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Mean-field theory for underdamped Josephson-junction arrays with an ofFset voltage
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We study a model Hamiltonian for superconductivity in underdamped Josephson-junction arrays in

the presence of an o6'set voltage between the array and the substrate. We develop an approximate zero-
temperature (T =0) phase diagram as a function of Josephson coupling, charging energy, and oA'set volt-

age, using a simple Hartree-type mean-field approximation. With diagonal charging energy, the calcu-
lated phase diagram is periodic in o6'set voltage, in agreement with previous results. At a special value

of this voltage such that states with n and n+1 Cooper pairs per gain are degenerate, only an
infinitesimal Josephson coupling is needed to establish long-range phase coherence in this approxima-
tion. With both diagonal and nearest-neighbor charging energies, the T =0 phase diagram has two types
of insulating lobes with diferent kinds of charge order, and two types of superconducting regions. One
of these is a "supersolid" in which long-range phase coherence coexists with a frozen charge-density
wave. We brieAy discuss connections to previous calculations, and possible relevance to experiments.

I. INTRODUCTION

Josephson-junction arrays have been the subject of
considerable recent research. ' Such arrays consist of su-
perconducting (S) grains embedded in a nonsupercon-
ducting host and coupled together by the Josephson effect
or by proximity tunneling. They exhibit a large variety of
unusual behavior, both static and dynamic, in the pres-
ence of applied dc and ac currents and perpendicular
magnetic fields. In general, the nonsuperconducting
component can be a normal metal (X) or an insulating
layer (I). While most experimental work has been car-
ried out on the former, ' superconductor-insulator arrays
exhibit a number of new phenomena. For example, the
dynamical properties of such arrays are characterized by
a McCumber-Stewart parameter )t3)) 1, corresponding to
coupled highly underdamped. Josephson junctions. Un-
der such conditions, one observes hysteresis and resis-
tance steps in the I-V characteristics, ' which are repro-
duced by calculations. Vortices in such arrays have
been reported to move ballistically —that is, they may
behave like massive objects which can maintain their
motion, once initiated, even in an external driving
current. '

When the S grains are suKciently small, the behavior
of an array is modified by quantum effects. These effects
arise from the noncommutativity of the Cooper pair
number operator and the phase of the superconducting
wave function. Such effects were discussed by Ander-
son, Abeles, and Simanek, ' and have since been studied
by a number of authors. " ' For sufficiently small
grains, quantum phase fluctuations lead to the suppres-
sion of superconductivity entirely. " ' The array is in-
stead in an insulating state at T =0, in which there is no
phase ordering and the average number of Cooper pairs
on each grain is fixed. The interactions between the
charges themselves can be logarithmic in the insulating
state. The phase transition has also been found to be

significantly affected by dissipative tunneling of single
electrons. '

In this paper, we discuss the zero-temperature
behavior of an underdamped array in the presence of an
additional control parameter: the offset voltage between
the array and a substrate plane. Such an offset voltage
behaves like a chemical potential for injection of Cooper
pairs into the array. As has been discussed by several
workers, ' it can have a complex effect on the phase di-
agram of the array. Depending on the range of the
charging interaction, one can even see evidence of
"charge frustration" analogous to the better-known
effects of a transverse magnetic Geld in an overdamped
array.

Our contribution here is to describe a simple mean-
field approximation for the phase diagram of a
superconductor-insulator-superconductor array in the
presence of an offset voltage. The approximation is a
straightforward extension of previous approaches at zero
offset voltage. ' ' ' lt is readily tractable, yet leads to a
complex phase diagram with a rich variety of possible
phases. In several instances, it agrees well with previous
calculations based on exact statements about the Hamil-
tonian. In part of the phase diagram, we find a "superso-
lid" ' ' phase in which superconducting order is found
to coexist with a frozen charge-density wave. While such
a supersolid phase has been reported previously in a simi-
lar model, it was found only in a narrow sliver of pa-
rameter space and only with longer-range interactions
than ours.

