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Thermal nucleation and cavitation in BHe and 4He
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Density functionals that reproduce the helium liquid-gas interface as a function of temperature
have been used, within an improved homogeneous nucleation approach, to investigate thermal nucle-
ation and cavitation in both helium isotopes. The results are compared with available experimental
data on cavitation in He and He. Predictions are made for cavitation in He at negative pressures
and for nucleation in both isotopes.

I. INTRODUCTION

Superheated liquids and. supercooled vapors are exam-
ples of metastable systems. Although they are internally
stable, there exists in each case another configuration
having a lower chemical potential. The metastable state
is separated from the stable one by some thermodynami-
cal barrier. Because of statistical fIuctuations in density,
that barrier can be overcome as a result of the forma-
tion and. growth of bubbles in the liquid or droplets in
the vapor (bubbles and droplets will be here generically
referred to as clusters).

The study of nucleation-driven phase changes has at-
tracted great interest for many years. Liquid helium is
especially appealing for homogeneous nucleation studies,
due to its particular features at low temperatures. Mo-
tivated by recent experimental work on cavitation in su-
perfluid He, we have undertaken the study of thermal
cavitation in both helium isotopes at high densities to in-
vestigate the formation of bubbles in the liquid, while at
low densities, the reverse situation, i.e. , drop formation
in helium vapor, is considered.

The basic tool for this study is constituted by two den-
sity functionals, one for each isotope, which we have con-
structed to describe with some accuracy the equation of
state, liquid. -vapor equilibrium, and thermal properties of
the interface. ' These functionals allow one to obtain the
nucleation (cavitation) barrier within an improved ver-
sion of the homogeneous nucleation theory as indicated
for example by Xiong and Maris and by Oxtoby.

In a previous work, we have used this method to in-
vestigate thermal cavitation in liquid helium at negative
pressures. The aim of the present work is to complete
that study in two ways. First, presenting results on cavi-
tation in helium at positive pressures, and second, study-
ing the formation of drops in the vapor. We shall show
that our results on cavitation at positive pressures are in
agreement with the experimental data, ' opposite to the
situation for He at negative pressures. We are not aware

of existing experimental results for nucleation in either
helium isotope away from the critical point. The critical
region is deliberately excluded from our calculations be-
cause of the intrinsic limitations of the density functionals
we are using, ' as well as the very low temperature region
in which nucleation through quantum tunneling may play
a significant role. Notwithstanding, the present study al-
most spans the whole liquid-gas equilibrium region, mak-
ing quite distinct predictions in physical situations where
no experimental information is available.

II. THERMAL NUCLEATION WITHIN A
DENSITY FUNCTIONAL APPROACH

The nucleation rate J, i.e., the number of drops or
bubbles formed in the homogeneous system per unit time
and volume, is given in the original Becker-Doring theory
by the expression

J = Jo exp (—AA/kT),

where AO is the difFerence between the grand canonical
potential corresponding to the critical cluster and that
of the homogeneous system, T is the temperature, and
k the Boltzmann constant. The preexponential factor Jo
depends on the characteristics of the system and on the
dynamics of the nucleation process.

Within the so-called classical theory of nucleation (see,
for example, Refs. 5, 10, ll and references therein), the
grand potential of the growing drop is evaluated in the
capillarity approximation. It consists in treating the drop
as a piece of bulk liquid limited by a sharp surface. Such
a macroscopic approximation has at least two obvious
shortcomings. First, the neglect of any compressional
efFect on the central density of the drop due to its sur-
face. This is what one calls a finite size eBect, such as
the change in energy of the cluster due to curvature cor-
rections. These corrections can be incorporated as varia-
tions of the surface energy with size, leading to a kind of
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droplet model for homogeneous nucleation. The second
shortcoming is originated by the inability of the model to
take into account the modification in the surface energy
of the cluster due to the presence of vapor as T increases.

