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Kondo crossover in the self-consistent one-loop approximation
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The free energy and magnetization for the general SU(N) one-impurity Kondo model in the mag-
netic field h are calculated by extending the previous 1/N expansion technique: the saddle point is
determined self-consistently to the 1/N order. The obtained universal field-dependent magnetization
M(h/Tlc) by this simple method is shown analytically to be asymptotically exact at both h &( Tx
and h )& Ta limits. For general "f-electron" fillings, except half filling, the M(h/T~) curves cross
continuously from the weak to strong coupling limit, but overestimate the curvature in the crossover
region for moderate N. The magnetic Wilson crossover numbers are calculated approximately. Our
results explicitly verify that the 1/N parameter is nonsingular under the adiabatic continuation.

I. INTR.QDUCTION

The fIowing of an effective interaction &om weak
coupling at high energy to strong coupling at low en-
ergy is an important and frequently encountered phe-
nomenon in various physical systems. A well-known
condensed matter example is the Kondo effect. Usu-
ally, it is only possible to construct perturbative solu-
tions in the weak- and strong-coupling limits. Since the
Kondo problem admits an exact solution, it provides
a useful testbed for new ideas and methods. Among
various methods applied to the problem, the numerical
renormalization group (NRC), Bethe ansatz, s and non-
crossing approximation, nicely and accurately produce
the crossover. Unfortunately, these methods either are
very complicated or heavily rely on numerical calcula-
tions. A simple and elementary method describing the
crossover is desirable and may give us new insight.

Recently, motivated by the NRG results on the two-
impurity Kondo problem, ' which claim that there is
a line of Fermi-liquid fixed points continuously modified
by the Ruderman-Kittel-Kasuya- Yosida (RKKY) inter-
action between the two impurity spins, we have devel-
oped an "Eliashberg equation" approach to build the
magnetic correlation between the two impurity spins non-
perturbatively into the ground state. Naturally, we want
to test our method for the one-impurity Kondo prob-
lem. In this simple case, our approach amounts to the
self-consistent one-loop approximation. For the general
SU(N) impurity spin model with the orbital degener-
acy N, we expand the free energy in 1/N and deter-
mine the saddle point self-consistently using the free en-

ergy including one-loop (1/N) fluctuation contributions.
We shall see that 1/N is a nonsingular parameter un-
der the adiabatic continuation, at least outside a nar-
row crossover region. The efFect of high-order terms is to
smooth out the crossover. Technically, 1/N Huctuations
always involve cutofF-dependent contributions. In order
to obtain the universal free energy and magnetization, all
the cutofF-dependent terms have to be absorbed into the
Kondo temperature T~. In the following, we first sketch

the procedure, then give the details in the next two sec-
tions so that whoever is not interested in details can skip
from the end of the Introduction directly to the Results.

The Kondo problem describes an impurity spin antifer-
romagnetically coupled with strength J to a wide conduc-
tion band with density of states p(e). The Hamiltonian
for the general SU(N) model in the magnetic field is

k, a
S). (ci,.f-)(f. c~-)+h ) ~f.f- (1)

k,k', cr, a' cr= —S

The impurity spin is represented by N = 2S + 1 local-
ized degenerate levels partially filled with "f-electrons. "
Their creation and annihilation operators are subject to
the constraint

nt ——) ft f = qpN.

We have set the gyromagnetic ratio and Bohr magneton
equal to one so that the magnetic field strength h has the
energy scale. For Ce, the lower spin-orbit split multiplet
is usually % = 6. The coefFicient qo is treated as a con-
stant of order one in the expansion and will be given any
value at the end of calculation. We shall present results
for qp = 1/2 and qp = 1/N.

There are two physical parameters in the Kondo prob-
lem, the bandwidth D and the dimensionless coupling
constant g = Jp(0). In the scaling regime, h (& D and
T~ && D, physical quantities depend on D and g only
through the Kondo temperature TK = T~(D, g). If the
initial bare g (& 1, we can find T~ in the D/T~ -+ oo
limit. This is equivalent to the ultraviolet renormaliza-
tion. The renormalizability of the Kondo problem was
stated long time ago ' and can be proved without dif-
ficulty. After absorbing the bare parameters into T~,
physical quantities such as the magnetization must be a
one-variable function: M = M(h/TIt. ), since M is dimen-
sionless. Usually, there could be many difFerent scaling
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TABLE I. Definition of symbols and notations.