We turn now to the body of the paper. In Sec. II, we
describe the model Hamiltonian, as well as the simple ap-
proximation used to treat it. Section III presents calcu-
lated phase diagrams at T =0 for several ranges of pa-
rameters. Finally, in Sec. IV, we compare our results to
previous calculations, describe possible extensions, and
discuss the relevance of the results to possible experi-
ments on artificially synthesized arrays as well as to
granular systems.
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II. MODEL HAMILTONIAN
AND MEAN-FIELD APPROXIMATION

+ —,
' g J;~[1—cos(P; —P )],

where the sums run over all grains i and j. The first sum-
mation represents the Coulomb interaction among the
Cooper pairs on the various superconducting islands.
The second term is the potential energy generated when
the superconducting array is held at a potential V with
respect to the common ground. Finally, the last term
represents the energy of Josephson coupling between
neighboring grains. We assume a periodic lattice of iden-
tical grains. This implies that J; and U; are functions
only of the separation ~R, —R

~
between grains i and j.

The first summation can also be written in the form

—,'gn;U; n =
—,
'. g V, C;~V. ,

lJ lJ

(2)

where V; is the potential on the ith superconducting is-
land, and C;. is the capacitance matrix. This makes clear
that U; =4e (C ');, i.e., the matrix Uis proportional to
the inverse capacitance matrix.

To within a constant factor, the Hamiltonian (1) can
also be written in the form

H= ,' g(n; n) U;——.(n. n)—
EJ

+ —,
' g J; [1—cos(P; —P~)], (3)

where n is a constant which is determined by the offset
potential V. It is readily established that forms (1) and (3)
differ only by the constant term —,'g;~. n U, n. Hencefor"th,
we use the form (3), which is more convenient for calcula-

We consider a two-dimensional array of N supercon-
ducting grains separated from a substrate by a thin insu-
lating layer. The ith grain is described by a supercon-
ducting order parameter f;=~/;~e ' and contains n;

i/, .

Cooper pairs of charge 2e. The ith and jth grains are
coupled by a Josephson junction with critical current
I,.;.:—2eJ; /A.

We approximate the behavior of the array by the fol-
1owing Hamiltonian:

H = ,' g U—,J n; n~ +2e V g n;

tion. We also assume that the coupling energy J; van-
ishes except for nearest-neighbor grains, for which it has
value J; and that the energy U," vanishes except for diag-
onal and nearest-neighbor contributions, which have
values Up and U&, respectively.

In order to motivate the mean-field approximation, we
consider the types of order which can be expected from
this model Hamiltonian. If both Up and U& ale zero the
array will undergo a transition to a state of long-range
phase coherence below a critical temperature T, . ' For
a square array, it is known that T, =0.95J/kz, and the
transition is in the Kosterlitz-Thouless universality
class. The low-temperature phase is superconducting
but has a novel type of long-range phase coherence in
which the phase correlation functions decay algebraical-
ly. When Up and U, are finite, the phase-ordering transi-
tion temperature is reduced, reaching zero at critical
values of Up and U&. At larger values of these parame-
ters, one expects some kind of charge ordered state, the
exact nature of which will depend on Up, U&, and n.

There are various ways to develop a mean-field approx-
imation for this Hamiltonian. One approach is to decou-
ple the terms which involve more than one grain as fol-
lows:

(n; —n)(n n)= —,'(n;—n)((n )—n)—

+ —,'(( n) n)(n—
~
—n ),

cos( P; —P ) = —,
' (cosP; ( cosP . ) + ( cosP; )cosP

+sing; ( sing. ) + ( sing, . )sing. ) .

In effect, this approximation converts the many-body
Hamiltonian H into a sum of single-body Hamiltonians.
The values of the canonical averages (n; ), (cosP; ) and
(sing, . )are then determined self-consistently by the fol-
lowing procedure. First, one makes an initial guess for
the values of these quantities. Next, given these initial
guesses, one calculates the eigenstates of HMF, which is
the approximation to H resulting from the substitutions
(4) and (5). Since HM„ is a sum of single-particle opera-
tors, each such eigenstate is a product of single-particle
eigenstates g;(P; ), which are solutions to the appropriate
single-particle Schrodinger equation

Uo(n; n) +U, (n—, n) g'((ni ). n) —g'J(—(c—os/ )cosP;+(singj )sing;) if(P;)=Ef (P, ),
J J

