-transfer operator

(k) ) —kR.

N
(24)

This completes the choice of the relevant set 7Z, . The
transfer operator A& is generated by CA, as well as by
CA . In the limit Ud ~ oo the binding energy of the local
singlet is exclusively a consequence of including Az, since
double occupancy is completely suppressed in that case.
Note, that the oxygen operators c k„cannot replace Az.

—t

There is no singlet binding energy in the infinite Ud limit
if the charge-transfer operator is omitted from the rele-
vant set 'R.

The excitation spectra presented in the next sections
have been determined with the nine relevant operators
introduced above. One could certainly include additional
operators by considering higher powers of l.. But their
effect on the peak positions and intensities are expected
to be small on an energy scale of the order of a few tenths
of an electron volt, since our calculated spectra already
reproduce the exact results for a 2x 2 Cu02 cluster quite
accurately. One could also think of taking operators into
account generated by Cc k . However, due to the low

a)

metric oxygen hole with up or down spin, accompanied
by a density or spinQip excitation in the copper system.
On a Cu04 plaquette, the introduced operators generate
just the configurations we need to form local singlet and
triplet states, since

& dk, = (em+ Ua) dk, — d dg r' q2t {k+q,—q, )zpq»
qy qg

2tpd x t + 2tp(
pqi (k—q) ~+ 7 pqs (&—q)i

q q

(21)
The third term on the right-hand side of Eq. (21) is the
spin-Qip operator A, and the fourth the charge-density
operator A . Through a t„g hopping process the copper
hole dk on a doubly occupied. site turns into a sym-

b)

FIG. 2. Two processes, which provide for the formation
of singlet and triplet states of two holes (black dots) with
opposite spins on a Cu04 plaquette. In (a) a doubly occupied
copper site is created in the intermediate step. In (b) the
copper site remains unoccupied (open circle) after the first
copper-oxygen hopping process t~g.
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oxygen hole-occupation number and the relatively small
value of U&, the influence of the Coulomb repulsion within
oxygen sites is of slight importance. This point has been
confirmed by exact diagonalization studies.

After the choice of the relevant subspace the suscepti-
bility and &equency matrices X and F for the nine op-
erators have to be determined. Due to the restricted size
of the relevant set 'R their matrix elements also depend
upon static expectation values, which cannot be calcu-
lated self-consistently within this set. Consequently, one
is forced to decompose such static quantities into expec-
tation values, which fit into the set of relevant opera-
tors. In general, the Hartree-Fock approximation has
been used for this purpose, which consists in the replace-
ment

LxqIo. i l2q2o'g l3q3o.3 l4q4o'4 i i Lzql&I L~2o'2 ~ ~ l3q3o3 l4q4o'4

l~qzoz 14q4o4 (x I~2oc l3q3o'3

(25)

Assuming that there is spin and momentum uniformity
in the ground-state wave function, we put

Coulomb repulsion U. Besides the operators p&t and

d& —dkz the authors included also A, and A, for which
they solved the equations of motion. The excitation spec-
trum of the Emery model for Up -+ oo has been calculated
by Matsumoto et al. using a self-consistent equation of
motion method. They also took the spin-flip and charge-
density operators A, and A into account but in linear
combination with other operators. Their results are in
agreement with our findings in the infinite Ug limit.

V. COMPARISON WITH
EXACT DIAC ONALIZATIONS

Having described the self-consistent projection tech-
nique, we now present the calculated spectral densities
for various different cases. In order to demonstrate the
proper choice of the relevant space 'R and the validity
of the approximations made, we first compare the cal-
culated excitation spectra for small clusters with exact
results. Figures 3 and 4 show the spectral functions of
an oxygen and a copper hole, respectively, in a 2x2 Cu02
cluster with periodic boundary conditions at half filling

Additionally, we presuppose both spin directions to be
symmetric, which is characteristic for a paramagnetic
state:

(a)

(C C ~~
= ~~C C

LI. qI g l2q2gi i llqI g lqqqg (27)

To Coulomb matrix elements proportional to Ug a local
approximation is applied, i.e., we replace the expression
valid for the lattice by the corresponding term for a single
Cu04 plaquette. A local approximation is also used for a
certain group of t~p and susceptibility terms. For details
we refer the reader to the Appendix.

The expectation values of the frequency and suscep-
tibility matrices contain various combinations of phase
factors P which describe the coupling of a single Cu04
plaquette to the surrounding lattice. In most cases the
latter can be treated only approximately. However, their
omission would lead us back to the diagonalization of
a single Cu04 plaquette and therefore is not justified.
There are qualitative differences between the lattice and
the plaquette problems: On a Cu04 plaquette, the op-
erators A~ for doubly occupied oxygen sites can replace
the charge-transfer operator Aq, while in the lattice case,
there is no singlet binding energy for Up ~ oo if the
charge-transfer operator is ignored.

If one compares the present set of relevant operators
with the one for the photoemission spectra in Ref. 37
the additional inclusion of the charge-density operator
A is noticed. In the previous calculation a Neel-ordered
ground state had been assumed. Starting from that spin
order, an operator such as p~n„ is either equal to p~~ or
vanishes completely. Consequently, the charge-density
operator can be replaced by the bare creators of oxygen
holes in that case.