Symbol Definition (Eq. No. )

Bandwidth
Density of states

(1)
(2)
(»)
(18)
(19)
(»)
(21)
(22)

(3) (23)
(3) (24)

Symbol

r
I'1
I'g

fl1

fl2

Ag

Pp

+R

+reg

1/1V

Definition (Eq. No. )

(26)
(27)
(28)
(»)
(3O)

(32), (A8)
(33), (34), (A6)

(31)
(»)

(4) (»)
(4), (»)

(4o)

functions M(x) with x = h,/T~, depending on the band
structures p(e). However, M(z) for the Kondo problem
is universal because changing band structure only adds
in irrelevant perturbations that quickly die out under
scaling if initial g « 1. The only possible exception
is particle-hole symmetry-breaking perturbation, which
is marginal and may lead to a modified M(x). Thus, the
obtained scaling solution for the magnetization in our
calculation is directly comparable with any previous re-
sult up to a proportionality constant between diferent
definitions of the Kondo temperature.

It has been known from the phenomenology of dilute
alloys that the nature of the strong-coupling fixed paint
of the Kondo problem is a local resonant level. The two
parameters of the resonant level, its position ey and width
4, are precisely the saddle-point parameters in the 1/N
expansion. Including 1/N fiuctuations, the free energy
in the magnetic field can be written as

F(h, Ef ) E, g, D) = NFMF (h, , ef, A, g, D)

+Fig~ (h, , ey, A, g, D),

where the mean field and 1/N contributions, FMF and
Fi/~, have no explicit dependence on ¹ The two pa-
rameters ey and L are determined by the stationary con-
dition of the free energy. To find the Kondo temperature
T~, we separate out from the free energy all terms de-
pend. ing on the bare parameters g and. D,

F(h, y, Ae, g, D) = F(h, y, Ae, g, D)
+F„s(h, ey, A, TJr).

The regularized &ee energy, F„g, depends on g and D
only through T~. With a proper definition of T~, F
becomes a constant depending only on g and D, repre-
senting the correction to the ground-state energy. The
thermodynamics is contained in F, g &om which we ob-
tain the field-dependent magnetization.

The paper is organized as follows. In the next sec-
tion, we briefIy recapture the large-N approach in the
magnetic field to define our notations. The renormaliza-
tion procedure is described in the third section. In the
fourth section, we present the field-dependent magneti-
zation from h, « T~ to h, && T~ for several values of
¹ The magnetic Wilson crossover numbers are calcu-

lated approximately. The proof that the magnetization
calculated kom F, z has the correct 6 » T~ asymptotics
and the integral expressions of some functions appearing
in the regularization are included in the appendixes for
completeness. To alleviate cross referencing, we list the
frequently occurring symbols together with their defining
equation numbers in Table I.

II. LARGE-N FORMALISM

Following previous treatments, ' we introduce a La-
grange multiplier A to enforce the constraint (2). By
using the fact that the constraint commutes with the
Hamiltonian, we write the partition function in the mag-
netic field h, as

Z = Tr b(ny —qpN) exp[ —PH]
PdA

Tr exp( —P[H + iA(ny —qpN)])
2m

PdA
D[c, c, f, f] exp2' dr(Zp

+H —iqpNA)

p NiQ[x exp — d~
~

Zp+ 2'+ iqpNA
0 J

) (cg + cTh,)ci cg~
k, cr

+) (Qc„ f + Qf ci, ) + 6) o ftf
k, a.

Zp ——) c~ 8 ci, +) ft(8 +iA)f .
k, cr

After performing Hubbard. -Stratonovich transformation
to factorize the Kondo interaction, we rewrite the parti-
tion function as

Z = 27[c, c, f, f, Q, Q]
PdA
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x exp — dr
l

C"(r)+
o

) c„(B~+ eg + o-h)cg~
k,o.