(6)

where the primes indicate that sums are to be carried out
over all nearest neighbors to the site i. Equation (6) can
be expressed as an ordinary differential equation with the
help of the representation n; = —i(did/;). This expres-
sion follows from the canonical conjugacy of the charge
operator n; and the phase P;, which implies the commu-

tation relation [n;, P; ]= i."—
In seeking self-consistent solutions to Eq. (6), we have

made the assumption that (sing, ) =0, i.e., that the phase
order parameters of all the grains are parallel, although
we do allow for the possibility that the amplitudes of
these order parameters are unequal on different sites.
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With this assumption, and writing

P, (P, ) =exp(ir/, x, )f;(x, ),. (7)

+exp( /3E )(0—' ~cosP;~4 )

(cosP, ) =
g exp( /3E )—

(9)

where /3=1/k~T, '0 denotes the product of the single-
particle wave-function and E is the corresponding ener-

gy eigenvalue, which is the sum of single-particle eigen-
values. Because of the Hartree approximation, these
averages simplify to involve sums over only single-
particle states on the ith grain. Once the averages are
calculated, they are substituted back into the single-
particle Schrodinger equations (6), and the process is re-
peated until convergence is obtained.

In the present paper, we will be concerned primarily
with the phase diagram at T=O. The self-consistency
procedure is then considerably simplified, since only the
ground-state wave functions enter into the sums in (9).
The required equations reduce to

with x; —2P; and t);=n —(Ut/U&&)g'((n ) .—n), we can
express the Schrodinger equation in the form of
Mathieu's equation for f,

f,"(x,)+(e, +2q, cos2x;)f;(x;)=0,

where e, =2E; /Uo and q, =g' J( cosP ) /Uo. Note that
since P; is the phase of the superconducting order param-
eter on the ith site, the solutions f;(P;) must be 2~
periodic. This means f, (x;+m. )=exp(ig, ~)f(x;).

Cxiven the single-particle solutions to Eq. (6), the values
of (n, )an. d (cosP; ) at temperature T can be calculated
self-consistently from the relation:

y exp( PE )( ql—
~ n; ~

4 )

(n, )=
+exp( —PE )

problem has been previously treated by a number of
workers. ' ' ' For any given values of n and e, the
self-consistently determined value of ( cosP; ), in the
ground state is found to be independent of i—that is, the
ground state is translationally invariant. As a decreases,
(cosP) also diminishes, reaching zero at a critical value
a, (n). At this point phase fluctuations induced by the
charging energy become strong enough to destroy super-
conducting order. Figure 1 shows (cosP) as a function
of a for several values of n. The dependence of e, on n is
shown in Fig. 2.

The behavior shown in Fig. 2 is readily understood.
The Hamiltonian (1) is periodic in n with period unity.
This implies that the phase diagram should be similarly
periodic, repeating at each integer number of Cooper
pairs. This periodicity has previously been noted by
Bruder, Fazio, and Schon on the basis of general con-
sideration. Fisher et al. also obtained such a periodici-
ty in the context of a somewhat di6'erent model involving
bosons with a short-range repulsive interaction on a
periodic lattice. Besides this periodicity, the symmetry of
the Hamiltonian implies that a, (n)=a, (1 n), a sym--

metry which is also rejected in Fig. 2. The critical value
a, has its minimum value at n =

—,', where a, =0. Thus,
at n =

—,', a superconducting ordered state can be estab-
lished with even an infinitesimal Josephson coupling, at
least within the mean-field approximation.

To better understand the behavior near half-integer
n, we note that the "interaction term, " H;„,= —2J(cosg )cosP;, behaves like a perturbation on the
"kinetic energy term" Ho= —,

' Uo[ —(id/dP) —n ] in the
Schrodinger equation for f;(P; ). In the absence of this
perturbation, the states with n and n + 1 pairs are degen-
erate at n =n+ —,

' (n = integer), both representing the
ground state of the unperturbed Hamiltonian (cf. Fig.
3(a), where this degeneracy is depicted for the special
case n = —,'). The interaction term breaks this degeneracy
and produces phase ordering. We may estimate (cosP)

( cosp; ),= ( 4, ~
cosp, ~

ql, ),
(n, ).=(q. ~n, ~e. ), (10)

where the subscript 0 refers to the ground state.

III. RESULTS

0

T = 0

We have carried out calculations for a bipartite lattice
(i.e., one which can be decomposed into two sublattices),
assuming only nearest-neighbor couplings J;, which we
denote J. We seek self-consistent solutions in which ( n; )
and (cosP;) can each have different values on the two
sublattices. The resulting phase diagram depends on the
parameters n, Uo, U&, and J. Since only the ratios of the
last three parameters enter nontrivially, we introduce di-
mensionless parameters e =zJ /Uo and y =z U& /Uo,
where z is the number of nearest neighbors. Thermal
efFects are described in terms of a scaled temperature
k~ T/Uo.

