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The frequency dependencies of the uniform transverse and longitudinal susceptibilities of Heisen-
berg ferromagnets with a dipole-dipole interaction are studied in different temperature regions.
Within a broad range of parameters the major contribution to the longitudinal component of the sus-
ceptibility, as well as to the dispersion of the fluctuational corrections to the transverse one is found
to be the process containing a couple of spin waves in the intermediate state. The ferromagnetic-
resonance (FMR) linewidth, which at zero temperature exists due to the quantum fluctuations is
calculated. Deviations of the FMR line shape from a Lorentzian are shown to be rather significant
at sufficiently high temperatures. The results obtained within the framework of the developed per-
turbation theory based on the approach of Vaks, Larkin, and Pikin are generalized for the critical
dynamics region. The range of validity of the employed approach is discussed. It is shown that
dipole-dipole forces cannot be considered as a perturbation not only in the close vicinity of the
Curie point but also at any temperature at low enough frequencies. In particular, the longitudinal

susceptibility reveals the infrared discontinuity in the zero-frequency limit.

I. INTRODUCTION

The energy of the dipole-dipole interaction between
atomic magnetic moments in ferromagnets is usually 2 or
3 orders of magnitude smaller than the exchange inter-
action energy for neighboring atoms. However it is well
known that the importance of the dipolar forces increases
at long distances owing to their long-range character.!
As a result the spectrum of long-wavelength spin fluc-
tuations is significantly modified by the dipolar forces.
Moreover, the internal magnetic field in a sample differs
from the external field and depends on the shape of a
sample. Finally, the dipolar interaction in contrast to
the exchange one does not conserve the total spin of the
system providing the mechanism for the uniform relax-
ation of the magnetization fluctuations.

This relaxation mechanism in the spin subsystem is of
special interest among other influences of dipolar forces
mentioned above. This is due to the fact that sometimes
just the processes of internal spin-spin relaxation bring a
major contribution to the absorption of the alternating
external electromagnetic field.

The ferromagnetic-resonance (FMR) line broadening
caused by these processes has been studied in a num-
ber of theoretical papers (see, e.g., Refs. 2-4). However,
the picture of behavior of the transverse susceptibility
as a function of field and temperature is still not com-
plete, especially for weak fields. Moreover, to the best
of our knowledge no studies of its frequency dependence
have been undertaken yet. Also, despite the significant
experimental interest,> 7 the dynamical behavior of the
longitudinal susceptibility has not been studied theoret-
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ically at all while the static case has been analyzed in
Refs. 8 and 9.

In the present paper the frequency dependence of the
uniform transverse and longitudinal susceptibilities in
zero external magnetic field is examined. In order to
cover a broad temperature range we have used the per-
turbation theory approach developed by Vaks, Larkin,
and Pikin in Refs. 10 and 11. This approach provides us
a regular way to account for the fluctuational corrections
to the results of mean-field approximation (MFA) assum-
ing that the effective range of the exchange interaction r¢
(measured in the interspin distances) is large enough. We
also assume that the energy wo characterizing the dipolar
interaction is much smaller than the exchange energy Vj.

Thus, we built up the biparametrical perturbation the-
ory which made it possible to calculate the dynamical
susceptibilities within the unambiguously defined range
of parameters where the decay of the uniform modes into
a couple of virtual spin waves is the major process of
their relaxation. The obtained results can obviously be
reproduced at temperatures 7" much lower then the Curie
temperature 7, using the conventional spin-wave theory.
On the contrary, this theory is not appropriate at T ~ T,
while our approach is quite suitable to introduce the scal-
ing hypothesis and thus to generalize the results into the
range of critical dynamics.

