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Previous linear spin-wave calculations as well as Green s-function theories predict disorder at
T ) 0 for certain Heisenberg models in disagreement with the in-principle exact Monte Carlo
simulations. In order to resolve this contradiction we extended the spin-wave theory beyond the
usual Bloch s nonlinear approximation, including leading off-diagonal terms. We investigate the
classical Heisenberg model on an fcc lattice for three pairs of coupling constants (Ji, Js) which result
in an infinite degeneracy for the magnetic ordering vector in the mean-field (MF) theory. We study in
detail how the interaction between spin waves selects the ordering vector at the critical field between
antiferromagnetic and paramagnetic phases. We Gnd that the usually ignored nonlinear terms
generate soft modes which are consistent with the order found by Monte Carlo simulations at zero
field. We demonstrate the importance of these nonlinear eKects by investigating antiferromagnetic
models with a one- or two-dimensional degenerate MF manifold for the ordering vector. The model
with the two-dimensional manifold seems ideal for a Monte Carlo study of domain growth in a first-
order phase transition. Finally, we show that even when Bloch s nonlinear spin-wave theory gives
qualitatively correct results, it can lead to a factor-of-three overestimate for the critical temperature
of ferromagnetism. We 6nd that this failure can be understood by considering the higher-order
eKects included in our extended spin-wave theory.

I. INTRODUCTION

In most Heisenberg systems the wave vector of mag-
netic order can be accurately predicted using the mean-
field (MF) theory. Under certain circumstances, how-
ever, the ordering vector shows an inGnite degeneracy in
the MF description. However, the degeneracy is partially
lifted by thermal Huctuations which can even stabilize
long-range order. Villain, et al. discussed this surpris-
ing effect in the context of the Ising model and called it
ordering by disorder. %'e study the details of this mech-
anism in Heisenberg models using nonlinear spin-wave
theory and Monte Carlo simulations.

A well-known example of a system with a degenerate
ordering vector in the MF theory is the antiferromagnetic
nearest-neighbor Heisenberg model on a fcc lattice.
The linear spin-wave calculation of ter Haar and Lines
indicates diverging spin reduction S —(S,) at finite tem-
peratures. This has been taken as an indication of the ab-
sence of long-range order, both in classical and quantum
systems. Similarly, Green's-function approaches and,
for example, the spherical model predict no phase tran-
sition when T & 0. Monte Carlo simulations of classical
systems ' have recently shown, however, that thermal
effects stabilize a type-I structure: Thus the models with
a degenerate manifold provide a serious challenge to the-
ories commonly used in studies of Heisenberg magnets.

There is clearly a need for an improved theory for un-
derstanding even classical systems in cases of ordering-
vector degeneracy: This would facilitate the under-
standing of the in-principle exact Monte Carlo ' re-
sults. To this end, we have formulated a spin-wave the-

ory for the polarized paramagnetic phase of the clas-
sical fcc Heisenberg model with nearest-neighbor and
next-nearest-neighbor exchange interactions. The clas-
sical spin vectors are converted into complex numbers
using the Dyson-Maleev transformation. The interac-
tion between spin waves is treated using a diagrammatic
method based on the use of the exact propagator. We
obtain leading corrections to the classical limit of the
conventional ' nonlinear theory. By using these re-
sults we consider the models represented by exchange
constants at the boundaries of the three principal kinds
of antiferromagnetic structurei (I, II, III) and ferromag-
netic order. Along three of the boundaries there is an
infinite number of equivalent ordering vectors in the MF
theory. We investigate the ordering process of these mod-
els by examining the softening of spin-wave excitations
in the paramagnetic phase above the critical Geld B, at
low temperatures. We Gnd that at a Gnite temperature
a soft mode appears for one of the wave vectors of the
degenerate manifold.

The soft-mode wave vector found at B,(T), using our
theory, gives correctly the order obtained in Monte Carlo
siinulations (Refs. 7 and 8 and Sec. III) at B = 0. As our
theory is in agreement with the Monte Carlo results, our
work elucidates the mechanism by which the interaction
between spin waves stabilizes the iong-range order. For
example, at the boundary between the antiferromagnetic
type-I and type-III structures (Ji ) 0, J2 ——0), as well
as between types II and III (Ji ——2J2 ) 0), the degener-
acy disappears when we include the leading contributions
beyond the conventional, nonlinear spin-wave theory by
Bloch. For the nearest-neighbor model we find a type-
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I soft mode: This is consistent with the order found in
Refs. 7 and 8.

