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The Eliashberg equations are solved in two dimensions for the transition temperature of a supercon-
ductor. The density of states has a logarithmic singularity. We show that the singularity in the density
of states has only a.small influence on the numerical solutions to the Eliashberg equations, apart from its
contributions to the electron-phonon interaction A, . We also consider the effects of the angular depen-
dence of the gap around the Fermi line which occur for s-wave pairing.

I. INTRODUCTION

Eliashberg' equations describe superconductivity in
metals where the electron-phonon interactions cause the
pair binding. They are often solved to describe supercon-
ductivity in three-dimensional metals. In the high-
temperature superconductors the conduction electrons
are confined to planes, and their motion is largely two di-
mensional. Here we solve the Eliashberg equations for a
two-dimensional metal.

In two dimensions the density of states of the elec-
trons has a Van Hove singularity which goes as
p(E)- —ln~E —E, ~, where the singularity is at an energy

E, . The present calculations were undertaken to investi-

gate whether this singularity, in the density of states, has
an important effect on the solutions to the Eliashberg
equations. In particular, we focus on the calculation of
the transition temperature T, of the superconductor. We
note, in passing, that many papers "have been written
on electronic mechanisms for high T, due to Van Hove
singularities. Also, many papers were written on the A-
15 compounds regarding the relationship between super-
conductivity and the density of states. ' ' This started
with Horsch and Rietschel' and is reviewed in Ref. 5.
This work was in three dimensions, where there is no log-
arithmic singularity. The present work is the first to
solve the Eliashberg equations for a logarithmic singular-
ity in the density of states.

In three dimensions, most metals have the density of
states of the electron being a smooth function of the ener-
gy. Then T, is determined by two-dimensionless parame-
ters: A, is the strength of the attractive electron-phonon
interaction, while p is the relative strength of the repul-
sive electron-electron interactions. The latter constant
seems to have a universal value around p' =0.1. There is
also a dimensional constant in the average phonon ener-
gy. If superconductivity is caused by the electron-
phonon interaction, then T, increases with increasing
values of A, .

Whether or not high-temperature superconductivity in
cuprates is caused by the electron-phonon interaction is a
topic of considerable debate. ' ' Numerous other
mechanisms have been proposed. ' Here we make no
claim to decide which mechanism is operating. Instead,

we are only examining the electron-phonon mechanism in
two dimensions, so see whether there are significant
differences from three dimensions.

In two dimensions our theory has only four parame-
ters: k, p', the chemical potential p, and the average
phonon energy. The chemical potential enters only
through its energy separation from the sirigularity energy
E, . Superconductivity is caused by the pairing of elec-
trons at the chemical potential, which makes this the im-
portant energy for electrons. We find that if ~p E, ~

is-
more than 10%%uo of the bandwidth, then the singularity
has no effect. The exact definition of "no effect" is given
below. However, we divide the effects of the singularity
into two categories: one is the effect on A, while the other
is just due to small values of ~p E, ~, and how—that
affects the solution to the equations. The latter category
is the main one we investigate. Cuprate superconductors
must be alloyed in order to become superconductors, so
that the chemical potential is not too near the singular
energy. So our conclusion is that the singularity in two
dimensions does not help the onset of superconductivity,
and does not explain high-temperature superconductivi-
ty. A separate question is the effect of the singularity on
A. . That is a more subtle question which is also discussed.

We also consider how the energy gap of the supercon-
ductor depends upon angle around the Fermi line in two
dimensions. In three dimensions, Fermi-surface anisotro-
py can make the gap anisotropic. We assume s-wave
pairing, and that the x and y directions are equivalent.
Then the gap can be expanded in a set of functions called
"Fermi-surface harmonics" (FSH). Many such func-
tions have been used. Previously we introduced a set of
FSH of the form cos(41$) where l is an integer

h(P)=gA+cos(4lg) .
I

An isotropic gap would have only the first term on the
right. We examine whether the cos(4$) term significantly
changes the transition temperature of the superconduc-
tor. We find that it does in certain cases. Earlier we dis-
cussed how this kind of angular dependence affected the
density of states observed in electron tunneling.