S

) f (0 +iA+ ho) f

+) r(c~ f +f ci, )

(io)

It is possible to completely gauge away the U(l) phase
P because it does not contain dynamics. Since the last
Lagrangian is bilinear in the Grassman variables ck andf, we can integrate them out to obtain an effective ac-
tion,

The above Lagrangian possesses a U(1) gauge invariance

f ~ f.' = f e'~,

Q —+Q'=Qe (9)

A —+ A'= A+ —.d
d7-

'

The redundant gauge degrees of freedom can be elimi-
nated by choosing to work in the radial gauge. Separat-
ing the complex field Q into an amplitude and a phase
Q = r e '4', the phase P can be absorbed into new vari-
ables f' and A'. f' = f~ e '~, A' = A+dP/dr . In terms
of new variables r, A', f' and f', the partition function
can be cast in the form, after dropping the primes,

S,a ———) (A( —v„),r( —v„))
Vn

( p(0)ro21'), (v„) ip(0)roi'g„(v„) )
p(0)r I' „(v„) p(0)I' ( „) )
( ) (17)qr(v-) )

The zero-temperature expressions of the matrix elements
E"s appearing in S & have been given by Read and
Newns. Their extension to include a magnetic Geld is
straightforward. Here we have pulled out explicitly some
prefactors for later convenience:

1 1 ~y. + (Iv-I+ &)'
Ig vn ~ . Iv-l(lv-I+») &' +&'ln

(18)

ey. + (lv-I + &)'
I'„(v„) = — ln

(&~')'

ln . . . (20)
e~. + (lv-l + &)'

vn + Q2

where we have defined the mean-field Kondo tempera-
ture,

17[A, r] exp[ —S,@(A, r) + b (0) dr ln r (r)],

(12)

T~ ——D exp
l

—— l,(ol

g)
'

and the convenient notations,

g = Jp(0),

S,s = —) Tr in[0 +iA+ ho +rGo(r)r] Ey~ =cf +ok, A = harp(0)ro. (22)

(r2
+ W d7

I

——iqoA
o EJ

where b(0) = (1/P) P„ 1 with v„= 27m/P, and

(13)
The contributions to the free energy (3) are given by

1 ~ t ega —i ego + fa
EMF ——— tan + ln

( )N -
m 2' p'( l)2

1
Go(r) = —)

k
(14) ——+

l

——go I ef,
'Ir i2 ) (23)

Z0 is the partition function of the noninteracting Fermi
sea.

The integration over the two real variables A and r can
be expanded around a saddle point

Il,y~ ———) in[I'g(v„)I', (v„) + I"„' (v„)]+ const.

(24)
iA = ef +i%,

—S gf(ef, vo)
h

Vn

dA(v„) dr(v„)
+0

x exp —S,& + ) lnro, (16)

Retaining only quadratic terms in A and r in the ex-
pansion, the partition function, after dropping the tilde
becomes,
z

In the free energy Fig~, we note that the prefactors in
the &ont of I"s in (17) exactly cancel the contribution

ln ro of (16), originating from the Jacobian of trans-
forming to the radial gauge.

III. RENORMALIZATION

To calculate zero-temperature quantities, we can sim-
ply replace the discrete Matsubara frequency sum by an
integration
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OC)

dvin(r), I' + r~„),
2K p

1 dv
v~ M V.2~'

&n

(2s)

r(v) = r„r.+r'„„=—, r, (lnv)+ —r, (lnv)+&(v-') .

The two functions I'l and I'2 only depend on lnv and
have the following simple forms

The upper integration limit is actually cut ofF by the
conduction-electron bandwidth D. One can see this from
the approximation we made in deriving the mean-Beld
&ee energy and 1/% Fluctuation matrix element I"s,

I'1(lnv) = 4 ln
+K

v, /1+~2
l

— qo-—g1
lTz

(27)
v t'1

r2 (111v) 4 +(1 ~92)»
TK )

p(0) —'7ref
l

——go —'91
I

(28)

= —i2p(0) tan
(~n

where we have introduced following two shorthand nota-
tions:

—amp(0) sgnu |)(D —lull). BEMF (ef, 4)
rll =

BEy

1= ——qp—
2

Obviously, the E1f~ of (2S) contains contributions linear
in D, which become divergent in the D ~ oo limit. A
little investigation shows that the subleading divergent
terms of Elg~ have the form of lnln D.