When Jq ——2J2 & 0 a soft mode appears for type-III
order: a feature in accord with our Monte Carlo results
(Sec. IIIA). Thus long-range order exists in this model
in spite of the two-dimensional degenerate MF manifold.
At the boundary of type-II and ferromagnetic spin con-
figurations (—Ji ——Jz & 0), we find, however, that the
usual theory is qualitatively correct, yielding ferromag-
netic behavior: This is also in agreement with our Monte
Carlo results (Sec. IIIB). The conventional calculation,
however, overestimates T by a factor of 3. Our extended
soft-mode theory shows that the higher-order contribu-
tions cannot be ignored in the region T & TM, thus
explaining the reduction of T found in Monte Carlo sim-
ulations.

Our interest in this subject originates &om our work
to understand nuclear magnetic ordering of copper.
This fcc system, which orders antiferromagnetically in
the nanokelvin regime, displays a near degeneracy of a
set of ordering vectors. The magnetic phase diagram of
copper has been investigated extensively, but one of the
high-Geld. phases still lacks an experimental characteriza-
tion. The MF (Ref. 15) and linear spin-wave theories
have been used to predict the spin structure, but the role
of spin-wave interactions in the selection of the ordering
vector has not been investigated. The methods of the
present work are not directly applicable to this problem
because the interactions are highly anisotropic in copper.
Quantum effects might also be important and more work
is still needed to understand this interesting application.

The organization of the present paper is as follows.
The classical soft-mode theory is formulated and applied
for fcc Heisenberg magnets in Sec. II. The nonlinear soft-
mode theory is constructed using classical Dyson-Maleev
transformation in Sec. IIB; the diagrammatic treatment
of the spin-wave interaction is discussed in detail. Section
IIC presents the results of our extended theory and the
usual nonlinear approach to three degenerate models; in
Sec. III we study two of these models using a Monte
Carlo simulation technique. Section IV concludes and
summarizes our work.

II. CLASSICAL NONLINEAR SOFT-MODE
THEORY

A. Classical Heisenberg madel

p~ = 4(Ji —2Jz)(c~cy + eye~ + c~c~)

+4Jz(c + cv +. c,) —6J2, (2)

where c„= cos(q„a), v = x, y, z, and the lattice con-
stant is 2a. At zero temperature the spin structure of
lowest energy is determined by minimizing 7&. Because
of isotropy of the model defined by Eq. (1), one can al-
ways construct a helix using the minimum wave vector Q
only. For a complete survey of this and related systems
applying the mean-field theory, see Ref. 1. Realizations
of this model among electronic magnets are summarized
in Ref. 16. This approach could be relevant for nuclear
magnets in the nanokelvin regime as well.

The model Eq. (1) exhibits three examples of an in-
finite degeneracy of the ordering vector. For J~ & 0,
J2 ——0 all vectors of the type Q = (vr/a)(l, x, 0) are
degenerate; this set includes, in particular, the antifer-
romagnetic (AF) type-I Q = (vr/a) (1,0, 0) and type-
III Q = (m/a) (1, 2, 0) structures. At the bound-
ary of type-III and type-II Q = (vr/a)(z, 2, z) orders
with Ji —— 2J2 & 0, we obtain a degenerate surface
c + c„+c, = 0 for the ordering vector Q. When —Ji ——

J2 & 0 the minimum is of the form Q = (vr/a)(~, x, x),
including type-II and ferromagnetic (F) spin alignments.

B. Classical spin-wave theory

We define the local frame (x;,y, , z, ) of the spin site i
in order to expand the spin vectors around. a given conGg-
uration S, = z, . Using the spherical coordinates (0;,P;)
we introduce complex quantities o.i by

S; = z;(1 —In;I ) + e;n,*. + (1 —In;I /2)e,'. n; . (4)

S; = z, cos0; + sin8;(x; cosP, + y; sing;)
= z'(1 —In'I') + (1 —In'I'/2) "(e'n* + e*n')

(3)

where n; = e'&* (1 —cos 8,) i~z = u; + iv; and e;
2 i~z(x; + iy, ). Equation (3) is the classical version of
the quantum mechanical Holstein-Primako8' transfor-
mation. In statistical mechanics it is necessary to com-
pute integrals over the solid angle of S;. Owing to the
relation sino, dg;d0, = 2du;dv; this can be converted to
integration over the disk In;I2 ( 2. As in the quantum
case, it is practical to remove the square root in Eq. (3)
by writing