Recently there has been experimental evidence
which suggests that the gap could have d-wave symme-
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try. We show that the photoemission data can be ex-
plained equally well by the present theory using s-wave
symmetry.

II. ISOTROPIC EQUATIONS

In two dimensions the electron has a dispersion rela-
tion E&. An important function in the theory is the den-
sity of states p(co) which is defined for a single-spin state
as

E|,= —2t(cos0 +cos8 ),
0„=k„a,

p(co) = h (u ),1

4~ta

h(u)= —X(1—u ) .2

(3)

(4)

The dimensionless factor h(u) in the density of states is
h (+1)= 1 at the end points, and diverges logarithmically
as ~u~~O=E, . This factor plays a key role in the
theory. Any tight-binding model in two dimensions has a
similar divergence. The present model has the advantage
of being easy to program. The divergence is the interest-
ing aspect of the calculation. How does it afFect the solu-
tion to the equations for superconductivity? Our con-
clusions will apply to any model which has such a diver-
gence, which, in fact, is almost any model.

The self-energy of the electron, from its interaction
with phonons, is given by the usual expression

d gX(k, ip„)=g J
~

~M (k, k+q)~'
(2')

n~[co (q)]+1 nF(Eq+~)—
ip. +p Ek+q ~.(q)—
n~ [co (q) ]+nF (EQ+& )+.ip„+p E„+ +co,(q)—

We are using the formalism for nonzero temperature,
where the self-energies are expressed in energies
p„=2~k~ T(n+ —,

' ). The matrix element M has been
screened by the electron-electron interaction. The sum-
mation v is over the difFerent polarization modes of the

d kp(co)= J o(co E~)—.
(2m. )

In high-temperature super conductors the conduction
electrons are in a plane of copper and oxygen atoms. The
electron motion is described by tight-binding models,
where the electron hops between neighboring orbitals.

In the present calculations, we took the simplest tight-
binding model for two dimensions. It is a square lattice
of constant a with identical s orbitals on each site. The
hopping energy is t and the bandwidth is St. It is con-
venient to normalize all energies to 4t, so that the elec-
tron energy is u =co/4t and the chemical potential is
u =p/4t For t.his model the density of states is well
known to be given by an elliptic integral

phonon system.
We decided to adopt a simple model for the phonon

system. It has an Einstein spectrum: there is only one
phonon energy coo and the matrix element M is a con-
stant Mo. In this model the strength of the electron-
phonon coupling is given by the dimensionless parameter
X which is

2MO h (u)
&~o 47rta

X(ip„)=4to „,
A,vo 1V'0+ 1 nF(v )

dug(v)
2 —1 id(n+ —,

' )+u —u —vo

N 0+n F( u)+ .id(n+ —,
' )+u —v+vo

h(v)g(v)= „
2~a, Td=

4t

vp —cop/4r

1No=
exp(2m. vo/d )

—1

(10)

(13)

(14)

W(p)= J dkV(p, k) ik+ p, E„—X(k)— (15)

The factor V(p, k) is the effective interaction between the
electrons. The phonon part of this is rather simple in our
present model of Einstein phonons and constant matrix
element. There is also a small repulsive contribution
from electron-electron interactions. This latter term in-
troduces a parameter p* into the Eliashberg equations.
We omit any inhuence of impurities.

With these approximations, the above equation
simplifies to

W„= g 1+5 (n —m)
—p* 8'

The parameter c is the lattice spacing perpendicular to
the plane. The self-energy of the electron X„depends
only upon the integer n as well as the temperature and
chemical potential p=4tu. The density-of-states factor
h(v) enters several places: in A, ~h(u), in the screening
of the matrix element, and also in the density of electron
states in the integration. The factor g(u) is the relative
density of states, compared to the value at the chemical
potential. The interesting question is which factor is the
most important. We will show that the answer is that X
is most important. The factor of g(u) has almost no
effect unless u is within 10%%uo of the singular energy.