To separate out the cuto8'-dependent terms of I"ly~,
which diverge as D —+ oo, we consider the v ~ oo asymp-
totic behavior of the integrand,

~EMF(e f ~ +)
OL N

( "f.+&')
(29)

They are both independent of frequency v. The 1/N
Quctuation &ee energy is regularized as follows:

dv 2I'2(ln v) dv ) d*r, (*)
E1(~ = —ln I'(v) — ln I'1(ln v) + 8(v —vo) + —ln I'1(ln v) + — + const.

p 271 v I'1(ln v) ; 2K ,„(„.f~„) vr r, (x)

(31)

Since the first integral is convergent, we have extended the upper integration limit to infinity. Note that vp is not a
parameter of the theory. Fl/~ is independent of vp. We shall choose it for computational convenience. Actually, it
provides a useful consistency check for the numerical calculation. The cutoK dependence is then separated out from
the last two integrals of (31),

D
dvlnI'1(ln v) = D A1(D, q1 r)2) —vo A1(vo 1)1 g2)2~ (32)

(~o/Tx )

1 (D/T ) I ( ) A2(DI 91) 92) ef 1 +) A2(vol gl) g2) &f & +) ~

ln 1

The defined two functions, A» and A2, are given in Ap-
pendix A.

To treat the cutofF-dependent terms D A1(D, r)1, 1)2)
and A2(D, 7/1, 772, Ef, A), we erst obtain explicitly

D 0
ef = ef + — A1(1h*, r)2*),

gl
D D 0

A = E ——lnln + — A1(rh, r)2),
K g2

(3s)

(36)

D D
A2 (D, r)1 & q2, sf, K) = —ln ln —g2 6, ln ln

7t TK TK

(34)

where we have neglected terms that vanish as D ~ oo.
Using the fact that gl and g~ are the derivatives of the
mean-field-&ee energy, we can show that Al and the sec-
ond term of (34) can be renormalized away from the
saddle-point equations if we let the saddle-point param-
eters ef and A acquire the following 1/K corrections:

where gl and g2 are the values at the point of the saddle-
point solution, ef ——e& and L = 4*. When we rewrite
the mean-field &ee energy in terms of the renormalized
saddle-point parameters cy and 4, we have to include
the difference EMF(rf, A) —EMF(ef, A) into the cutoff-
dependent part of the free energy E introduced in (4).
Collecting this difference term, (34), A1(D, 1)1,g2), and a
term coming from replacing TK by TK in I'MF, the total
cutofF-dependent part of the free energy is
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TK 4 DE = —N —ln + —lnln
TK '7t TK

+ D Al(914 92) '91
OA1(g,*,g2 )

0'gy

DA1(gi, q2)
0'02

(37)

The saddle-point parameters, ey and 4, are deter-
mined by solving the following two saddle-point equa-
tions,

E„s(h, ef, b, , T~) = ——qp — ) tan

Note that the terms in the last bracket are a constant, to
the order O(gi) O(g2). The first two terms cancel out
if we define

(p) ( D& ' ( D& ' t'
T~=T~&"

~

ln
[

=D]ln exp~ -- [.
TfC P I4 T14. ) «)

(38)

~reg
1/N

1 |9 1E„s(h, ef, 6, T~) = —) ln

reg+g~ j./N

(41)

(42)

In the spirit of order by order renormalization, we replace

ey, 4 and TK appearing in Ez/N by ey, L and TK,
respectively. This gives us the regularized free energy
as a function of h, ey, L, and TK only. Note that our
expression for the Kondo temperature is consistent with
the well known expression T~ = Dgif+ exp( —1/g) up to
O(1/N).

Actually, one can simply expand Ai(gi, g2) in 1/N by
using the fact gi g2 O(1/N), a consequence of the
saddle-point equations. We immediately see that the
only O(l) contribution of Ai(gi, g2) to the free energy is
a constant. This constant is the correction to the ground-
state energy and has no effect on the physical quantities.
Higher-order terms in the expansion of Ai(gi, g2) can be
neglected in the order by order renormalization. The
second term of (34) is also dropped, since it is of order
O(1/N). After we renormalize away the first term of (34)
by defining the 1/N corrected Kondo temperature T~ via

(38) and replace the mean-field Kondo temperature T~(o)

in I'„by TK, the resulting regularized free energy is then
only a function of ey, 4, h, and TK. All these are due
to the fact that the free energy is stationary with respect
to ef and A. A O(1/N) shift of these parameters does
not induce any change in the free energy to the order
O(N) + O(l).