We begin by considering the case of only diagonal
charging energy, i.e., y =0. In the special case n =0, this

%3-

m Q, 50
O

n = 0

0.0
n—= z J//U,

0.5

FIG. 1. Plot of the phase order parameter (cosP) as a func-
tion of the parameter a =zJ/Uo at temperature T =0, for
several values of the average Cooper pair number n, as calculat-
ed in the mean-field approximation. The nearest-neighbor
charging energy U& =0 in this calculation.
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FIG. 2. Plot of the critical charging-energy parameter a, as a
function of n for the case of diagonal charging energy only, as
calculated in the mean-field approximation.
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in the mean-field approximation at Gnite temperatures,
including only these two lowest states in the canonical
average. The resulting self-consistent equation for
( cosP ) at half-integer n is

2 DUO(cosP) = tanh (cosP)
4 —a

Figure 3(b) shows the temperature-dependent phase or-
der parameter ( cosP ) resulting from (11). For
k~T&(Uc, (cosP) goes to zero at a=2k~T/Uo, or
T=zJ /(2k~ ). Thus, for any finite J, ( cosP ) remains
finite up to this temperature, irrespective of the value of
the charging energy Uo. The physics behind this
behavior is easily understood. Precisely at half-integer n,
the two degenerate states are split by the phase-coupling
perturbation into two states, in each of which the phase
order parameter is nonzero. The energy splitting is of or-
der zJ/2. As long as k~ T is smaller than this value, the
lower state is predominantly occupied, leading to a
nonzero phase order parameter. When k~T exceeds this
value, (cosP) drops to zero.

We turn next to the mean-field phase diagram when
the off-diagonal charging term @&0. Figures 4 and 5
show the zero-temperature mean-field phase diagram for
two values of y in the range 0&y & 1. The phase dia-
gram is considerably more complex than for @=0. At
small values of a, the system is in a nonsuperconducting
phase, with (cosP; ) =0, but we can identify two different
types of charge structure. Near integer n, we have a "fer-
rornagnetic" charge ordering, such that (n; ) equals the
same integer on each grain. Near half-integer n, the
charge ordering is "antiferromagnetic, " provided the lat-
tice is bipartite. In this case, (n; ) takes on two distinct
integer values on the two sublattices, say ( n; ) =n and
( n; ) = n + 1, with n integer. These phases are "in-
compressible" in the sense that the total number of Coop-
er pairs on the lattice does not vary continuously with n,
but rather jumps discontinuously from one value to
another at the phase boundary. These phases are thus
"Mott insulators*' as previously noted by Fazio and
Schon. As the value of y increases, Figs. 4 and 5 show
that the antiferromagnetic lobe expands at the expense of
the ferromagnetic lobes. This is to be expected, as no an-
tiferromagnetic lobe exists when y =0.

The mean-Geld approximation predicts that supercon-
ducting phase, which occurs at large cz, also coexists with
two difT'erent types of charge structure, dependent on the
value of n. Near n =—,

' we find an antiferromagnetic

1.0 )

rn Q. 50

3
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T = 0

superconducting (SC).
no charge order (NCO)

/
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I

/

p
SC;g

0.0
0.00

t
a,=2(ksT/Up) 0.05

0(—= zJ/U,
FIG. 3. (a} Plot of the ground-state energy Eo as a function

of n for the case of diagonal charging energy only, and zero
Josephson-coupling energy J. The dashed lines indicate how
the doubly-degenerate ground-state energy is split near n =

2 in
the presence of a small Josephson energy J. (b} Plot of the
phase order parameter (cosP) as a function of temperature at
n = 2, for small values of a =zJ/Uo. The phase order parame-
ter drops to zero in this limit near 2k& T=zJ.

0.0

FIG. 4. Phase diagram in the n-n plane at T =0 for the case
y=zUl/UO=O. S, as calculated in the mean-field approxima-
tion. The difT'erent types of order in the ground state are indi-
cated by the legends in the figure.
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FIG. S. Same as Fig. 4, but for y =0.4.