These limitations, certainly important for small size
clusters, can be overcome using a density functional
to calculate the thermodynamical properties of the
system, ' ' ' and this indeed constitutes our starting
point. As we have thoroughly discussed, ' the free en-
ergy density of either helium isotope can be written as

f(I, &) = fNi(I, &) + &p'+—-cp'+'
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P(pl, T) = P(pv, T),

with Ii and P calculated from f„ i These equa. tions have
a nontrivial solution only for T below a critical value
T . The two-phase equilibrium region splits into two do-
mains. One is the unstable region in which the system
cannot exist as a uniform phase. The other one is a
metastable region where the system can remain homoge-
neous until a small perturbation drives it into a two-phase
equilibrium state. These domains are separated by the
classical spinodal curve defined as

OP&

kOI )r (4)

The spinodal line is represented in Fig. 1 by the solid
line labeled sp, and the metastability region corresponds
to the hatched zone limited by the spinodal and the two-
phase coexistence curves. Both curves are tangent at the
critical point (P„T,). Three generic isotherms are also
drawn in that figure.

The liquid may be driven into a metastable state, for
example, by superheating it at constant P (going from
point 1 to point 2; see Fig. 1) or decreasing P at constant

where p is the particle density and fNi is the well-known
free energy density of a noninteracting Bose or Fermi
gas. The density gradient terms vanish when the sys-
tem is homogeneous, in which case f(p, T) reduces to
f i(p, T). The parameters b, c, p, P, and ( have been
adjusted so as to reproduce physical quantities such as
the surface tension, equation of state, and vapor pressure
along the coexistence line. This is of special relevance for
a quantitative study of homogeneous nucleation and cav-
itation in the liquid-gas transition.

Figure 1 shows a schematic picture of the phase equi-
librium diagram in the pressure-density plane, which may
represent either helium isotope. The region below the
dash-dotted line is the two-phase coexistence region. For
a given T, the densities of the liquid and vapor in equilib-
rium are found imposing that the pressure and chemical
potential of both phases be the same, i.e. ,

FIG. 1. Schematic representation of the liquid-gas equi-
librium. The solid line labeled sp is the spinodal line,
and the dash-dotted line is the two-phase equilibrium line.
The regions of stability, metastability and unstability of the
one-phase system are also indicated.

T (going from point 1 to point 2'). These processes cause
the system to cross the liquid-gas equilibrium line, pen-
etrating into the metastable zone. The dynamics of the
first-order phase transition corresponding to liquid-gas
separation can be regarded as the formation of clusters
of a new phase in the homogeneous metastable medium
(bubbles in the liquid or drops in the vapor); for sizes
smaller than a critical one, these clusters shrink, but be-
yond a critical radius, they grow to trigger the phase
separation.

The application of the density functional approach to
the nucleation problem proceeds in two steps. One de-
termines first the critical cluster size for given values of T
and P, and second, the pressure at which the number of
critical clusters formed per unit time and volume equals
a conventional number, say, one per second and cubic
centimeter, to indicate the onset of phase separation.

We have obtained the liquid-gas coexistence line and
the spinodal line respective, by solving Eqs. (3) and (4).
These calculations involve only algebraic equations, since
only f i(p, T) comes into play. Next, at given T & T,
we pick up a density p for which the system is in the
metastable region. For example, at the intermediate T
shown in Fig. 1, p will lie between p,~„and pL, (bub-
ble formation) or between pv. and p,~ (drop formation).
Then, the density profile of the critical cluster is obtained
solving the Euler-Lagrange equation

hf Of Of =P )
bp Op awp

where p is the chemical potential of the homogeneous
metastable system at (p, T). The boundary conditions
for the physical solution of Eq. (5) are p'(0) = 0 and
p(r —+ oo) = p . The nucleation barrier AA is finally
obtained from the difFerence between the grand potential
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of the critical cluster and of the homogeneous metastable
system:

of clusters in helium, let us define the pressure for homo-
geneous nucleation Ph at a given T, as that for which J
equals one cluster per cubic centimeter per second: '