The outline of this paper is as follows. In Sec. II we
formulate the main principles of the perturbation theory
which will be applied to the analysis of the dynamical
susceptibility tensor. In Sec. III we examine the behavior
of the transverse susceptibility in three temperature re-
gions, i.e., at zero temperature, in the intermediate tem-
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perature region, and in the vicinity of the Curie point.
In this section we concentrate on the study of the fol-
lowing problems: (i) the residual FMR linewidth and the
resonance frequency shift at zero temperature which ap-
pear owing to the zero-point oscillations induced by the
dipolar forces, (ii) the deviation of the FMR line shape
from the Lorentzian arises from the frequency dispersion
of the fluctuational corrections, and (iii) the possibility
to generalize our results beyond the mean-field temper-
ature region into the critical one. At last, in Sec. IV we
calculate the dynamical longitudinal susceptibility which
in our approximation reveals the infrared discontinuity in
the zero-frequency limit, and discuss the problem related
to this feature.

II. HEISENBERG FERROMAGNET WITH
DIPOLAR FORCES

Following Ref. 2, let us represent the Hamiltonian of
a Heisenberg ferromagnet with dipolar interaction in the
form H = Ho + Hint, where Ho corresponds to the mean-
field approximation

Ho = =D St | guoHg + Y (St) Vi (r—1) | (1)
r r'#r

and H;,: describes the interaction between fluctuations
1 14 v
Hine = —5 D (S = (S¢)) (8L = (S)) Vi (r — 1),
r#r’

(2)
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Vi (£ =) = V(=) b + (9120)20:0, |r — /|7,
(3)

where S, is the spin of the atom located in the lattice site
with coordinate r, gug is the effective magnetic moment
of the atom, H€ is the external magnetic field, (S, ) is the
local mean value of the atomic spin, V (r) is the exchange
integral, 8, = 8/0r,, p,v = x,y,z. In Eq. (1) we have
neglected an unimportant constant which is independent
on the spin operators S,.

Let us consider an ellipsoidal sample with the principal
axes coinciding with the coordinate axes. We suppose
that the external field is directed along the z axis. Then
(S) does not depend on r, and the internal field H® in
the sample is uniform. This field is related to the external
field and the magnetization M by the expression H* =
H¢ — 47N, M, where N, is the demagnetizing factor in
the field direction.

The Fourier transform of the interaction potential
V. (r) is given by

Vuu (Q) = [Vq + u_;q] 6;:,1/ —Wonuny, q 7é 0, (4)
where Vq = Y _ V(r)e "%, wo = 4m(guo)?v; ! is the
characteristic energy of dipolar interaction, v. is the
magnetic unit-cell volume, and n, = g,q~*; at g = 0
the tensor m,n, is transformed into the tensor of de-
magnetizing factors N,,. In our geometry the latter
has the diagonal form N, = N, = diag[N, Ny, N.],
Tr N, = 1, and is defined from the system of equations:
(9“0)2 Zr 637.—1 = wo(1/3 — Ny).

Let us define the temperature Green function as fol-
lows:

s , . N
Guv (4, wn) =/) dre inT N7 e TN [SE(T) — (S*)][S5(0) — ($")])- (3)

(r—r)

Here w,, is the Matsubara frequency, 8 = T1, T is the 7-
arrangement operator, and the brackets denote the ther-
modynamic averaging.

It is well known, that the analytic continuation of
the temperature Green function to the real frequencies
1w, — w+10 coincides with the retarded Green function
Guv(q,w). This function is related to the magnetic sus-
ceptibility of the material x,,(q,w) describing the linear
response of the system to the alternating external mag-
netic field

Wo
Xuv (Qyw) = EG#V (q,w). (6)
The function G,.(q,wn) is given by the Larkin
equation'?

Gy.u(qvwn) = 2#1/(‘17“”")
+ Buo (@ wn) Vop(q) G (@ wn),  (7)

where ¥, (q,wy,) is the irreducible part of G, (q,wx).
For the convenience of further consideration let us in-

[
troduce the circular spin components S* = 1/\/5(,5'“’ +
1SY). Then in the MFA only the following components
of the tensor ¥,,(q,w,) remain nonzero:

22 (q,wn) = B§_(q,~wn) = bK(wn),
22 (q,wn) = 8nofb,
K(wn) = [y/B —iwa] ",
b(y) = SBs(Sy) = (5%)o,

y=0 [(Vo + %) (8%) + guoHi] , (8)

where B,(z) is the Brillouin function for the spin S and
(S2)o is the mean value of an atomic spin in the MFA.