We consider the Hamiltonian
NN NNN

'R= Ji) S;.S~. + Jz ) S;.S, —B ) S;

for a classical spin model with an isotropic nearest-
neighbor (NN) and next-nearest-neighbor (NNN) spin-
spin exchange. Here S; denotes unit vectors on a fcc lat-
tice with N sites and B is the external magnetic Geld.
At R = 0 we find '8 =

2 P p&IS&I where Sz
g,. S; exp(iq . r;) and pz ——g, J;~. exp(iq r;z).

We obtain

Here S is a complex-valued vector analogous to a
Dyson-Maleev transformed quantum spin operator. A
calculation shows that

21r 2'
(SDM)"(SDM)~dy = (SHP)" (SHP)~dg (5)

0 0

for integers n, m & 0. Therefore, Eqs. (4) and (3) are
equivalent in exact statistical calculations. Equation (5)
shows explicitly that the imaginary part of S does not
survive the integration over the azimuthal angle P, : The
agreement with the classical Holstein-Primako8' transfor-
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mation, Eq. (3), is thus restored. Using Eq. (4) it is
possible to avoid the tedious direct manipulation of the
spherical coordinates (0;,P;) and the expansion of the
square roots in Eq. (3).

An application of the transformation defined by Eq.
(4) to the Hamiltonian of Eq. (1) yields

Z = Zp+ (B —q, ) ) ln;I'+ ) J;,n,'n,

+-,' ):J'&(In'I' —n,*n~) In. l'

where B = BE. The Fourier transformation

I ) nq exp(iq r;)
N

defines the classical spin waves o.z. In terms of these the
Hamiltonian emerges as

'R = Ep + 'R2+ 'R4, 'R2 ——) sqlnql2,

(»)
(16)

age ( . .), are given by the free propagator (lnql2)p
I lnql exp( —P'R2)/ jexp( —P'Rg) = T/eq; the subscript
c reminds us that only the connected diagrams, here the
terms proportional to N, appear in the average.

We wish to calculate the averages (lnql ) = bG/beq at
a finite temperature. When the external field is lowered
to the critical field B,(T) for antiferromagnetic order-
ing, a soft mode with (lnql ) = oo appears for the wave
vector q = Q characterizing the antiferromagnetic order
immediately below B (T). s Equation (14) is not ade-
quate for studying the soft-mode transition at a finite
T, because the expansion used is not well de6ned when
B (T) & B (B,(0) = pp —minq pq, as eq would assume
negative values. Therefore, we cannot apply perturba-
tion theory directly with 'H2, but we must replace it by
an efFective Gaussian Haxniltonian 'R2. To accomplish
this we reorganize the series, writing

where Eo is the energy of the parallel spin configuration,
and

'R2=) ~qlnql'

V = 'R4 + ) qlnql',
Q

Gq = 6q —Gq

R4 2 ) I (q 1 2) ningnl+qn2 —q
g, 1,2

&q = B —&0+pq)

I'(q; 1 2) = ~ ~q —
—,'(~i + Vz),

(10)

(ln I') =Tis (19)

On the other hand, the relation (lnql ) = SG/hUq allows
one, when combined with Eq. (19), to solve for

We replace 'R2 by 'R2 and R4 by V in Eq. (14). The
function ez is defined by

where we have adopted the notation kg = 1, k2 = 2.
In quantum mechanical theory the Dyson-Maleev trans-
formed Hamiltonian is non-Hermitian. Here, in analogy,
'R4 is a complex-valued quantity.

The Gibbs free energy G of the model Eq. (8) is given
by

where the averages are calculated using the exact propa-
gator (lnql ) = T/Eq. The quantity Z is given by

1

PG = —ln exp( —P'R)
I

d Re(nq) d lm(nq), (13)
g

HF T) (Yo '7q 9& + Y& —q):
1 E'y

(21)

where P = 1/T and temperature is defined by setting
k~ = 1. The constraints ln;I & 2 are abandoned:
This is the approximation characteristic of conventional
spin-wave theories, i.e. , the neglect of the kinematical
interaction. The free energy G is expanded using a dia-
grammatic perturbation theory:

Using Eq. (20) we can derive integral equations for a self-
consistent determination of Zq. Noting that Cli, = 0('R4)
we iterate Eq. (20) until all Cli, 's disappear from the right-
hand side up to the desired order in 'R4. In the course
of this calculation many of the terms in the expansion,
i.e. , reducible diagrams, cancel. The two lowest-order
approximations obtained this way are

P(G —Ep) = —Sp —) ln ——), ('R4), , (14)
:(—&)"

n=l
Zq = eq + Z + O(R4), (22)

where So is a constant depending on the normaliza-
tion of the integrals in Eq. (13). The only nonzero
pairwise averages of the quantities o.z, o.2 in the aver-

=c +Z +Z~ l+0('R ),
where Zz~ is a six-dimensional integral,

(23)

2&21 = T) [I'(q —2; 1 +—q, 2)I'(1;q, 1 + 2) + 1 (1;1 + q, 1 + 2)I'(1; q, 2)] (Zi+qe i+zeq)
1,2

(24)
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-HF + gHF
q q q ) (25a)

-HF + g(2)
q q q ) (25b)

where Z and Zq are calculated using e . The lack of
self-consistency in Eq. (25b) discards a subset of the dia-

It is convenient to perform the derivations by defining
suitable Feynman diagrams; those contributing to Z

and Zq are shown in Fig. 1.
The nonlinear spin-wave theory based on Eq. (23) has

not been studied before, at least not in explicit calcu-
lations. In contrast, Eq. (22) is the classical limit of a
scheme known as the standard variational theory, or
as the spin-wave renormalization, the second random-
phase, s the Hartree-Fock (HF), 2~ or the diagonali2 ap-
proximation. As we will see, the theory based on Eq.
(22) is not accurate enough for determining soft modes of
the degenerate antiferromagnetic models of Sec. II A. In
these cases the term Eq is decisive: Its omission would
lead to qualitative disagreements between the spin-wave
approach and the in-principle exact Monte Carlo calcu-
lations.

The diagrams included in a given approximation are
de6ned by considering the expansion in terms of the &ee
propagator T/e~ In orde. r to find the diagrams summed
in the theories like Eqs. (22) and (23), one must eliminate
Z~ &om (~o,~~ ) = T/Z ~ via successive applications of Eq.
(22) or (23) and expansions of the denominators. One
can then compare the series with the complete expansion
(~n~~2) = 8'G/be~ where G given by Eq. (14).

Unfortunately, Eq. (23) is an integral equation for s~
containing six-dimensional integrals over the 6rst Bril-
louin zone. We are, therefore, led to introduce yet an-
other approximative scheme in order to determine (~o~~2)
beyond (~n~~2)HF. We write

grams included in Eq. (23). Equation (25b) augments the
Hartree-Fock theory, Eq. (25a), with the leading correc-
tion only. Nevertheless, the expansion of (~o.z~ ) = T/ sz
in terms of the free propagator T/ez contains all terms of
the first and second order in 'R4 and a significant amount
from all higher orders of the complete expansion. For the
degenerate models of Sec. IIA this is the lowest-order
spin-wave theory which gives soft-mode behavior consis-
tent with the accurate Monte Carlo simulations (Refs. 7
and 8 and Sec. III).

C. Soft-mode theory

Excitation of a q = 0 spin wave corresponds to an over-
all rotation of the spins; it does not afFect the exchange
energy. The Zeeman energy will change, however, and
one 6nds the exact result Zp ——B. An inspection shows

that Zp = Ep = 0, assuring that the treatment of the
exchange energy is rotationally invariant. Therefore, we
can solve Eq. (25a) by using the ansatz sHF = B—go+a~
with pz ——P, J,~ exp(iq r;~). The inverse Fourier trans-
form of Eq. (25a) gives2s

J;~ = J;~ 1+ — exp iq r;~ —1 8, 26

allowing one to solve explicitly for the inverse mapping
J;~ ((J;z),T). Hence the effect of a finite temperature is,
according to Eq. (25a), to modify the T = 0 spectrum e~
via a change of the nonzero coupling constants J,~ into
the so-called "renorrnalized" values J;~ (T).
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FIG. 1. Feynman diagrams contributing (a) to Z~ and

(b) to Z~~ ~.