Similar operators have been used earlier by Fedro and
Sinha in their approach to the excitation spectrum
of the Anderson lattice model in the limit of infinite
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FIG. 3. Oxygen spectrum: (a) presents the exact pho-
toemission (full line) and inverse photoemission spectrum
(dashed line) for an oxygen hole in a 2 x 2 Cu02 cluster with
periodic boundary conditions IHorsch and Stephan (Ref. 54)I.
In (b) the self-consistent oxygen spectrum is shown integrated
over the k points of a 2x2 cluster. The Fermi energy (dashed
line) lies in the energy gap at half filling. Parameter values:
Uctl 6) U~: 3) E~~:0) C~d,:1) A:4) @lid Ah,:1
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0
0

II

II I

II I

II I

i
I

III

I

lI'Li l I l I l I

(nh = 1.0). The upper curves are the exact results as
computed by Horsch and Stephan for the parameter
values Ug ——6, Up: 3 A: 4& tpg

——1, and tpp 0 If
not stated otherwise, tpp is taken as the unit of energy.
Full lines show the photoemission and dashed lines the
inverse photoemission spectra. In the lower figures the
self-consistent spectral functions for the same parame-
ter set are presented. The intensities are given for one
spin direction and only one oxygen orbital. Note, that
in the exact results the total copper and oxygen spectral
weights are given.

At half filling, the Fermi energy indicated by the
dashed lines in Figs. 3 and 4 lies in the energy gap formed

by the upper Hubbard band at 5 and the Zhang-Rice
singlet states between 0.5 and 2.5. The corresponding
triplets appear at —1 and the lower Hubbard band near
—4. The dominating peak in the oxygen spectrum is
formed by nonbonding oxygen states. Therefore, this
maximum lies at 0, the value of the oxygen on-site energy
ep, and is absent in the copper spectrum. Furthermore,
a small oxygen satellite peak is found in the oxygen spec-
trum at —8 and a structure around —7 in Fig. 4 generated
by the charge-transfer operator Az. All these structures
have their counterparts in the exact spectra. They are
positioned nearly at the same energies and have similar
intensities.

A 2 x 2 cluster with periodic boundary conditions has
only three nonequivalent k points, i.e. , (0, 0), (a, 0), and
(m, vr), which describe the dispersion of the singlet band
as well as the upper Hubbard band. In the present ap-
proach the excitation energy of the singlet state at half
filling is highest at (vr, vr) and lowest at (0, 0) (see also
Figs. 9 and 10). This is in contrast to the results of di-
agonalizations of a 2 x 2 Cu02 cluster, where it is found
that the excitation energy is highest at (vr, 0) and low-
est at (vr, 7r) in the case of half filling. The origin of
this discrepancy is an inadequate treatment of the strong
short-range antiferromagnetic correlations in the present
approach as well as finite-size eKects in the diagonaliza-
tion studies. For symmetry reasons the singlet pole has
no weight at (0, 0) in the oxygen spectra. Similar state-
ments hold for the upper Hubbard band.

In Fig. 5 the spectral densities of oxygen (full line) and
copper (dashed line) are shown for the same parameter
values as in Figs. 3 and 4 but integrated over 1600 k
points. The diferent bands discussed before now form
smooth structures in the excitation spectrum.

A second test of the accuracy of the present approach
is to apply it to the plaquette problem, i.e., to a system
where four oxygen orbitals surround a central copper site.
As the operator set R, in Sec. IV comprises all relevant
hole configurations on a Cu04 plaquette the calculated
spectrum is expected to deviate only slightly from the
exact solution. In Table I we compare the positions of
the triplet, singlet, and upper Hubbard peak for the half-
filled ground state (nh = 1) with exact results. For each
case the left-hand column shows the self-consistent value
and the right-hand column the exact one. The charge-
transfer energy 4 is varied from 1 to 5, while the other
parameter values are kept fixed, i.e., Ug ——8, Up = 0,
t„„=0,and tpp: 1 The corresponding spectral weights
of the peaks are listed in Table II. They refer to a sym-
metric oxygen hole with up spin. Obviously, the present
approach reproduces the exact values quite accurately.
The largest deviations appear for L = 1, where the en-
ergy difference in the singlet positions amounts to 0.06
and the difference in spectral weight for the upper Hub-
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FIG. 4. Copper spectrum: Exact (a) and self-consistent
(b) copper spectrum of a 2x2 CuOq cluster. Same parameters
as in Fig. 3.

FIG. 5. Copper (dashed line) and oxygen spectrum (full
line) integrated over 1600 k points. Same parameters as in
Fig. 3.
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TABLE I. Positions of the triplet, singlet, and upper Hub-
bard peaks for the Cu04 plaquette at half 6lling: For each
peak the self-consistent values are listed in the left-hand col-
umn, the exact results in the right-hand one. Parameters are
Up: 8 Up: 0 Cpp: 0 tpd, :1 and A is varied from 1 to 5.
Energies are given in units of tpd.