Substituting (8) into Eq. (7), for the transverse com-
ponents of the Green function of MFA G?w (a,wr) in the
case w, # 0 one has?
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« . .
G0 (qwa) = b (G + G2 +iwn ) [e2 = (i),
«, .
Gli(q,w,) =—b 7" e”%a [e2 — (iwn)?] 7,

Gg+(q’ wn) = GE){-—(qa —wn)a

Gii(@wn) =[G _(q,wn)]" 9)

Here 6‘2 =b(Vo — Vq) + guoH?, aq = wgsin®dq, wg =
wo (S2)0, €q = [Eg(é‘g + aq)]M?, 9q and @q are the
polar and the azimuth angles of vector q, respectively;
b(Vo — Vq) ~ Dg? at @ — 0 and D is the spin-wave
stiffness. We should point out that the other components
of the tensor G9,(q,w,) in the case w, # 0 are equal
to zero. The poles of the transverse components of the
retarded Green function determine the well-known spin-
wave spectrum?!:2

w = teq = + {(Dg® + guoH")

x (Dg? + guoH' + wasin® 9q)}'/2.

(10)
Solving Eq. (7) in the case q = 0, for the uniform spin
precession frequency ¢ one obtains!:?

= teo = +{(wa N, + guoHi) (wa Ny + gp,OHi)}l/z.
(11)

In the present paper the uniform retarded Green func-
tions G, (0,w) = G (w) are studied accounting for
the first fluctuational corrections to the irreducible parts
¥.,(wn). The diagrams corresponding to the functions
Eiy(wn) are shown in Fig. 1 , where the circles repre-
sent the single-cell blocks of the diagram technique de-
scribed in Refs. 10 and 11. In particular, the circles in
Figs. 1(a) and 1(b) correspond to the Fourier transform
of the average with the Hamiltonian Ho of three and four
spin projection operators (T S*(11)87 (13)8*(73) o and
(T SH(11)S9(72)S8°(73)S¥(T4) )o , respectively. The wavy
lines represent the effective interaction R, (q,wn) given

by

uu(q;wn) = Vuu(q) + V#U(q)G p(q’wﬂ) VPV(q) (12)

Because of the tensor character of the Larkin equation
in the presence of dipolar forces all Green functions in the
MFA [and all components of the tensor R,,(q,w,)] have
a static part proportional to §,0b’. Moreover, the ana-
lytic expressions for the single-cell blocks contain terms
proportional to 8,0b™!, where plml = d™b/dy™. Hence,
there are two types of fluctuational corrections. The first

type is related to the scattering of spin waves by each
J
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FIG. 1. Diagrams correspond to the first fluctuational cor-
rections for the irreducible parts X,., (wy) .

other and the second one proportional to bl™! is con-
nected with the scattering of spin waves by the static
spin fluctuations. At the low temperatures the second
type of corrections are exponentially small as compared
with the spin-wave corrections whose temperature depen-
dence is described by the power law, and their role goes
up when the temperature increases. In the following we
restrict ourselves mostly by the study of the spin-wave
corrections, neglecting the terms proportional to blml,

Besides, hereinafter we shall consider a sample having
the shape of an infinite cylinder magnetized along its
axis. Such a sample can obviously be magnetized by
any weak external field. The results presented below are
applicable in practice for the case of a prolate spheroid
in the field range 4#N,M « H® <« 4wM. For nearly
isotropic ferromagnets in the considered range of H®¢ the
external field suppresses the domain structure but at the
same time this field is so weak that H* = H¢ — 47N, M ~
H¢ <« 47M. Then in the first approximation one can
neglect the influence of the magnetic field on the spin
dynamics. As it can be seen from the comparison of our
results with the results of Ref. 2, the different processes
determine the uniform relaxation in weak (H® < 47w M)
and strong (H® 2 4w M) magnetic fields.