The second equation determines the transition temper-
ature of a superconductor. At this temperature T, the
Eliashberg equations become a linear equation for the
correlation function W(p) which gives the pairing in the
superconducting state. In a four-vector notation it is
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2mkq Tb=
Scop

d y& d g(u)
~iid(m + —,')+u —u —o

(17)

(18)

110.0

Tc

100.0

1

~(2m +1)Z (19)

Om

id(m + —,') (20)

The factor Zp = 1+A, but Z decreases to unity for larger
values of m. In this case the solution to (16) gives a well-
known curve of T, /co& vs 1,. Figure 1 shows this curve as
the solid line for p =0. 1 and cop=0. 05 eV which agrees
with the standard curve in Ref. 5. If one omits the

150.0
i

100.0

50.0

The Eliashberg equation is (16). One chooses the param-
eters A, , p, T. One evaluates the self-energy in (10) and
then the other integral in (18). One evaluates the deter-
minant implied by (16). The temperature is varied until
this determinant vanishes. Then one has found T, for
these values of A, and u. The solution of these equations
are well known when the density of states Ii (u) is smooth.

For electron motion in two dimensions, the density of
states always has a logarithmic singularity at some energy
near the middle of the band. The question of interest is
whether this singularity has a large effect on the transi-
tion temperature of a superconductor. In the present
model the density of states enters two places in the equa-
tions: it affects the electron-phonon coupling strength A,

and also enters into the relative density of states g (u).
We treat these two factors separately.

First consider the factor g (u). It is the density of states
of an electron of energy v divided by the density of states
at the chemical potential. It enters into the integral (10)
for the self-energy and also into the integral (18) for f
In cases where the density of states is smooth, then g(u)
equals one everywhere. In that case, and when the band-
width is unlimited, the integral in (18) gives

go.o l

80.0
-1.0 -0.8 -0.6 -0.4

chemical potential

-0.2

FIG. 2. T, as a function of chemical potential for A. =1.25
and co0=0.05 eV (v0=0.0125). The Van Hove singularity is at
E =0 and the chemical potential is normalized to give u = —1

at the bottom of the band and u =0 at the singularity. T, is
afFected mostly within 10%%uo of the singular energy.

Coulomb repulsion @*=0,then one gets the dotted line
in Fig. 1.

From now on we omit p*. The reason we do this is
that it introduces another arbitrary parameter into our
model, which confuses the comparison of the different re-
sults. Of course, this parameter must be retained in any
realistic calculation of the transition temperature.

Now the question is whether a different curve is ob-
tained in the present model, which has two features
different from this smooth density of states: the band-
width is bounded, and the density of states is singular.

In the first calculations we assigned A, an arbitrary and
fixed value, and found T, as a function of the chemical
potential —1 & u (0. For A, =1.25, t=1.0 eV, cop=0.05
eV the results are shown in Fig. 2. T, =83 K except for a
small upturn near the critical point and a downturn near
the lower band edge. This curve is one of our main re-
sults.

The value of 83 K is also what one would also get as-
suming that g =1. So the critical point in the density of
states has no influence on T, once one is 10% of the
bandwidth away from the singular point. We found this
was always the case, regardless of the value of A, . In
high-temperature superconductors, the occupation of
conduction electrons is always 10% away from the Van
Hove singularity to avoid antiferromagnetism. Our con-
clusion is that the critical point has no inhuence on the
transition temperature, since actual superconductors are
away from the singularity sufficiently that it has no
influence on the answer. Of course, the Van Hove singu-
larity could inAuence the value of k.