Triplet Singlet Hubbard

1 —1.565 —1.561
3 —1.005 —1.000
5 —0.703 —0.701

1.253 1.313
1.497 1.515
1.809 1.813

2.541 2.561
3.996 4.000
5.701 5.701

bard peak to 0.013. As has been mentioned before, the
operators Ap—and A& act similarly on a Cu04 plaquette
and therefore only one of them has to be taken into ac-
count. The data in Tables I and II have been calculated
by including the operators A„, A~, A&, A„A, and A&

in the relevant set.
The comparison of the self-consistent excitation spec-

trum with exact results for a single Cu04 plaquette or a
2x2 Cu02 cluster illustrates the completeness of the rel-
evant set X, and the accuracy of the approximations for
static expectation values. In the next section the com-
position of the excitations and their dispersion relations
will be discussed in detail. The infiuence of hole doping
on the spectral weights of the singlet and upper Hubbard
band and on the volume of the Fermi surface are treated
in Sec. VII and VIII, respectively.

at higher energies, and its spectral weight has decreased.
The missing weight has been shifted to the singlet states
near the Fermi energy, which are occupied by holes. We
find their total intensity to be given by 0.40 instead of
0.25 the value consistent with the doping concentration.

In order to get more insight into the composition of the
difFerent quasiparticle peaks in Fig. 6 one can compare
the copper and oxygen spectra with the corresponding
spectral functions of the other operators in the relevant
set 'R. This is done in Fig. 7 for the half-filled case. Be-
sides the usual spectra for oxygen and copper holes (la-
beled p and d, respectively) also the intensity distribution
of the corresponding operators for double occupation (la-
beled p and d, respectively) are shown. By considering
these curves one may identify the small structure near
—8 as an oxygen satellite and the more pronounced peak
at —7 as the lower Hubbard band. Furthermore, spectral
functions are presented for the singlet and triplet opera-
tors, 2 i (A, —A, ) (labeled S) and 2 i (A,+A, ) (labeled
T), respectively. The triplet correlation function has a
single maximum at —0.5. As expected, the largest weight
of the singlet operator is concentrated above the triplets
near 2. Moreover, the singlet spectrum shows structures
close to —4 and —7, which are due to hybridization with

1.0

O.B

VI. ANALYSIS OF THE EXCITATION
SPECTRUM

In Fig. 6 the excitation spectra of copper (dashed lines)
and oxygen holes (full lines) are shown for the parameter
values Ug ——8,

' Up: 3 tpp: 0 5 tpd: 1 and 4 = 4. At
half filling [n(, = 1, Fig. 6(a)], the Fermi energy lies in the
energy gap near the lower edge of the upper Hubbard
band at 4.4. As in the preceding figures the singlet band
around 2 forms a separate structure, whereas the triplet
states near —0.5 merge into the continuum of pure oxygen
states because of the direct oxygen-oxygen hopping. In
comparison with Ref. 2 we used a slightly higher charge-
transfer energy D = 4, which leads to an energy gap of
1.5 in accordance with experimental values for cuprate
superconductors. When the system is doped with ad-
ditional holes the Fermi energy moves into the singlet
band as can be seen in Fig. 6(b), where the hole concen-
tration equals 1.25. The upper Hubbard band appears

TABLE II. Spectral weight of the triplet, singlet, and up-
per Hubbard peaks for a Cu04 plaquette at half filling: Same
parameters and notation as in Table I.
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Triplet

0.459 0.466
0.599 0.600
0.661 0.668

Singlet

0.304 0.314
0.266 0.264
0.224 0.223

Hubbard

0.202 0.189
0.101 0.100
0.055 0.055

FIG. 6. Copper (dashed lines) and oxygen spectra (full
lines) for the parameter set Up =8, U~ =3, t„„=0.5, t„d, = 1,
and A = 4. Figure (a) presents the spectra at half filling
(n(, = 1), figure (b) for a hole concentration nh ——1.25. Upon
doping, the Fermi energy (dotted lines) moves from the energy
gap in (a) into the singlet band in (b).
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FIG. 7. Spectral functions of relevant operators at half
filling (same parameters as in Fig. 6): The curves show from
top to bottom the spectral density for the operator creating
doubly occupied oxygen sites (labeled p), the oxygen spec-
trum of Fig. 6(a) (labeled p), the spectral distribution of the

—toperator di& (labeled d), the copper spectrum of Fig. 6(a)
(labeled d), and finally the spectral densities of the operators
2 2 (A, —A, ) (labeled S), 2 2 (A, + A, ) (labeled T) as well
as Aq (labeled Ai). The dashed line marks the position of the
Fermi energy.

other two-hole singlets on a Cu04 plaquette, i. e. , dtd„1)
and ptp„1). Indeed the maximum near —4 is dominatedt t

by the charge-transfer operator Az, which creates locally
the configuration p d . This can be seen in the lowest
curve.

In the present calculation the actual form of the ground
state is not determined. Instead ground-state expecta-
tion values are calculated self-consistently. Therefore we

1
)

must ensure that 2 2 (A, —A, ) indeed creates a singlet
state of the Zhang-Rice type. For that purpose we con-
sider the singlet and triplet correlation functions C, =
(sts) and Cq ——(ttt), where st =2 2 (ptdt~—p~dt~) and tt =

2 (p~d„+p„dt) as before. The singlet (triplet) expec-
1 t t t t

tation value C, (C&) can be determined self-consistently
from the relation

1
C.() = y).(lA. (q)+A. (q)j p .),

0.05—

0.0
1.0

I 1 I
i

1 I I i l I I

1.1 1.2

FIG. 8. The static expectation values of the singlet and
triplet operators |,and C&, respectively, as a function of hole
concentration nh, . Same parameters are in Fig. 6.