IV. DISCUSSION

It is of interest to compare our results and approxima-
tions with those of other workers based on related mod-
els. For example, Fisher et al. consider a model simi-
lar to ours, but with y=O, i.e., with diagonal charging
energy only. They also solve their model Hamiltonian in
a mean-field approximation, which is presented as an ex-
act solution to their model in the limit of large n and
infinite-range hopping. Despite these difFerences, their
phase diagram at T=O closely resembles ours for the

@=0 case, with insulating lobes centered at each integer

An extensive and elegant series of calculations has been
carried out by the Karlsruhe group, aimed at elucidating
both the static and the dynamic properties of charging-
energy models. For example, Bruder et al. consider a
model Hamiltonian identical to ours but, rather than
solving it in a mean-field approximation, they map it onto
the so-called XXZ spin= —,

' Heisenberg model in two di-

mensions. In this model, the occupancy of a given grain
is restricted to either zero or one Cooper pair, corre-
sponding to the two states of the S=—,

' model. This
correspondence is exact, however, only in the limit of
"hard-core bosons, " i.e., Uo= ~. In order to determine
the phase diagram of this XXZ model at T=O, they cal-
culate the classical energy due to different spin
configurations in this model. When only nearest-
neighbor couplings are included, this approach does not

charge structure coexisting with a nonzero ( cosP; ) (cor-
responding to a superconducting phase). In this phase,
both (n; ) and the phase order parameter ( cosP; ) take
on two different values on the two grain sublattices. In
contrast to the corresponding Mott insulating phase,
however, (n; ) is always continuous function of n in the
superconducting phase. Because of this, we expect that
the phase boundary between the charge-ordered and
noncharge-ordered superconducting phases may also cor-
respond to a continuous, rather than first-order, phase
transition. As in the nonsuperconducting phases at sma11

a, the charge-ordered superconducting lobe shrinks as y
becomes smaller.

produce one striking result of our calculations, namely, a
charge-ordered state which coexists with superconduc-
tivity. This "supersolid phase" appears in their approxi-
mation only when next-nearest-neighbors are included,
and even then only in a narrow region of the phase dia-
gram. This shver occurs at small cx, and never includes
half-integer n as does our supersolid phase. In other
respects, our phase diagram closely resembles that of
Bruder et al. for the case of diagonal and nearest-
neighbor charging energies, with insulating lobes cen-
tered at half-integer and integer n, .

A particularly interesting locus on the phase diagram
is the so-called Heisenberg point: n =

—,', J/U& =1. At
this point, Bruder et al. observe a direct transition be-
tween a charge-ordered insulating state and a supercon-
ducting phase. This result must be exact in the limit of
large Uo (hard-core bosons). In the limit of large Uo, our
results for the insulating-to-superconducting transition at
half-integer n are in excellent agreement with this value.
For example, when y=zJ/Uo=0. 3, we observe a phase
transition at a =0.26, corresponding to (J /U, ),„=0.26/0. 3 =0.87. For y =0.2 corresponding to a
larger Uo, the transition occurs at a =0. 19 or
(J /U, ),„=0.95, while for y =0.1, it takes place at
o.=0. 1 or (J/Ui ),„=1.0. Thus, our mean-field ap-
proach agrees well with available exact results in the ap-
propriate limits.

It is of interest to compare these results to another re-
cent paper by Bruder et al. These authors use a model
slightly different from that of Ref. 27 and the present
work, in that they consider diagonal and nearest-
neighbor capacitances, rather than diagonal and nearest-
neighbor charging energies. This leads in d =2 to a
screened logarithmic interaction between the supercon-
ducting islands, and a corresponding Kosterlitz-
Thouless-like ' charge-unbinding, rather than vortex-
unbinding transition. In the presence of both an offset
voltage and finite magnetic field, this model leads to a
rich and fascinating phase diagram exhibiting aspects of
both charge and magnetic ' frustration, many of which
are beyond the scope of the present work. Their phase
diagram at zero magnetic field and diagonal charging en-
ergy closely resembles Ref. 27 as well as the present
work. They also describe a coarse-graining approxima-
tion which difFers from both the approximations of the
other two papers, as well as from the present approach.
However, Ref. 28 does not emphasize the charge-ordered
superconducting state mentioned above.