FIG. 2. Lattice Green's functions G(1;r;~) at the origin
(solid curve), at the nearest-neighbor (dashed curve), and
at the next-nearest-neighbor (dotted curve) lattice sites for
Jq ——cosP, Jq = sing. The minima of pj, are indicated by
F and I—III, corresponding to ferromagnetism and the three
principal kinds of antiferromagnetism on a fcc lattice, respec-
tively.
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It is convenient to express the integrals in Eq. (26) by
means of functions G(z;r;~), known as lattice Green's
functions or generalized Watson's integrals:

1
~

exp(iq r;~)
1 —zp~/7

(27)

where p = min~ pz. The value z = 1 corresponds to e
with a soft mode and the interval 0 & z ( 1 to the ferro-
or paramagnetic phase in an external Geld. The func-
tions G(1;r;~) at the origin, the nearest-neighbor (ri)
and at the next-nearest-neighbor (rq) lattice sites ob-
tained by a numerical integration, 26 are shown in Fig.
2 as a function of the relative magnitude of the cou-
pling constants Ji and J2. Note that G(l;r;~) diverges
when Jq & 0 and J2 ——0, Jq ——2J2 ) 0, or when

—Ji ——J2 ) 0. At Ji ——0 the model Eq. (1) reduces to
four uncoupled simple cubic ferro- or antiferromagnets.
The 8 = 0 transition temperature of the system Eq. (1)
in the spherical approximations is T;I'" = TMF/G(1; 0)
where J;~ = J;~ and T is the mean-field result T
—minclp~/(3k~); Tp" is zero for the three degenerate
models of Sec. IIA.

The integrals Z~) in Eq. (25b) can be calculated us-
ing an elementary Monte Carlo integration technique
with sufEcient accuracy when the number of Monte Carlo
points is on the order of 3 x 10; this is also enough for a
good statistical error estimate. The soft-mode results for
the three models of inGnite degeneracy, discussed in Sec.
II A, are summarized in Figs. 3(a)—3(c). When error bars
are shown for Z~ they correspond to 95% statistical con-
fidence interval of Zz . The dashed lines in Figs. 3(a)—
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FIG. 3. Quantities s~ and 2„, proportional to the inverses of the average excitation of the classical spin waves (~o~~ ) given
by Eqs. (25a) and (25b), along some zero-temperature degeneracy lines at the high-field (T, B) phase boundary (a) and (b)
and at zero field (c). For boundary between (a) type I and type III, Ji ) 0, J2 = 0; (b) type III and type II, Ji ——2J& ) 0;
and (c) for type II and ferromagnetism, —Ji = J2 ) 0.
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3(c) are fits to the function ci + c2 cos(2m2:) + cs cos(4vrx)
which is consistent with the periodicity of the k space.

We next discuss brieQy the details of the soft-mode
results for the three degenerate models of Sec. IIA.

Jg &O, Jg ——0

The solutions of Eqs. (25a)—(25b) are shown in Fig.
3(a) along the degeneracy line q = (vr/a)(l, x, 0) for a
representative point on the high-field phase boundary.
There are no soft modes in the Hartree-Fock approxima-
tion, Eq. (25a), at finite temperatures. This is because
it is not possible to remove the degeneration lines &om

by altering the coupling constant Jq only: Functions
G(z; r;~) diverge when z + l. In the extended theory Eq.
(25b), however, a soft mode appears at x = 0, suggesting
type-I order below B,(T). This result is consistent with
the zero-field Monte Carlo simulations of Refs. 7 and 8.

The dashed line in Fig. 3(a) corresponds to an efFective
next-nearest-neighbor coupling J2 —0.006Jq. One
might, therefore, suspect that the degeneracy affects the
ordering vector when 0 & J2 0.006', thus stabilizing
the type-I phase in a temperature interval immediately
below T~.

2. Jz ——2' & 0

The quantities c and ez computed along the line

q = (vr/a)(x, 1 —x, 2) are represented in Fig. 3(b). The
minimum of e is located at a type-II wave vector

(x = 2). One obtains this result also, for example, in

the high-ffeld approximation z (( 1: G(z; r;~) = z J;z/p
for r;~ g 0. Nevertheless, no soft mode appears in the
HF theory. This can be seen by studying the cases when
the real coupling constants Jq and J2 differ slightly from
the degenerate values Ji ——2J2 ) 0. In this case a soft
mode forms at the minima of p~. However, Ji and J2
renormalize toward the degenerate model. This follows
&om Eq. (26) together with the fact that the quantity
G(1;ri) —G(1; r2) is negative when Ji ) 2J2 and changes
its sign exactly at Jz ——2J2. One finds that functions
G(1;r;z) diverge when Ji -+ 2J2 ) 0; i.e., zero-energy
modes can appear at T = 0 only.