After completing the renormalization, the universal
&ee energy is, from (4) and (31)—(33),

Substituting the solution ef = ef (h/T~) and
K'(h/T~) back into E„s, we obtain the scaling form of
the &ee energy depending only on h/Tic, up to an addi-
tive constant. The magnetization is

M(h/T~) = — E„s(h, ef, 4', T~)

= —) o tan '
(

4
)

— Il;(~~ (44).
The one-dimensional integration in the regularized 1/N
&ee energy and its derivatives, as well as solving the two
coupled equations (41) and (42), are carried out numeri-
cally.

We emphasize that the obtained magnetization is not
a 1/N perturbative result if we solve the equations (41)
and (42) self-consistently, i.e. , not by expanding ef and
4* in 1/N. The fact that we only carried out pertur-
bative ultraviolet renormalization only implies that the
Kondo temperature defined by (38) is perturbatively ac-
curate to the 1/N order. In other words, our result for
E„s or M(h/Tic) is perturbative at high energy but not
necessarily perturbative at low energy, depending on how
we solve the saddle-point equations. As we can see, the
same renormalization procedure can be carried. out for ev-
ery physical quantity, and their calculation is a straight-
forward exercise.

IV. RESULTS

NA 1
1 ——) ln

7r S

+N
I

——qo I
ef + E,ffv)

Eij~ = —vp A 1 (vp, 'gl, '92) —A2 (vp, gl, 'g2, 6f, A)

Av
ln I'(v) — ln I'1(ln v)

0 2'
2 I'2(ln v)+ 9 v —vp
v I', (ln v)

(40)

The parameters gq and g2 only depend on ~y, L. Inside

gp and I'„, TK is replaced by TK.(o) .

The solution of the saddle-point equations, ef(h/T~)
and b, *(h/TIc), for qp

——1/6, N = 6 is shown in Fig. 1 as
an example. Generally for qp P 1/2, there is more than
one solution in the weak-coupling regime for a given value
of h/T~. Certainly, the criterion is to choose one with the
lowest energy. However, since we know the asymptotics
at both weak- and strong-coupling limits, we can foHow
the solutions continuously by varying the magnetic field
slightly each time. For qp ——1/6 and N = 6 as an exam-
ple, there are solutions other than that shown in Fig. 1
for h/T~ ) 0.52 and give magnetizations much closer to
Hewson and Rasul's exact results in near crossover re-
gion compared with the results shown in Fig. 3. But, if
we follow these solutions to the high magnetic field, they
do not have the correct asymptotics.

The field-dependent magnetizations M(h/TIc) for qp ——
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I
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I
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/
/

N=6

0.4

0.2

0 I I I I I I

0.5
h/T»
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FIG. 1. The solution of the saddle- oint
gne ic e or qs = 1/6 and N = 6. Ta is defined by (38).

&f is the position of the resonant level and A this e width.

t
X 2 and vanous values of N are show

' F' . ". Nown in cg. 2. Note

where no solution '
ow in e crossover region)

w ere no solution is found by the present method. This
Qp =

/ . The reason is the followin
%"e tr to descr by ibe the strong-coupling Axed point b a

owing.

resonant level. The arti 1—
e porn y a

e par icle-hole symmetry presented in
the qo ——1/2 case ties thee position of the resonant level at
the Fermi surface e* = 0 ih,

&
—— , in the strong coupling regime.

ertainly, the nature of the weak cou 1oup ing zs no longer

] ln

2ln

In 2

Nln TK

/t/T~ && l. (44)

1 I I I I I I I I I ! I I I I I I I I I

a resonant level, thus e* 0. A iscontinuity must oc-
cur at some value of e* wit

, preventing continuous crossover from o 'd t
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/ to close the window and to obtai
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the magnetizations for qp = 1 N h, t e "realistic" situa-
ion. iso shown are Hewson and Rasul's

results ' for N = 6 8 A
asu s et e-ansatz

s ' or = 6, 8. Although the lines can cross
continuously from one side to th hi e o e ot er, they obviousl
overestimate the curvature in th

)

ure in e crossover region. With
increasing N, the curvature is reduced.

We calculate the ma net'
fort e

gne ic ~xrilson crossover numbers
or the Coqblin-Schrieffer model = 1 N
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( 21n2)
Th, = 2 '/~ T~ - TIc/

~

1+
N (4s)

The last term of (44) can be removed by changing to a
new energy scale

TABLE II. The calculated magnetic Wilson crossover
numbers for the Coqblin-Schrieffer model, qo ——1/N, defined
as cx' of (47). With T~ defined by (38), we read off the ini-
tial gradient, n in (43), the magnetization curve. Then the
crossover number is o' = n/(1 + 2 ln 2/N).