—10.0

—5.0

0 0

kcl

are of the Zhang-Rice singlet type.
Next the dispersion relations of the nine poles at half

filling are shown in Fig. 9. The parameters are the same
as in Fig. 6. For the singlet band around 2 and the upper
Hubbard band at 5 a free-particle-like dispersion is found
originating &om nearest-neighbor hopping. Compared
to tight-binding or Hartree-Fock solutions for the Emery
model the bandwidths are strongly reduced, namely, to
1.7 for the singlet band and to 1.1 in case of the upper
Hubbard band. The satellite bands beyond —3 are nearly
dispersionless.

In Fig. 9 the position of the Fermi energy, or more
precisely the position of the chemical potential is in the
energy gap. In order to obtain good convergence for a
Gnite set of k points, all calculations have been done at fi-
nite temperatures. In case of hole concentrations nh ) 1
a temperature of kT = 10 has been used. At half fill-

ing, the spectra have been computed for kT =0.1. Only
in that case is the chemical potential exactly situated
in the gap. If the temperature is lowered to kT = 10

where the minus sign refers to C, . The doping depen-
dence of these expectation values is illustrated in Fig. 8.
At half filling, the singlet as well as the triplet weight
in the ground-state wave function are very low. Upon
doping the Fermi energy moves as seen in Fig. 6. Simul-
taneously the singlet weight increases rapidly, roughly
proportional to the hole concentration. In contrast to
that the triplet weight in the ground-state remains small.
Thus we may conclude that the states around 2 in Fig. 6

5.0

10.0
(7T.7T) (0,0)

FIG. 9. Dispersion of the nine relevant poles along high
symmetry directions in the Brillouin zone at half filling. Pa-
rameters are the same as in Fig. 6. The dashed line denotes
the Fermi energy.
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the chemical potential is positioned in the upper Hub-
bard band due to the approximations used. However,
the deviation of the Fermi volume of holes from the to-
tal volume of the Brillouin zone is in the range of 1%.
On the other hand one can determine self-consistently
the hole concentration nh at kT = 10, for which
Fermi energy lies in the gap. One finds nh ——1.005. These
slight differences are considered to be an artifact of the
approximproximations for the static expectation values in the
&equency and susceptibility matrices.

The present calculation starting from a paramagnetic
grounround state shows explicitly that the energy gap and
the insulating behavior of the half-filled Emery model
is not caused by antiferromagnetic order but through
the formation of highly correlated Zhang-Rice singlet
states. Consequently, the energy gap separating the sin-
glet states from the upper Hubbard band is also present
when the long-range antiferromagnetic order is destroyed
due to hole doping. This result is in agreement with exact
diagonalization studies of small clusters.

Shown in Fig. 10 is the singlet band (full line) for the
parameter values Ug ——6, L =4 at a hole concentration of
nh ——1.25. The figure contains also the quantum Monte
Carlo (QMC) data (open squares) and exact diagonal-
ization results (solid squares) calculated by Dopf et aI.2o

The Fermi levels of the QMC calculation (4 x 4 Cu02
cluster) and of the exact diagonalization (2 x 2 Cu02
cluster) have been shifted to coincide with the present
one. As can be seen the three curves are in quanti-
tative agreement and show the form of dispersion ob-
served in experiments for high-temperature superconduc-
tors (HTSC) The bandwidth W, = 1.37 obtained
by the projection technique exceeds the diagonalization
value of W, = 1.21 and the QMC result of W, = 1.0.
However, the experimental width of the band crossing
th F rmi level in a HTSC such as Bi2Sr2CaCu208 fore ermi
a hole concentration of 2070 is somewhat smaller. T e
part of the band observed in photoemission appears in a
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FIG. 11. Copper (dashed line) and oxygen spectral func-
tions (full line) for the parameter values Uq = 100, U„= 0,
t = 0 t = 1 A = 3 at half filling. The Fermi energy isPP & P~
denoted by the dotted line.

range of 0.25 eV below the Fermi energy. In IPES the
unoccupied states close to the Fermi level are detected in

41a maximal distance of 0.65 eV.
Finally, we compare spectra calculated here for a para-

magnetic ground. -state with the previous ones, where
an antiferromagnetic ground state and Ug —+ oo had been
assumed. Figure 11 shows the spectral functions in the
large U~ limit (Ug = 100, A = 3) at half filling, which
should be compared with Fig. 4 in Ref. 37. Qualita-
tively, the antiferromagnetic order does not change the
k-integrated spectra very much. In both cases the singlet
and triplet peaks appear at similar excitation energies
near +1. On the other hand, the singlet dispersion is
completely diferent. The singlet band in Ref. 37 shows
antiferromagnetic symmetry, i.e. , the k points (0, 0) and
(vr, vr) are degenerate and lowest in energy. Furthermore,
the width of the singlet band R; =0.2 is very small. This
suggests that taking into account short-range antiferro-
magnetic correlations in the self-consistent approach will
reduce the singlet bandwidth to the experimental value.

1.0

2.0

2.5
(o,o) (o,o)

FIG. 10. Dispersion of the singlet pole (full line) for the
parameter values Ud. ——6, UP = 0, tPP =0 t =0 tg ——1, A=4
and a hole concentration of nh ——1.25. The open squares
present quantum Monte Carlo data for a 4 x 4 CuO& cluster
at an inverse temperature of P = 10. The solid squares are
exact diagonalization results for a 2 x 2 CuOq cluster [Dopf
et al. (Ref. 20)].