The inclusion of an off-diagonal contribution, Eq. (26),
however, leads to the appearance of a soft mode at x =
0, corresponding to type-III order. The location of the
soft mode was also confirmed by a study at a number
of points elsewhere in the degeneracy plane cos(q a) +
cos(q„a) + cos(q, a) = 0. The location of the soft mode is
consistent with zero-field Monte Carlo simulations of Sec.
IIIA. These results suggest that the degenerate model
with Jq ——2J2 ) 0 has type-III long-range order in the
thermodynamic limit.

8. —Jg ——Jg & 0

The linear spin-wave theory for T & 0 at zero Geld gives
the unphysical result S —(8 ) = oo for a ferromagnetic

structure because G(l;0) diverges at the degeneration
line. In another model with a diverging spin reduction,
Rastelli, Sedazzari, and Tassi have found that ferro-
magnetism is stabilized in the HF theory. Our model
with —Jq ——J2 ) 0 shows quite similar behavior: Fig-
ure 3(c) illustrates Z~ and sHF along the degeneracy line
q = (vr/a) (z, z, x). The soft mode forms at q = 0 in both
approximations, Eqs. (25a) and (25b). The error on the
curve for e'z is on the order of the size of the markers.
The diff'erence G(1; ri) —G(l; r2) is in this case positive
on both sides of the degeneration line: One finds, using
Eq. (26), that temperature tends to stabilize a ferromag-
netic structure when —Ji J2 & 0. In this case, too,
there is an agreement with Monte Carlo results; see Sec.
III B.

The correction Zz ~ could induce an antiferromagnetic
instability causing min& ez ( 0 around type-II wave vec-
tors. According to the classical soft-mode theory, the
instability occurs when k~T/~ Ji~ = 0.72. Monte Carlo
simulations of Sec. IIIB show, however, that the system
is disordered above k~T, /~ Ji~ = 0.65 (see Fig. 5).

III. MONTE CARLO SIMULATIONS

The zero-field phase transition of the antiferromagnetic
nearest-neighbor model has been studied in detail by
Monte Carlo (MC) simulations. A phase transition was
observed in the first MC study and it was proposed to
be a consequence of an ordering by disorder mechanism.
In more recent MC studies Minor and Giebultowicz, as
well as Diep and Kawamura, found a discontinuous tran-
sition to a collinear type-I structure at k~T~/ Ji = 0.45.
We too have investigated the nearest-neighbor model.
Our Monte Carlo studies on this model agree well with
the findings of Refs. 7 and 8. The type-I order of
this model is therefore established by three independent
Monte Carlo calculations. Below we report results of
our simulations of the two other degenerate models with
next-nearest-neighbor exchange.

A. Monte Carlo simulation of the model with
J, =2J»0

We employ the heat bath Monte Carlo method of
Ref. 29. The runs were started with a random spin con-
figuration at a temperature well within the paramagnetic
phase. Temperature was then lowered exponentially by
using 3% steps. At each temperature, 6000 Monte Carlo
updates per spin (MCS) were performed; estimates for
the thermodynamic quantities were obtained as averages
over the last 4000 MCS. Eventually, a discontinuous tran-
sition to an ordered state took place. Similar runs were
made for increasing temperature as well. The initial con-
figurations for them were the structures obtained deep in
the ordered state during the cooling runs.

The internal energy E = ('8) calculated in these runs
is shown iii Fig. 4(a). The statistical error is smaller
than the size of the symbols: Because of large overlap,
all data points are not shown. The salient feature of the
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S; = u~2cos —(1, 2, 0) r;+— (28)

where u is a unit vector. For N = 1728, however, the

-1.28—

-1.32-

(a)
r

.0
I

I
I

Q3'
r

P

Or S'

I r

results is the pronounced hysteresis loop which is of the
same order of magnitude as TN. The size effect between
N = 4096 and N = 8000 in internal energy is diKcult to
notice on the scale of Fig. 4(a). However, for N = 1728
the points deviate &om the others in the paramagnetic
phase, and the lower transition temperature also appears
to be higher than for N = 4096 and N = 8000.