0.0 '

0.0 0.5 1.0 1.5 2.0 III. ANGULAR DEPENDENCE

FIG. 1. The superconducting transition temperature T, as a
function of coupling constant k for the case that @*=0.1 (solid
line) and p* =0 (dashed line). The phonon frequency is
F0=0.05 eV.

Our interest is to explore the consequences of having
the energy gap depend upon an angle. For a square lat-
tice, the Fermi-surface harmonics at the zone center are
cos(4lg), where l is an integer. In this section we define
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some important angular functions and explore their prop-
erties. Define the functions

d k
h4i(u)=4m ta f cos(4lg)5(4tu E—k ),

(2m. )

k„
tan((l =

k„

(21)

(22)

h4i(u)
r4i(u)= „ (23)

These parameters are small for all values of u. They be-
come the basis for the perturbation solution to the gap
equations. Figure 3(a) shows numerical results for the
band dispersion in (3). We show ho(u), h&(u), and hs(u).
One finds that ho) h4) hs. Figure 3(b) shows r~(u) and
rs (u ). They get very small away from the Van Hove

4.0

The prefactor to the integral makes these functions di-
mensionless. The function h 0( u ) equals the function
h (u) defined and used in the last section. It is propor-
tional to the density of states. For integers I & 0 the func-
tions describe the angular components in the density of
states. They vanish for parabolic bands, but are nonzero
for any tight-binding model. Later it will be useful to
define the ratios

h4i(u) = f dP cos(4lg) f Od 05(u E„/4—t),4~ o
(25)

' f"cos(4ly) '"'
(26)

The quantity (Od8/du) is a function of angle. Since it
must be expandable in Fermi-surface harmonics, the
above integral defines it as

singularity.
In cuprate superconductors the conduction electrons

are in planes of copper and oxygen ions. A tight-binding
model which connects only the in-plane oxygen orbitals
has a band dispersion Ei,=+3 sin(k„a/2)sin(k a/2).
This expression makes contours of constant energy re-
volve around the corners of the Brillouin zone. It makes
sense to redefine the corner of the zone as the center,
which e6'ectively changes the band dispersion to

Ei,=+A cos(k„a/2)cos(k a/2),
where A =4t is the width of the occupied band at half
filling. We calculated h ~&( u ) for this case of band disper-
sion. We found that they were numerically identical to
the same functions for band dispersion (3) except that
now h 4 ( u ) is negative.

It is interesting to examine (21) in polar coordinates.
Define 8=ka and then we have

3.0

Od0 =2ho(u) 1+2g r (4') co(4s1$)
dQ I

(27)

2.0

'l.0

0.0
-1.0

0.50
(b)

0.40

-0.8 -0.6 -0.4
chemical potential

-0.2

This expression will be needed in solving the Eliashberg
equations. It seems to be a new result.

We can also show near the van Hove singularity that
as u —+0 then h~&~a4& —(2/vr)ln~u, where a0=0.883,
a4= —1.180, as = —1.951. Obviously r+ ~ 1 as ~u

~

~0.
However, this limit is approached very slowly.

The electron-phonon matrix element M(k, k') provides
the angular dependence for the electron self-energy and
the energy gap. We assume that the wave vectors (k, k')
are on the Fermi line. Then the matrix element can only
depend upon the angles (P, P') which these wave vectors
make with, say, the x axis. In this case the appropriate
form for the interaction is

0.30 ~M(P, P')~ = g m4icos(4lg)cos(4lg') .
1

(28)

0.20

0.10

0.00-1.0 -0.8 -0.6 -0.4
chemical potential

-0.2

FIG. 3. (a) Values of h0 (top), h4 (middle), h8 (lower) as a
function of u. h«decreases rapidly with increasing I; (b) r4(u)
(top) and r8(u) (lower) as a function of u.