VII. SHIFT OF SPECTRAL %EIGHT

The influence of doping on the low-lying excited states
in cuprate superconductors is of crucial importance for
understanding their properties. We therefore study in
more detail the influence of additional holes on the sin-
glet states and the upper Hubbard band. For low values
of the charge-transfer energy 4 the changes are quite
pronounced as illustrated in Fig. 12. The dashed line
shows the singlet and upper Hubbard band in the copper
spectrum for L = 2, Ug ——6 at half filling, where the full
line is for nh ——1.25. Obviously, the upper Hubbard band
loses, upon hole doping, a considerable part of its inten-
sity while being shifted to higher energies. This spectral
weight is transferred to the singlet states, which roughly
keep their positions. Simultaneously the width of the
free-particle-like sing~. et band increases.

The amount of spectral weight transferred to the sin-
glet states depends upon the size of tzg. We measure
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FIG. 12. Transfer of spectral weight caused by hole dop-

ing: The copper spectrum is shown at half filling (dashed line)
and for a hole concentration of n/, = 1.25 (full line). Parame-
ters are Up:6 Up:0 tpp:0 tpp:1 and A=2. The dotted
line marks the position of the Fermi energy for nh, ——1.25.

0.7

0.6—

the weight of occupied singlet states I„-„g by integrating
the total spectral intensity of copper and oxygen holes
from the middle of the energy gap up to the Fermi level.
In Fig. 13 the full lines show I„„g as a function of hole
concentration nh for four diferent values of tpd. The re-
maining parameters Up ——8, Up: 0 2tpp: 0 25 and L = 4
are kept fixed. Without copper-oxygen hopping (t„d = 0),
I„.„g equals the concentration of added holes and grows as
in a normal semiconductor like the dashed curve. When
y 2t„g is increased from 0.5 (bottom curve) to 2 in steps
of 0.5, more and more spectral weight is transferred from
the upper Hubbard band to the states near the Fermi
energy and the curves become steeper. At a hole concen-
tration of nh ——1.25 our data can be compared with exact
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diagonalization results of Eskes et al. and reasonable
agreement is found.

The spectral weights of poles forming the singlet and
upper Hubbard band possess a pronounced k depen-
dence, which is presented in Fig. 14 along high symme-
try directions. In part (a) the total spectral weights (full
lines) of the singlet poles are shown as well as the cop-
per (dashed) and oxygen (dotted) contributions. The
same notation is used for the upper Hubbard band in
Fig. 14(b). In both figures, the thick lines correspond to
a hole concentration of np, ——1.25, whereas the thin lines
refer to the half-filled case. Parameters are the same as
in Fig. 6.

Consider first the total weights of poles in the upper
Hubbard band at half filling. In a system of independent
particles each k point can be occupied by two electrons
with opposite spin directions. Therefore, the total spec-
tral weight equals 2 over the whole Brillouin zone. In
distinction, the mean value of the pole strengths for the
upper Hubbard band gives 1 leading to an insulator at
half filling. Moreover, the pole strengths are low around
(0, 0) and show a maximum at (n, vr). This is mainly a
consequence of the oxygen contribution to the total spec-
tral weight, which vanishes at (0, 0). For symmetry rea-
sons there is no symmetric linear combination at this A:
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FIG. 13. Singlet weight I„.„g as a function of hole con-
centration np, . The copper-oxygen hopping tpz is increased
from ~2t~g = 0.5 (lowest curve) to v 2t„d, = 2 (highest curve)
in steps of 0.5, while the other parameters Ug ——8, U„= 0,
2tpp = 0.25, and A = 4 are kept fixed. Open squares present
exact data for a 2 x 2 Cu02 cluster (Ref. 13). The dashed
curve corresponds to the case tpd, ——0.

FIG. 14. Spectral weight of the singlet (a) and upper Hub-
bard poles (b) along high-symmetry directions in the Bril-
louin zone: Part (a) shows the total singlet pole strength (full
lines), the copper (dashed) and the oxygen (dotted) contribu-
tion both for nh = 1.0 (thin) and nh, = 1.25 (thick). The same
notation is used for the upper Hubbard poles in (b). Same
parameters as in Fig. 6.
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point, which implies vanishing hybridization between the
copper and oxygen system. When the system is doped
with 25% holes the total pole strengths decrease roughly
about 15% at all k points. The decrease affects the cop-
per as well as the oxygen contribution. Around (vr, m)
the change is maximal. As discussed before, this spectral
weight is transferred to the singlet states.

The pole strengths in the singlet band at half filling
lie around 0.8. They are lowest at (vr, vr) and reach their
maximum value in the middle of the diagonal between
(m, vr) and (o., o.). As for the upper Hubbard band the
oxygen spectral weight vanishes at (0, 0) for the same
reasons. Remarkable is the high oxygen contribution to
states near (vr, vr), since precisely these states are occu-
pied by holes at a doping concentration of 25%. There-
fore, the oxygen share of occupied singlets is about 75%,
whereas the total singlet band consists only to 50% out
of oxygen for the parameter values of Fig. 6. Upon dop-
ing the residues of the singlet poles increase. The effect
is most pronounced at (vr, vr). Consequently, the rise in
spectral weight of the singlet band counteracts the cor-
responding loss in the upper Hubbard band. Note, that
an increase in pole strength occurs for all k points, in
particular also for the unoccupied ones. It follows, that
there is also a transfer of weight to states near the Fermi
energy in the photoemission spectrum.