A more recent paper extends this approach (based on
the model of diagonal and nearest-neighbor capacitances)
to the dynamical response. These authors obtain a
universal conductance at the superconductor-insulator
transition, which has different values depending on the
presence or absence of a small dissipative term in the
dynamical Hamiltonian. Once again, they obtain a lobed
phase diagram similar to that described in the other
references cited above, but do not discuss the supersolid
phase described here and in Ref. 27. Their approach is,
in part, a mean-field-like approximation based on a
coarse-graining approach which is quite different from
the simple technique adopted here (which is not intended
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to treat the dynamical properties of the Hamiltonian).
Finally, we mention a recent discussion of Kissner and

Eckern. These authors, again considering the nearest-
neighbor capacitance model mentioned above, propose a
decoupling approximation similar to ours, but only on
the Josephson-coupling part of the Hamiltonian. Since
the charging-energy portion is not decoupled, it cannot
be exactly evaluated, and only general statements can be
made about the resulting phase diagram. It turns out
that their mean-field approximation (and presumably
ours also) corresponds to two difFerent approximations
for the free energy, only one of which can be derived
from a variational principle. This paper emphasizes the
zero or small-ofFset charge part of the Hamiltonian and
does not discuss the supersolid phase.

The reader may be concerned that the simplicity of our
approximation implies that the results are unreliable. In
defense, we note that the approximation correctly gives
the behavior at the Heisenberg point, as noted earlier,
while giving a plausible description of the behavior at
other regions of the phase diagram as well. While it is
subject to the usual limitations of all mean-field ap-
proaches (for example, incorrect critical exponents at
phase boundaries), it may give a qualitatively correct
physical picture of a phase diagram with relatively little
labor. In the limit of no Josephson coupling, our ap-
proach is equivalent to the usual mean-field treatment
well known in the treatment of Ising-like Hamiltonians,
which has a well-known regime of usefulness. We also
note that similar approaches have proved useful in other
related contexts (for example, treatment of the behavior
of the phase diagram of a Josephson array in a magnetic
Geld.

Next, we brieAy discuss the features of the phase dia-
gram that emerge from our calculations. The supersolid
phase, which plays a relatively prominent part in our
phase diagram but a less conspicuous role in that of Ref.
27, and corresponding to the coexistence of charge and
superconducting order, has a simple interpretation in the
language of the "XXZ" model: the phase order
represents ferromagnetic ordering in the xy plane, while
charge ordering represents antiferromagnetic order in the
z direction. We speculate that the absence of the super-
solid phase in the model of Ref. 27 at half-integer charg-
ing may be a consequence of the S=—,

' approximation
considered by them. In that limit, at half-filling, it ap-

pears that the supersolid phase occupies a smaller and
smaller length of the o. line, disappearing in the limit
Uo —+ oo. It is not clear how this exotic state could be
detected experimentally, but since it is presumably zero
resistivity, the charge-ordered state could presumably be
set in motion with an arbitrarily small applied voltage.
This Inight lead to unusual effects involving oscillating
currents in the superconducting state.

It would be straightforward to extend the present cal-
culations to the case of randomness in both the capaci-
tance and the offset potential. Fisher et al. have con-
sidered the effects of a random external potential on their
interacting Bose model. For the case of weak bounded
disorder, they find that the superAuid lobes are narrowed,
and a new phase emerges: an insulating, gapless Bose
glass. They argue that on site randomness plays a crucial
role in the phase diagram of He adsorbed in porous
media. %'e expect that our mean-field theory would also
yield a Bose-glass-like phase in an appropriate part of the
phase diagram. This can be seen by considering, e.g. , the
case of random diagonal capacitance energies. In the in-
sulating regime, for a continuous bounded disorder, we
expect that in the mean-field approximation, the charge
number should vary continuously with offset potential in
certain ranges of this potential, as successively more
grains jump from one charge state to another. This
would correspond to a "compressible, insulating" phase,
similar to the Bose glass regime of Fisher et al. Presum-
ably the Mott (incompressible) phase would disappear al-
together for sufFiciently strong disorder.

Conductance, such as those mentioned above, oscilla-
tions are well-established in small groups of normal junc-
tions. Presumably, it would be straightforward to carry
out such measurements with an underdamped array in an
appropriate geometry, seeking periodic variations in con-
ductance with offset voltage. It would certainly be of
great interest if such oscillations could be observed in su-
perconducting arrays.
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