This form was first derived by Aoi and Swihart. Here we
give a short explanation. We started by thinking that the
most important angular dependence was given by
q=~k —k'~ which depends upon cos(P —P'). The star of
a wave vector are all directions which, by symmetry,
have equivalent energy and other properties. The star for
the square lattice has eight points except at special angles
(/ =0, m. /4) where there are four. In doing integrals, one
can just evaluate over one-eighth of the Brillouin zone,
and then sum over the star. It is easy to show that sum-
ming P' over the eight values in its star gives the identity
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g cos[n (P —P') ]= 8 cos(nP)cos(nP')
star

(29) 2m4, ho(u)
~41

ccop4m. ta
(30)

if n =4l and equals zero otherwise. Even expressions
such as cos"(P—P') reduce to the form in (28).

It is also convenient to define a coupling constant for
each order of the harmonic expansion. In accord with (8)
we define

As an example of angular behavior, consider the self-
energy of the electron. Starting from (7) we can now
write it as

X„(u,g) =4t g r4~(u)o'„4tcos(41$),
1

A,41 VP No+ I —n„(v) o+nF(u)
O n, 41 du g4I(v) . , +

2 —i id (n +—,
' )+u —v —vo id (n + ,' )+—u —u + vo

h4&(u)
g4!(U)

h ( )

(31)

(32)

(33)

We evaluated the integral in a„41 for l =0, 1. In both cases the real part is large and slowly varying, while the imagi-
nary part is smaller and increases from zero at zero imaginary energy. For o.„o we renormalize the chemical potential
by the amount at zero imaginary energy. The remaining real part is small and unimportant. However, a similar renor-
malization of the real part of o.„4 does not occur, so that the real part of this expression remains the most important.
Furthermore, the imaginary part is not just scaled by r„(u ) over the value for 1 =0, since the energy variations of the in-
tegrand are always important. We did not use o.„4 in our solutions to the gap equations.

The energy gap is expanded in Fermi-surface harmonics

8'(p, ip„)= y 8'„(cos(41$) .
I

Then the equation for the energy gap, in the approximation of neglecting Coulomb repulsion, is

W (.AI I.(rn)
~„,=~4, 1+6 (n —m)

d d 8 cos(41P )cos(41'P )

2ho (2m-) Iid (m + —,
' )+ u Ek /4t —o —(P) I

(34)

(35)

(36)

f cos(41$)cos(41'P)I (P, u),
I2m + 1

I
o 2~

dU I+2r4(u)cos(4$)+I (P, u)=d
2~ (u —u+Recr ) +[d(m + —,')—Imcr ]

1
[ I+2r4(u)cos(4$)+ ],2m+1 Z

Z (P)=1—Imo (P)/dim+ —,'I .

(37)

(39)

(40)

We used the theorem in (27) to provide the numerator in
(38). We ignore the real part of the electron self-energy,
which we find to be small. In general, it is useful to write

tion makes the Eliashberg equations easy to solve.
We consider the contribution of the l =0 and 1 levels.

Then the gap equations can be written in a matrix form:

rr, t(m)
12m+ IIS (0)

(41)
lH„= g U„At'N (42)

The important values of y11 are yoo=l, y&&= —,', and

o~ r ~o g. The parameter g is proportional to r4 and
is therefore rather small. It also depends slightly upon m.
However, this dependence is small, so we ignored it and
instead considered it independent of m. This approxima-

~np

~n4

Xo log

(43)

(44)
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1

~2m+ItS (0)[1+b (n —m) ]

The matrix A, has eigenvalues

A, + =
—,
' [Ao+ A~/2++(Ao —A4/2) +4AoA4( ] .

(45)

(46)

25

L'3

20 E3--- ---j-(3-:0
2 015——-- -- -- ----G- --- — '' — — --o-—

(j

10 ——

The advantage of making g independent of m is that the
matrix Juris ,independent of this parameter. Then it is
easy to construct matrices 4, Sz which have the property

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SS~ =J,
0

0

(47)

(48)

FIG. 5. Variation in the superconducting energy gap A(P) vs

angle P for the data reported in Ref. 31. The squares are data
points of their sample no. 2. The circles are the present theory,
Eq. (1), using 60=15 meV and 54=5 meV.

in which case the gap equations can be written as

0
n X Unm 0 g +rn

m

(49)

(50)

Instead of having a matrix of twice the dimension, as in
(42), we have two different matrix problems with different
values of A, . Obviously k+ will give the highest value of
T, . Note that in solving this equation, one still uses A,o in

evaluating Z, so that one has one value of coupling con-
stant in the numerator and a different one in the denomi-
nator.