Van Veenendaal et al. investigated the doping de-
pendence of the Fermi level in BiqSr2Cai Y Cu20~
by studying its core-level spectrum in the range of 0 &
x & 1. Upon hole doping, i.e., by decreasing x kom
x = 1.0, where the compound is an insulator, to x = 0,
the Fermi energy moves into the valence band. The posi-
tion of the Fermi level as a function of doping was found
to be consistent with a rectangular density of states of
width 1 eV and one hole per state. These findings quali-
tatively agree with the singlet bandwidth of Fig. 10 and
the spectral weight of the singlet poles in Fig. 14(a).

VIII. FERMI SURFACE

teractions. Consequently, it can be derived directly from
the number of electrons per unit cell.

The proof of Luttinger's theorem is based on the ana-
lyticity of the electronic Green's function with respect to
the interaction strength. Therefore, the theorem does not
apply necessarily to a strongly correlated system. Here,
we have started &om a small cluster including the strong
correlations right &om the beginning and considered the
hybridization with the other clusters in the lattice as the
perturbation.

Figure 15 illustrates the Fermi surface for the param-
eters of Fig. 6 and a hole concentration of nh ——1.25.
It follows as a byproduct from the previous calculations.
The open circles denote k points occupied by holes in the
Brillouin zone. Although there is no Fermi surface at half
filling the volume for 25% doping is rather large. The ra-
tio between the Fermi volume of holes V~ and the volume
of the first Brillouin zone VBz is found to be 0.44 instead
of 0.125 corresponding to a small surface. However, the
value is smaller than 0.625 as required by Luttinger's
theorem. When the doping concentration is further in-
creased, the difference between the self-consistent result
and the Fermi volume of independent particles becomes
smaller and smaller. Consequently, there is a tendency
to restore the large Fermi sphere upon doping.

This point is further illustrated by Fig. 16. It shows the
ratio between V~ and VBz as a function of hole concen-
tration nI, for three different values of the charge-transfer
energy 4, while the remaining parameters Ug ——6, Up =0,
happ: 0 and 'tpp: 1 are kept fixed. The dashed line repre-
sents the curve for the large sphere, the dotted refers
to the small one. For A = 2 (full line on top) the
self-consistent Fermi volume reaches Luttinger's result at
nh ——1.4. If 4 is increased to 3, 4, where we find insu-
lators at half filling, the volume rises slower but shows
the same tendency. Therefore, one may state that for
nh ——1.25 and 4 = 3 a Fermi surface is obtained, which
lies already close to the large one.

After discussing the infIuence of doping on the spectral
weight of the singlet band we finally turn to the problem
of the Fermi surface. As it is well known a compound
such as La2 Sr Cu04 is a semiconductor for x = 0.
Upon doping one expects that the number of charge car-
riers equals the number of added holes. Several measure-
ments of transport quantities such as electrical conduc-
tivity, Hall coefficient, etc. , support this point of view.
The Hall carrier density in La~ Sr Cu04, for example,
increases proportional to the doping concentration.
Moreover, the infrared conductivity of La2Cu04 shows a
gap below 2 eU. Upon doping the Drude weight increases
proportional to the number of added holes. ' Conse-
quently, also the volume of the Fermi sphere should corre-
spond to the number of added holes. On the other hand,
ARPES experiments ' on Bi2Sr2CaCu208 clearly re-
veal a large Fermi surface enclosing a volume consistent
in size with the total number of valence electrons in the
system. This result is in agreement with Luttinger s
theorem stating that the Fermi volume of a noninter-
acting electron system is not affected by many-particle in-
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FIG. 15. Fermi surface for a hole concentration of nh, ——

1.25 and parameters as in Fig. 6: Open circles denote k points
occupied by holes.
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with ARPES experiments on Bi2Sr2CaCu208, although
the measured width of the band crossing the Fermi level is
smaller by a factor of order 2. At this hole concentration
the calculated Fermi surface lies close to the experimen-
tal data, which reveal a large volume consistent in size
with Luttinger's theorem.

The good agreement of the present results with exact
diagonalizations of small clusters and quantum Monte
Carlo studies suggests that the approximations for the
static expectation values of the frequency and suscepti-
bility matrix are well justified. Furthermore, the clus-
ter calculations support our choice of relevant operators.
They form the minimal basis for the description of single-
particle excitations in the Emery model.
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APPENDIX: FREQUENCY
AND SUSCEPTIBILITY MATRICES

Ix. CONCLUSION

It has been demonstrated that the excitation spec-
trum of the Emery model can be computed accurately
by solving self-consistently the projection equations (9)
of the relevant operator set 'R. Within that approach the
parameters for the Coulomb repulsion Up, the oxygen-
oxygen hopping t„„or the charge-transfer energy 4 can
be freely varied.