Although we only explicitly prove the first log term of
(44) in Appendix B, we expect that our result (43) will
precisely produce all three log terms of (44), since all
1/N order contributions to the free energy are included
in the present approach. Another direct way to see this
is following. Given the second term of (44), the last two
terms of (44) are determined by the second term of the
weak-coupling P function,

2
4
6
8
10

Crossover number

0.25
0.65
1.01
1.36
1.70

Bethe ansatz

0.342 (=1/~e~)

dg 2 g~

dlnD (46)

Our expression for the Kondo temperature (38) gives ex-
actly the same beta function. The correct asymptotic
form (44) allows unambiguous determination of the en-
ergy scale Tp, in the present approach. In terms of the
unique energy scale Tp„ the coefIicient o.' in the strong-
coupling asymptotic form of the magnetization
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APPENDlX A' INTEGRALS Ay AND A2

M 6
Mp T~

] 6= 0.'
Th

h—&( &,
Th

(47) For simplicity, we set T~ ——1 in this section. From the
definition, A2 is an integral of the type,

is just the magnetic Wilson crossover number. From (47)
and (45), we see n' = o./(1+ 2ln 2/N). The slope o; will
be determined directly from M(h/T~) curve. We list the
results for the general SU(N) cases in Table II.

In summary, we calculated the universal field-deendent
magnetization for the general SU(N) one impurity Kondo
model for various values of N and f-electron fillings.
At both low- and high-field limits, our results become
asymptotically exact, as shown analytically in Appendix
B. For other than half filling of the f-electrons, the mag-
netization curves cross continuously from one side to the
other. In the crossover region, the larger the N, the
smoother and the more accurate is the magnetization. In
contrast to a continuous phase transition, the crossover
involves no divergence. The other facet of the story is
that one then does need high-order terms to smooth out
the crossover for a given ¹

A 2 (D, 'gl ) '92, ef ) 4) —A2 (vo, 'gl, 'g2 1 ey 1 4 )

a(eg, A) = —~it's,

, (1
S(., ~) =~'~ ——q,

ur(eg, A) = A(1 —z.rjz)1'
v(.~, a) = —~ay, ~—

(A2)

(A3)

(A4)

By carrying out integration, we find

(As)

D dv ~lnv+ v
2 Al

z v (ln v + a ln v + b)

where a, b, m, and v are all independent of frequency and
are given by

2A2 (vo, rji, gz, ey, A) = —ln (I»o + a ln vo + 6)—
27t

2V —0XU

a —46 (0.
1 ]n 2lnz 0+pa —4b + 4b

X
ga2 —4b 2 ln vo —ga2 —4b

tan-' &'b-"
/4b a& 2 ln vo+a

From the definition of Aq, it is an integral of the type

dv
DAi(D, rli, g2) voAi(vo rli g2) = —ln (ln v+ aln. v+ 6),-. 2~ (A7)

where we choose vp big enough so that the argument of the log function is always positive. We can see that Ai (vp, '1ji, 'g2)
is analytic in a and b for small values of a and b. In some cases, Ai can be expressed in terms of the standard integral
of exponential functions such as Ei(x). In the present problem, the parameters a and 6 never get very big. A series
expansion is sufIicient for the practical purpose. The expression we used in the present calculation is,
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7rAi (vp, rj], 772)
Pi (ln vp)

ln vp

Ei(ln vo) +&2/4 —b /~2/4 b ~/2e +e e
vp

„+iP„ ln '
vp+ ) (—1)"+ „(o.", + n2) + 2 lnlnvp-nln" vpn=1

Pi(ln vp)

ln vp
(A8)

where P are polynomials of ln vp,

P„(x)= 1+nx + n(n + 1)x'
+. + n(n+ 1) . (m —1)g

and o.q, o.2 are related to a, b through

0.'y + 0!2 = G) 0!yO.'2 = 6.