Figure 4 shows numerical results obtained by solving
this set of equations. We set A,0=1, t =1 eV, coo=0.05
eV, and varied A4 for /=0. 1 (dashed lines) and 0.2 (solid
lines). The two curves in each case are for A, +. There is a
classic level crossing. If /=0 then one would have two
curves: a T, (Ao) would be constant since this variable is

unchanged, while T, (A4) increases with this parameter as
in Fig. 1. The two values of T, would be equal when
A,4=2K,o. When we have nonzero values of g, the two lev-

els repulse each other as is well known for the crossing of
two interacting levels. We conclude that the value of T,
is increased in two-dimensional superconductors whenev-
er we have that A,4-A,o. In Eq. (28), the second term m4

has to be similar in size to the first term mo. If this con-
dition is met, then the angular variations in the s-wave

gap can increase the value of the superconducting transi-
tion temperature T, .

Photoemission has been used to measure the energy
gap b,P around the Fermi line in the cuprate plane. 3'

The original report showed that there was little angular
dependence and concluded that b,(P) was a constant,
which implied s-wave symmetry. Recent reports ' have
found angular variation, and even suggested d-wave sym-
metry. We wish to note that the recent variation can also
be fit well by the present theory using s-wave symmetry.
Reference 31 reported three sets of data which were not
consistent, and each had much scatter. We arbitrarily
picked one for illustration, their sample no. 2. Figure 5

shows a graph of the energy gap 6((()) vs 0&/&~/4.
The squares are data points from Ref. 31 while the circles
are just h(P)=ho+A, icos(4$) with b,o=15 meV and
64=5 meV. Different values of A4 are obtained from the
other samples reported in Ref. 31 ~ We conclude that
these data are fit quite well by our theory, and for reason-
able values of the parameters.

IV. DISCUSSION

150.0

100.0

0.0 L"
0.0 1.0 2.0

FIG. 4. T, vs A.4 for two values of /=0. 1 (dashed line) and
/=0. 2 (solid line). The value of AD= 1.0 is fixed.

We have solved the Eliashberg equations in two dimen-
sions for the superconducting transition temperature T, .
Of interest are two questions: (1) Does the Van Hove
singularity affect the value of T,? We find that T, is in-

creased when the chemical potential is within 10% of the
singular energy. However, in high-temperature super-
conductors, the chemical potential is not that close to the
singular energy, so that T, is not inAuenced by the Van
Hove singularity. (2) Do the angular variations of the en-

ergy gap, for s-wave symmetry, increase the value of T,?
We find that the angular variations introduce additional
coupling constants X4I for each order of angular depen-
dence. Whenever any of these parameters for I )0 are
similar in size to the isotropic value A, o then indeed T,
will increase. The increase can be as large as 50%.

So far we have not discussed the variation in the cou-
pling constants A,4I with the van Hove singularity. That
is a complex question. Certainly the values of A, have a
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factor of the density of states in the numerator, which
suggests they increase as the chemical potential nears the
singular energy. However, the electron-phonon matrix
element may have additional factors of the density of
states. If this matrix element is from the screened
Coulomb interaction between electrons and ions, then the
screening function contains the density of states. This
latter dependence makes A, smaller. Thus, some effects
make k larger, and some make it smaller, as one increases
the density of states. The final answer depends upon the
precise form for the electron-phonon matrix element. We

have also noted that our theory explains the angular vari-
ation in the gap reported in recent photoemission experi-
ments.
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