The system exhibits an energy gap between the sin-
glet states of the Zhang-Rice type and the upper Hub-
bard band. At parameter values realistic for the cuprate
materials an insulator is formed in case of half filling.
Upon hole doping the Fermi energy moves into the sin-
glet band, which leads to an increase in spectral weight
of all singlet states. For a doping concentration of 20%
the free-particle-like dispersion of the singlet band agrees

I

The frequency and susceptibility matrix elements,
which will be given in the following, are functions of local
occupation numbers n

n „=—) (A (q)At(q)).
1

The indices x and y are elements of the set
(p, d, d, s, c, t, d', p} replacing the corresponding opera-

tors pt~„, d~tt, d i, A, (q), A, (q), Ai (q) and d~i

~P~q~ dzt, as well as pzi ——P P~qc~qi& respec-
tively. As mentioned in Sec. III, expectation values of the
form (A (q)At(q)) can be determined self-consistently
from the corresponding spectral function S„(q,w) using
Eq. (13). In addition, we introduce here the following
abbreviations:

n„= —) n (q), nd = —) nag(q),

1 1n„'„= —) e~~P n~g(q), n„'„= —) e ~P P„* n „(q),
mq

W„-„=n„-„+n~„—n„&, Wg—„——ngp + n„—g —n„g,

W„„—= —) e~~(n~~(q) + n— (q) —n ~(q) }.
mq

Thereby, the index m = &, 2 refers to an oxygen creation operator c~ qt, and m replaces c~ According to this
convention the static but q-dependent expectation value n —(q), for example, stands for n —(q) = (c" c ). The
constants n„and nz are the local occupation numbers of oxygen and copper sites, respectively, for one spin direction.
Finally it is convenient to define the two functions ni, = P ~P i, ~2 and. Pi, = g
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After the introduction of the notation for the occupation numbers we proceed with the equations for susceptibility
matrix elements: X „(k) = {At (k)

~
A„(k)). As before, the letters d, s, c, and t stand for the operators d&„, A, (k),

A, (k), and A&(k), respectively. In case of oxygen operators c &, c~
& (indices p and p, respectively) two bands are

to be distinguished by the indices m, n = 1,2.
For copper and oxygen operators with singly and doubly occupancy we B.nd the expressions

X„„(m,n, k) = h, Xgg(k) = 1, Xdp(m, k) = 0, Xpg(m, k) = 0,

X„—„(m, n, k) =b n„, X„— (l) =nd, X„—d(m, l) =0, X—„(m, l) =0,
X„p(m, n, k) = h n„, X&&(k) = ng, X&„(m,k) = 0, X„—d(m, k) = 0.

The susceptibility matrix elements of the spin-flip operator A, (k) are of the form

X,p(m, k) = 0, X,g(k) = —ngp, X.p(m, k) = I (k), X.—„(k) = n„„, —X.—.(k) = n „+nd —n

For the charge density operator A, (k) we obtain the equations

Xcs(k) = nsp&X p(m, k) = P" „ng, X,g(k) = 0, X,—„(k) = 0,

X,„(m, k) =-P* znpnq —I (k), X, (k) = ni, nz+ I (k) .

The list of matrix elements is completed by the expressions for the transfer operator Aq(q):

Xip (m, k) = P* „ndp, X&&(k) = 0, X,z (k) = nz&, X&p (m, k) = P* „ndpnp + I (k),

Xg, (k) = —ng, —npg, Xg~(k) = ~i,ngngp+np, —I (k), Xgg(k) = npp —np, +I (k).
The functions I (k), ...,I (k) represent expressions involving double integrations over the reciprocal space. Their

definitions will be given following the list of frequency matrix elements in subsection 3.

2. Et equency mats'ix

The frequency matrix elements are defined as F „(k) = {At (k) ~
ZA&(k)). We start with the matrix elements for

the operators Ap(m, i k), Ag(k), Ap(m, k), and A&(k):

F„„(m,n, k) = b (e i, + U„n„), Egg(k) = eg+ Udng, Fgp(m, k) = 2tpgg* i„
Fp~(m, k) = F&„(m, k), F„„(m,n, k) =—h (e i, + Up)np, F&&(k) = (eg+ Ud)nd, ,

E&„(m, k) = 2tpgg' &ng, F&&(k) = (e~+ Ug)nd, + 2tpgW„&, F„g(m, k) = 2tp—gg~knp,

F„&(m, k) = F—„*—(m, k), F&„(m, k) = 2tpg—g* i,npnd, —6tpgI (k),

E„p(m, n, k) = b [(2ep+Up)np+e i,n + 2 (W„„+2tp~Wqp—) —3I (k)].

If the expectation values W &, YVES&,lV„& and the integrals I, I are neglected in the matrix elements Ez—„, E &,p8)
F~, and F&& the well-known Hubbard I approximation for a three-band model is recovered. The corresponding
susceptibility matrix of the operators Ap AQ Ap and A& is exact and remains unchanged. Inclusion of the terms R' d,pKL1 ~

W~p, and Wpp in the frequency matrix leads to the so-called POMF (projection operator mean field) approximation,
discussed in Ref. 36. Finally the full projection onto the operator space of singly and doubly occupancy creates the
additional terms I and I

We proceed by listing the frequency matrix elements of the spinflip operator A, (k):

F,„(m, k) = 2tpgg* ~X,&(k) + UpX, p (m, k), F,z(k) = e&X,&(k) + UdX, ~(k),

F,„(m, k) = U„X,p(—m, k) —2tp~[$* znpnqp + I (k)] + I (k),

F,&(k) = (eg+ Ug)X, d(k) —2tpg[X„(k) —np, ],

F„(k) = Upn„X„(k) + n~pn„'& + 2tpd[n, p + n~, —ndnpg —ngp(1 —nod )] + I (k).
The charge-density operator A (k) is connected with the other relevant operators by the following frequency terms:

F,p(m, k) = e i,X „(m, k) + U„X,„(m, k), F &(k) = 2tpg[ng& + X,(k) —X„(k)],
E„(k) = Upn„X, (k)+Pkn& + 2tpg(2npq n~p)+I —(k), E,d(k) = 2tpdni, ng,

F„(k) = U„n„X„(k)—n& np~ + 2tpd[n, g n~, —nqp —ni, ndnp~+I (k—)],
F,„(m, k) = e~i,P' i,npn—g+UpX, p(m, k)+2tpgI (k) —I (k).
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Finally, the corresponding expression for the charge-transfer operator Aq(k) are presented:

P~d(k) = 2trd ) P gA;„(m, k) + UdX, „(k—),
m

Eq„(m—, k) = e~gp* &n„nd~ + U„X,„(m-, k) + I~~(k) —2t„dI~ (k),

F~d(k) = (ed + Ud)X~d(k) + 2t„d(nkndnd„+ 2n„q + nd, ) —2tzdI (k),

Eq, (k) = (2n„U„—ed)Xq, (k) —Ud(n„d n„—d) —n'dna —n„'„n„d

+2t„d(2n„, n„—+ndd) + I~~ (k) —2t„dIs(k),

Fq, (k) = (2n„U„—ed) Xq, (k) —Udn„d + pgn„dnd + nkn„'dnd + n„dn„'„+ n„'dn„„

2tpd(ny ~kndndd') I (k) + 2tpdI (k)

E„(k) = (2 „U„d)X— (k) —Ud(n „„+—„-,) + pg~n„d~'+ g d„„'d+2 „„„'„
+2t„d[o.gndp(ndd n„„)—+ 3n„, —n, d ] + I (k) —2t~dI (k).

8. Integrals I~ (k), ..., I~~(k)

In the susceptibility and frequency matrix fourteen functions I (k), ...,I (k) appear containing double integrations
in reciprocal space. Their de6nitions are as follows:

I' (k) = —) e ~D (k-q), I (k) = —) P* ~D (k —q),
q

Is(k) = —) e~D (k —q), I (k) = —) (t„' D (k —q)[b „—2n „(q)],
nq

Is (k) = —) e ~p* ~D (q —k), I (k) = —) e ~[/ ~~ D~(k —q),
q mq

I' (k) = —) {n-.(q)D' (q-k)+2&* ~ne(q)D' (q-k)+[+*,-2n-. (q)]D' (q —k))
q

Is(k) = —) nd„(q) D (q —k), I (k) = —) n~D (q —k),
q q

I'0(k) = —) P„* (b „—2n „)[e ~D (q —k) + D' (q —k)],
-q

I"(k) = —) p ~n d(q)[e ~D (q —k) +D' (q —k)],
mq

I'2(k) = —) n~[l —nss(q)]D (q —k),

I's(k) = —) P ~P„* [h „—2n „(q)][e ~D (q —k)+D' (q —k)],
mnq

I"(k) = —) (i~~-n»(q)]D'(q-k) + n.d (q)D'(q-k)}.

Thereby, the following abbreviations for functions including a single integration in reciprocal space have been used:

D' (k) = —) n (q)n (q+ k), D (k) = —) n d(q)nd (q+ k),
q

( ) ) ndd(q)[~ —ndd('q+ k)] D (k) = ) 4' gn d('q+ k)
q

D (k) = —) (e ~ —e (~+g))p n d(q+ k), D (k) = —) n~ndd(q+ k),
q q

D (k) = —) p* p ( +),) dd(q+ k), D (k) = —) d (q+ k),
q

D'(k) = —) y „+„,y„*,n „(q), D"(k) = —) p,ndd(q+k).
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A pprozi mati ons

In many frequency and susceptibility matrix elements,
expectation values of four fermion operators appear,
which cannot be determined within the self-consistent
scheme. These expressions are reduced to expectation
values of two fermion operators by applying the Hartree-
Fock approximation [see Eq. (25)]. In particular, all ex-
pressions generated by the oxygen-oxygen hopping tpp
have been evaluated in that way. Furthermore, in matrix
elements of the oxygen operators Ap and Ap—exclusively
the Hartree-Fock approximation has been used.

The strong Coulomb terms proportional to Up require
approximations in the frequency matrix elements Eq„
E«, and Eqq. These static expressions, which are valid
for the lattice, have been replaced by the corresponding
terms for a single Cu04 plaquette, which can be calcu-
lated self-consistently. Considering the local character of
the Coulomb interaction in the Emery model this treat-
ment is well justified.

A local approximation has also been chosen for several

lpga terms and for some expressions in the susceptibil-
ity matrix. This refers to the terms up~, ng» nd —

n&&
in the susceptibility matrix elements Xzz, X&„X„,re-
spectively, and to the tpd terms nd, fl p 2A p A p +
AQQ Ap 3App n p, np, in the frequency matrix ele-
ments E», E~&, E&» F«, Ezz, E~» respectively. The corre-
sponding expectation values have been reduced to self-
consistent occupation numbers by replacing a phase fac-
tor ~P z~ in the integrals for the lattice by its mean value
1. The omission of the phase factor, which corresponds
to a local approximation of the expectation value, turns
out to be a better approximation in these cases than the
Hartree-Fock decoupling.

The validity of these approximations has been tested
on a single Cu04 plaquette. Additionally, one can com-
pare the resulting spectra with exact diagonalizations of
a 2 x 2 CuOz cluster (see Sec. V). In both cases the chosen
approximations appear to be very reliable.
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