LO= dr p, T —
I p, T —pp —p . 6 Jo exp (—AO/kT) = 1 cm sec (7)

Since the pressure of the homogeneous system is P =
f—~(p, T) + pp, Eq. (6) yields AA as a function of

P and T.
In Fig. 2 we plot the nucleation barrier AO as a

function of P for both isotopes corresponding to bub-
ble formation at positive pressures and different tempera-
tures. As expected, for a given temperature, AA drops to
zero at the corresponding spinodal pressure, since at that
point the homogeneous system becomes macroscopically
unstable. It is worth mentioning ' that a weak point
of the classical theory is that it yields nonvanishing bar-
riers at the spinodal line. At the opposite extreme, LO
diverges when P approaches the vapor pressure value.
This simply indicates that, to have an appreciable proba-
bility of forming a bubble, the system has to be immersed
deeply inside the two-phase equilibrium region, the prob-
ability for any of these critical clusters being given by the
exponential factor exp( —AO/kT) in Eq. (1).

To make a quantitative statement about the formation

1000
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To solve Eq. (7) for Ph, an expression for the preexponen-
tial factor has to be chosen. There are many proposals
of different complexity in the literature; see, for exam-
ple, Refs. 4, 5, 7, and 8 and references therein. As in
our previous work, we have written the trial frequency
per unit volume Jo following Xiong and Maris, who take
Jo ——kT/ hV, I), where V,~ is the volume of a sphere of
radius 10 representing the critical cluster, and h, is the
Planck constant. To have an idea of the order of magni-
tude of this preexponential factor, for T = 4 K one has
Jo ~ 2 x 10 cm sec, while for the same temper-
ature Sinha et al. have Jo 2 x 10 cm sec . A
variation of two orders of magnitude in Jo, which is also
obtained when the preexponential factor is calculated by
means of theories developed to describe the dynamics for
the formation of critical clusters, does not affect in any
appreciable way the solution of Eq. (7), and so we are not
going to discuss here the validity of the different prefac-
tors in the literature.

To make a sensible comparison with the experimental
results of Refs. 1 and 7, we have solved

J = (Vv),

where the choice (V7 ), = 2.5 x 10 cm sec corresponds
to solving the equation for the experimental conditions
of the work of Xiong and Maris. Taking (Vr), = 1 cm
sec, Eq. (8) reduces to Eq. (7).

III. B.ESULTS

A. Cavitation
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FIG. 2. Nucleation barriers as a function of pressure for
He (a) and He (b) corresponding to bubble formation, at

positive pressures.

Figures 2—5 together with Figs. 1 and 2 of Ref. 6 col-
lect the main results we have obtained on cavitation in
both isotopes. As we have mentioned before, in Fig. 2
we have plotted the nucleation barriers for cavitation as a
function of P for positive pressures. Note that each bar-
rier has been obtained along an isotherm, and so these
T curves cannot intercept each other. At high tempera-
tures, the curves are almost vertical, since the spinodal
(AA = 0) and the saturation (AA ~ oo) pressures are
close. At low T the saturation pressure is 0 and the
spinodal one is about —9 bars for He and —3 bars for
sHe, s and the T curves show a large kind of plateau (in
a logarithmic scale); see Figs. 1 and 2 of Ref. 6.

If classical nucleation is applied, none of these T curves
will cross the P axis. These barriers resemble ours for
large values but abruptly separate for small ones, going
asymptotically to zero when P ~ —oo.

The pressure of homogeneous bubble formation Py, is
shown in Fig. 3 as a function of T for 4He [Fig. 3(a)]
and He [Fig. 3(b)]. The solid curves have been obtained
using (Vw), = 1 cms sec, and the dashed curves with
(Vr), = 2.5 x 10 ~s cms sec. It is worth noting that the
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Comparing P, t with Ph in Fig. 3, one can see, for
example, that for He at T = 4.2 K, the pressure has to
be reduced kom its value at saturation around 0.5 bar to
get cavitation, while a reduction of 0.25 bar is enough at
T 4.8 K. For He, the reduction at T 2.5 K is around
0.35 bar, and 0.1 bar at T 2.9 K. An alternative
way to read this figure is that, at P = 1 bar, one needs
to increase T around 0.4 K to produce cavitation in He,
whereas an increase of 0.1 K is necessary at P = 1.5
bars.