In the ordered structure found in the runs for N = 4096
and 8000, the type-III Fourier component was clearly pre-
dominant. The spin structure was identified as the simple
collinear 3 type-III ' configuration

III 2

piii ——) —) S; exp(iQ r, )
i

(29)

where the Q sum is taken over the six inequivalellt type-
III wave vectors. The mean-square Monte Carlo average
(p&&&)

~ is shown in Fig. 4(b). The paints denoted by g3

and O were obtained from the runs of Fig. 4(a). An ad-
ditional run (Q), started with a perfect collinear type-III
con6guration, was performed with decreasing tempera-
ture. The values O (N = 8000) are clearly smaller than
those with (N = 4096). This is due to defects formed
during cooling from the paramagnetic phase because the
data points O (N = 8000) and agree. A tendency for
formation of defects was also reported in Refs. 7 and 8
for the model with J~ ) 0, J2 ——0.

The Monte Carlo data for N = 8000 was checked by
using a 2-times-slower annealing rate with 12000 MCS
between 3%%up changes in temperature. The results agreed
well with the O's of Figs. 4(a) and 4(b). However, for
N = 4096 the 2-times-slower annealing rate produced
defective type-III structures with (p&2&&)i~2 = 0.74 at
k~T/Ji ——0.01, and the cooling phase transition ap-
peared to take place a few temperature steps earlier than
in faster runs. This suggests that at this annealing rate
size efFects can be still observed in the ordering process
when N = 4096.

low-temperarature state was a complicated mixture of
various Fourier amplitudes, degenerate in the mean-Beld
level.

We de6ne the quantity @III by
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FIG. 4. (a) Internal energy ('R) obtained in Monte Carlo
simulations of the model Ji = 2 Jq ) 0 at zero field. (b) The
type-III Fourier amplitude (p»i) . Symbols denote system
sizes of N = 1728 (~), 4096 (), and 8000 (O, Q). The
dashed lines are guides for the eyes. In (a) the vertical arrow
indicates the transition point to the low-temperature phase
in the run with N = 1728.

In order to ensure that our MC runs are long
enough, we have studied the normalized autocorrelation
function 4

(a(t, )A(t, ~ t)) —(a)'
(& ) —(&)

The relaxation time of the quantity A. is defined by

~f&] = f 4 f&I (&)« .

Because the slowest relaxing quant, ity is the order pa-
rameter p&2&&, it is necessary to consider $[piii](t) ~ We
have studied this function at k~T/Ji ——0.13 for a sys-
tem with N = 4096 using runs of 2.5 x 10 MCS, both
in the paramagnetic and in the type-III phase. Obvi-
ously one of the phases has to be metastable but both
survived during the entire simulation. The long-time tail
P]'p&&&](t) ( 0.1 turned out to be difficult ta determine ac-
curately: Ignoring its contribution t,o the relaxation time
we find v. Cpiii] = 81 MCS and ~[pi, i] = 21 MCS for the
paramagnetic and type-III phases, respectively. For ex-
ponential relaxation these estimates would be 90% of the
correct result.
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We have determined the location of T~ by the method
proposed by Creutz, Jacobs, and Rebbi. ' One-half
of the N = 8000 lattice was initially set to the para-
magnetic phase and the other to the type III ordered
configuration. The halves were taken &om separate
samples of type-III phase and disordered paramagnetic
structure which were equilibriated by simulation of 4000
MCS. The stable phase with lower &ee energy soon re-
placed the metastable half if simulation was done far &om
T~. We found that the phase interface is always un-
stable and that the system collapsed to one of the bulk
phases in less than 1000 MCS. Several runs suggested
that 0.148 ( k~T~/Jq ( 0.1505. In this temperature
interval the final spin configuration can be of type III as
well as paramagnetic when N = 8000. We carried out
10 runs at k~T/ Jq ——0.1505 and we detected the param-
agnetic phase as the Gnal phase 8 times and the type-III
structure 2 times. In 10 runs at k~T/Jq ——0.148 we
found 9 times the type-III phase and once the paramag-
netic state.

The solid line in Fig. 5 is the magnetization calculated
using the usual HF spin-wave theory. According to this
approach the maximum temperature for a nonzero mag-
netization is k~T, /~ Jq~ = 1.8, in close agreement with
the mean-field result k~TMF/~ Jq

~

= 2. The Monte Carlo
estimate kgyT, /~ Jq~ 0.65 reveals a gross failure of these
theories. However, the temperature k~T/~ Jq~ = 0.72
for type-II instability against ferromagnetism in our ex-
tended soft-mode theory agrees quite well with T . The
Monte Carlo result of Fig. 5 shows that the ofF-diagonal
contributions are not enough to stabilize a type-II phase.
These corrections could, however, have a crucial role to-
gether with the features ignored in our idealized classical
model. EuSe (Refs. 37 and 16) provides an experimen-
tal system with —J~ —J2 ) 0, but in this case lattice
distortions have been proposed to be important.