Ei(x) is the standard integral of exponential function,
defined. by

(A11)

Note that o.z + o.z are expressed as polynomials of
o, and b I.n the expansion (A8), m is the order
of expansion. The neglected terms are of the order
[max((ni(, [o2[)/lnvo] + /m. Typical values used in our
calculation are m 10 —15 and lnvp 5 —8.

the high-field asymptotics for qp = 1/2 and qp = 1/K.
The proof for other values of qp becomes parallel. We
shall set TK ——1 and omit the asterisk in the notation of
saddle-point solution ef (h) and A*(h).

Let us first consider qp = 1/2 and even K. In the
high magnetic field, the f-electron level is split into N
levels. Each of them is distant from the others. For
qp

——1/2, the f-electrons occupy the lowest K/2 levels:
o = —S, —S + 1, ,

—1/2. The o' = —1/2 level will lie
close to the Fermi level. Spin exchange will result in a
small resonant width. Thus, we write the solution in the
form

h,
cf = ——6cf )

2

bef —+ 0, as h, —+ oo.

We recall that S is the spin and N = 2S+ 1. Since we
are looking for ln h, asymptotic terms, we neglect all
terms, which die as 6 or faster. Thus,

' (o-+ i2) h,
APPENDIX 8: HIGH FIELD ASYMPTOTICS

OF THE MAGNETIZATION
cf~ ——cf +06 =

10 2'
(B2)

The small-Beld asymptotic behavior of (47) is the well-
known result of the present approach. Here, we prove

I

With this approximation, the magnetization is simplified
to

, t'b, lM=Mo ——tan '
~27t' i, bef )

dv 1
' BI'„BI'), OI'p„'"( ) ah "('ah '""-') ah'

27t I V
(B3)

where Mp ——g p o, is the saturation value of the magnetization. To shorten the notation, we use the unregularized
I/N fiuctuation energy (25) to carry out the proof. Since the values for Set and A are given by the saddle-point
equations (41) and (42), we have to make use of them. With the simplification (B2), Eq. (41) is similarly reduced to

1——tan '/ f+
vr (Set )

dv 1 Bl „ t9I p OI g„r„(v) " + r„(v) + 2r„(v) " = O.
27K I v B&f ~&f Bcf

(B4)

The matrix element I 's involve the spin component summation P

r„(v) = —') r,'l(v), r, (v) = —) rl l

Each spin component r& l of the I"s can be read from (18)—(20). The difFerence between the derivatives of the 1/N
free energy appearing in (B3) and (B4) is that 0/Bh in (B3) will bring down an additional factor cr with respect to
0/Bet. Dividing (B4) by two and subtracting it from (B3), we find

1 / 1)M=Mp ——) ~

o. + —
~

2p
r, (v)

" + r„(v) " + 2r„„(v)2~r v 06f QEf OEf

Note that the cr = —1/2 component vanishes in the above a suinmation so we can replace ef by (o.+ 1/2) h. Carrying
out the derivatives, we find
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1M=Mp — )
CJg ——1

2

By noting, from Eq. (42),

S

) ln (et„+ A ) O(1/N),
p, =—S

we can expand the expression inside curly bracket of (B6) in I/N. We shall also expand I'(v),
2S

I (v) = —) ln (ef„+ (v+ D)2)

2

By changing the dummy variable, v = hx, we can make following expansion,

S S

) ln ef„+(v+A) I =21nh+ —) ln (2+lj) +x I
p, =—S p, =—S

= 2 ln h [I + Q (ln x/ ln h) ],
where we dropped terms of order 4/h as usual. That it is possible to make lnx/inh expansion in the last expression
is due to the convergence of the integration in (B6). We also expand I'(v), given by (B7), in ln h, and keep the
leading term. The upper integration limit in (B6) can be extended to infinity. The final result for the magnetization
is, after some manipulations,

M
Mp

d* (~+ —,')'
tI + O(ln x/ ln h) ]

vr (~ + i
)

2 + ~2 ln h

1= I — + O(ln 6).Kink (BS)

For qp
——I/N, strictly speaking, I/N is no longer the loop expansion parameter. Nevertheless, if we repeat the

above steps, we find

M 1—= I — + Q(ln ti).
—2

S 2lnh,

Note that the leading log correction is independent of N for qp ——I/N. It is easy to see this from the perturbation
in g. This term comes from the linear term, g/2, in the g (& I perturbation. The diagram for this term involves
one conduction electron loop and one f-electron loop, which together contribute a factor N . The interaction vertex
brings in a factor I/N. After normalization, i.e. , dividing by S N, it is independent of N.
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