In Fig. 4 we show the pressures for homogeneous bub-
ble formation from T = 0 to the vicinity of the critical
point, which is indicated by a cross. The results be-
low T & 0.5 K should be considered only as indicative,
since we have neglected quantum tunneling. As in Fig.
3, the solid line represents Ph for (Vw), = 1 cms sec and
the dashed line, for (V~), = 2.5 x 10 ~s cms sec. Both
curves merge with the spinodal line P,p at T = 0. The
influence of the precise value of (Vw), on Ph turns out to
be more sizable for negative Ph, which happens for T & 4
K for He and for T & 2.4 K in the case of He (see Fig.

L-
U 0.4—

CL

0
2.4 2.8

-2-
a

FIG. 3. Homogeneous cavitation pressure as a function of
temperature for He (a) and He (b) at P ) 0. The solid
curves have been obtained using (Vr), = 1 cm sec, and
the dashed ones using (Vr), = 2.5 x 10 cm sec. The
experimental points are from Ref. 7 ( He) and from Ref. 8

( He). The saturation vapor pressure line is indicated as P, ~

and the spinodal line as P p.

-10
0

results of the calculation are rather insensitive to the pre-
cise value of (Vr), [compare the solid and dashed curves,
whose (Vw), differ in 13 orders of magnitude].

In these figures we have also plotted the spinodal line
P p and the vapor saturation curve P, t as a function of
T. The dots are experimental points taken from Ref. 7
for He, and from Ref. 8 for He. One can see that the
agreement between theory and experiment is very good
for He, indicating that the density functional approach
to homogeneous nucleation theory applies to bubble for-
mation in He at positive pressures. Concerning He, the
agreement is fairly good; our calculations are less than
0.1 K above the experimental results. This discrepancy
could be attributed to a failure of the He functional at
such high temperatures (the 4He one turns out to work
much better; see Refs. 2 and 3), or to an experimental
underestimation of the homogeneous nucleation temper-
ature. This possibility is indicated, although ruled out,
by I ezak et al.8

btes

-3
0

FIG. 4. Homogeneous cavitation pressure for He (a) and
He (b) as a function of temperature. The lines have the same

meaning as in Fig. 3. The dots in (a) are experimental points
taken from Ref. 1.



48AND NAVARR, BARRANCO,JEZEK g,UygLEUMAS,

4He and He.
sion.

3 e Their»ze gave found»
h ~face tensions

o observe
increas~ o

t is also interest g
d the apprecj. ab eT increa~~~

the ].iquid sur fac
,th gas»

tha pens for effuseness as
alue of asymP

he sur
2 The comparative y

face i
1 arge v

e ex erimental
a . 4 eatT= . '

n resens

t saturation- '

2 K rH.ects t
t

totic ensity for
1 d at saturatio PQf the»qui afact that the den

T 2.2 K.a maxj. mum

~6 586

B. Nucleation

or nucleation in boththe results for nuc ea 'Fi ures 6—8 show
lotted the nuclea iones. In ig.F . 6 we have p o

alculate a on
om zero to

rier as a function o
eratures goes om

1 1 t hth
AO drops to zero a

dd' hthe spjnodal line, an ito e e an
n value.

ro let nuclearo tion isTh pressure Ph, o

tth dK
g

1 f h d fP is rather sma obetween Ph, and P, t, is r

,x eriment oint»f4,a are the P
between

The dots in F'g . ~ f the Qlscrep
I

sible origin
l its has beenlcu]ated Ph, an

t

0 i.e-,
exp"' .