The low-temperature magnetization is not a linear
function of T which manifests the failure of the linear
spin-wave theory. The quantum mechanical analog of
this e8'ect was discussed in Ref. 22.

IV. SUMMARY

B. Monte Carlo simulation of the model with
-z, =z, ) 0

Monte Carlo estimates for the mean-square spontaneus
magnetization (m2) ~2, where m = ~N

~ P,. S,~2, are
shown in Fig. 5. The results were obtained by initializing
the runs in the paramagnetic phase with a random spin
configuration; the temperature was then reduced gradu-
ally. The ferromagnetic tendency is clear. Approximat-
ing T by the inHection point of the magnetization we
obtain k~T, /~ Jq~ = 0.65. Type-II order did not appear
in any of the cooling runs.
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FIG. 5. Mean-square average magnetization (m ) in the
model —J& ——J2 ) 0. The symbols denote system sizes
N = 1728 (~), 4096 (), and 8000 (O). The solid line is the
spontaneous magnetization calculated using the HF spin-wave
theory.

Three models of an infinite wave-vector degeneracy in
the mean-field theory were investigated in the context
of the classical Heisenberg model with nearest-neighbor
and next-nearest-neighbor exchange interactions on a fcc
lattice. Using the classical Dyson-Maleev formalism the
soft-mode approach for isotropic classical systems was
extended beyond the nonlinear theory of Bloch by in-
clusion of a high-order ofF-diagonal contribution caused
by the dynamical interaction between the classical spin
waves.

We have shown that our extended soft-mode theory,
unlike the conventional method, correctly predicts the
zero-field order found in Monte Carlo simulations of the
degenerate models. Our calculations indicated, in par-
ticular, that a soft mode corresponding to type-I order
forms in the high-Geld paramagnetic phase of the anti-
ferromagnetic nearest;-neighbor model, thus suggesting
that the type-I order found in the Monte Carlo simula-
tions of Refs. 7 and 8 is present in the thermodynamic
limit as well.

The fcc Heisenberg model with Ji ——2J2 ) 0, exhibit-
ing a two-dimensional manifold of wave vectors degener-
ate in the mean-field theory, was studied in detail. The
extended soft-mode approach showed type-III order, and
this conclusion was also confirmed by zero-field Monte
Carlo simulations which indicated collinear type-III
order. A similar structure has been found previously for
a model without degeneracy (Jz = 10J2 ) 0).ss The ef-
fect of the degenerate manifold is, however, to suppress
the Neel temperature down to T~ ——0.15 x T~~ . The
Grst-order nature of the zero-Geld phase transition in this
model was found to be very strong with a well-defined
hysteresis. The quite large ground-state degeneracy does
not destroy the long-range order as happens, for exam-
ple, in an even more &ustrated three-dimensional model
studied in Ref. 39.

Finally, we studied a model with a zero-temperature
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degeneration line between ferromagnetic and type-II
wave vectors. Bloch's nonlinear theory predicted ferro-
magnetism in agreement with the Monte Carlo result.
We found, however, that in order to understand the re-
duction of T by a factor of 3 in Monte Carlo simulations
&om the Bloch's theory and the mean-field results it was
necessary to consider the higher-order e8'ects included
in our extended spin-wave theory. We found that ofF-

diagonal contributions tend to stabilize a type-II phase,
but this tendency is not strong enough in order to make
the type-II phase appear.

Note added in proof Th.e presented calculations for
the models with Ji & 0, J2 ——0, and Ji ——2J2 ) 0
do not exclude the possibility that the low-temperature
phase when 0 ( B & B could be diferent &om both
the phase obtained in MC simulations at B = 0 and
that suggested by the soft-mode theory in the high-Geld

paramagnetic region. Our annealing simulations (unpub-
lished) of the model with Jj ) 0, Jz ——0 suggest, how-
ever, that for this case the model exhibits type-I order
in all Gelds B & B, and that the spin configurations
are qualitatively similar to those obtained by us in Ref.
32 for a model with Ji ———10J2 ) 0. However, our re-
cent MC simulations (unpublished) for the model with
Ji ——2J2 & 0 in nonzero fields suggest more complicated
behavior.
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