ll f r temperatures ~

h density func-K. Indee
ood agreemementlds result~ g

7 Th can be
tiona app1 a roach yle

e classica 1 theory.
tempe»-

those o
if one realizes

5 so that

tained om
that at theseo i on

see»g-
easily . .

l bubb]es are larg
T decreases,

es the critica u
ortant. As e6nite size e ec s a

aller and the c assig mthe critica u
less reliable, w ere

se the remaining i-
crepancy e

u er grounds, o
4He. Al-

be attribute
f cavitation in supthe process o cav

cavitation in
vortices in

ex eriments on c '
n1, t}1 pl p

He is still due to shortcomings o eancy for He is s

e critical
pp1 a roach.

e of several cri icows t e ensFigure 5 s o

1000,

100— 'He
rops

0.01— 10-

1 lM
0

0

0.02

20 40
r (A)

60
0.1—

0.01

1 1,5 2

I

04

2.5 3

0.8
P (bar)

1.6

T= 4.5 K

1000

100-

m

0.01- 10-

1-

0.1—
Cl ltl
an c
c5 c)

3C
Ln

n

20 40

r(A)

60 80
0.01

0.2
1

0.4
P (bar)

0.6 0.8

e a and He (b) at thebubbles for He (a) and eFIG. 5. Critical u
indicate ed temperatures.

as a function of pressure forn barriers as a u
tion.b) rrespondi gHe (a) and He co



THERMMAL NUCLEATION ANDION AND CAVITATION IN He AND He 16 587

"He
df ops

0.02 'He
drops

0.01—

0
0

0
0

I

20 40 60 60

1.2
0.02

0.8-

He
dl ops

a
Ll

CL

0.01—
D

0.4-

0
0

I

20
I

40

r(A)

I

60
I

80

FIG. 7. Homo enF . . omogeneous nucleat'
4 () (e a a

reasa fuunction of

g as in Fig. 3.
e lines h sameave the same

FIG.. 8. Critical rops for H
ed temperata ures.

He (a) and HH e b) at the indi-

bar for He abo
ab

e a ove T 2 K , and 0.03
a . This indicates tha

ho
much h d

1

. ..ld.l 1so like to drarv th
e in uence of t~

e attention

F' ll

n on the

T=1 2

e111peratI1res

aIld 3 K 1n

an 8, one can see t~
omparin

op g

e . 10).
are similar (see also

IV. DISCUSSION

We havve thoroughl in
mal nucleat

y investigated the

function 1 h

p o
h 1'

na s that ac t 1 d
e lum us

pro uce the exe experimental

iquid- as-g equilibrium. 0
11 h

temperatures c
s similar to

nuc cation
ave obtain

see Refs 7 and 8

t, h h
' ti6

e
i e pi arityo eca ill

the fact th

es, t e criti
pproximation br

ical sizes

h Td
relatively nnear

P hecr h iss ited
n to values muchuc closer

, preclude
'ty f th 1 h emper-

P,~, as erst
e igger in abs

c s is

d ' R f
arge discrepancy st'll e een t e

t 1 1 fRe experiment
iaioninsu e e

1 s, ' experiments ab ove Tp and



16 588 JEZEK, GUILLEUMAS, PI, BARRANCO, AND NAVARRO 48

below 4 K are called for. If, as we expect, these results
smoothly joint the existing ones at P ) 0, the difference
between the experimental results of Xiong and Maris
and our calculations can be likely attributed to cavita-
tion on vortex lines. It would be very interesting to have
experimental results on He available at negative pres-
sures, since it is a normal quantum Quid above 2.7 mK.
The possibility of having results from both isotopes will
give a de6nite answer to the question of whether or not
a density functional approach can be applied to homo-
geneous nucleation in a quantum Huid, for which one al-
ready knows that classical nucleation theory is unreliable
at low temperatures.

A possible extension of the present work is to study
nucleation in He- He mixtures. Work in this direction
is now in progress.
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