III. TRANSVERSE SUSCEPTIBILITY

In this section the transverse susceptibility x4 (w) will
be analyzed by taking into account the decay process of
the uniform precession mode into two spin waves in the
intermediate state. First of all we should mention that
the first fluctuational corrections X} (w,), L1 _(wn),
Bl (wn), L_(wn), T, (wn), B, (wn) are equal to zero.
For the infinite cylindrical sample magnetized along its
axis N, = Ny = 1/2, N, = 0, and thus in the uniform
limit only the following components of tensor V,, differ
from zero: V_, =V,i_ = Vy—we/6, V,, = Vo+wo/3. As
a result the solution of the Larkin equation for G_ (wy)
has the form

G_i(wn) = 2 +wm)]7Y (13)

where ¥_ (wn) = 2% | (wn) + L, (wp). After summing
over the intermediate frequencies and after analytic con-
tinuation the function ¥_ . (w) can be written as

cwn) [1 = V4o B

Y4 (w) = (S.)K(w) + bP(w + i6) K*(w), (14)

P(w+i8) = (2713 {aqsg — Baq (263 + aq) + aqBqel (263 + ag + w) [e2 —

q

w+ /4 bt (na + 3)
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where (S,) is the mean value of the atomic spin pro-
jection including the first fluctuational correction, 84 =
wacos? g, ng = [exp(Beq) — 1]7 . In Eq. (15) we have
neglected the terms proportional to b’ and b"”. This is
correct for the temperatures not very close to T, (see
Sec. IIIC).

In zero external magnetic field the uniform precession
frequency in the MFA is equal to €9 = wq/2 for the cho-
sen sample shape. Considering the fluctuational correc-
tions in the hydrodynamic frequency range |w| < b Vg,
we can neglect the poles of the function K(w). Then,
accounting for the condition wg K Vp, it is convenient to
represent the expression for the transverse susceptibility
X ~+(w) in the form

Xt (@) = (2m) e [e + Ae(w) —w — iv(w) Y,
Ae(w) = —Re P(w + i6), v(w) = Im P(w + 1),
€= f‘g’— (S,). (16)

The FMR line shape is determined by the frequency de-
pendence of the imaginary parts of the transverse com-

1

BORIS P. TOPERVERG AND ANDREY G. YASHENKIN 48

ponents of the magnetic susceptibility tensor x,,(w),
u,v = +,—. Below we shall refer to the expression
L(w) = Im x_4(w) given by

L(w) = (2m)tey(w) [(e + Ae(w) — w)® + 7*(w) ]}
(17)

as either the “resonant curve” or the “FMR line shape.”

Thus, the consideration of decay processes for the pre-
cession mode has led to (i) a renormalization of the mag-
netization in the expression for frequency of the uniform
spin precession; (ii) the appearance of the uniform spin
precession damping y(w), and (iii) a dynamical shift of
the precession frequency Ae(w). The fluctuational renor-
malization of the magnetization in the Heisenberg ferro-
magnet with dipolar interaction for temperature not very
close to T. has been well studied (see, e.g., Ref. 1), and
we concentrate on the detailed analysis of the effects con-
nected with the presence of y(w) and Ae(w).

Fortunately, the imaginary part of the integral in
Eq. (15) can easily be calculated and the result for v(w)
has the form

¥(w) = wo (ga/r0)* coth|w|/4T [sgnw f1 (|w/wal) + fa (jw/wal)],

3vV3 V2 3 2 3 -z =« 4 2 1++v2z+x
= ——(27 15z° — 5 15) 4+ 8 t = 9 6 5)In ———=—
fi(z) 50487 ° l: 3 (272 + 15z z + 15) + 8z° | arctan s +3 + (9z* + 62 +5)In Niw
33 l—az = 1++V2x+zx 2z
= —— | —22° | arct =) -(@1-2%]1 6z —x +3 1
fZ(:l:) 256 1 |: Z (a'rc an \/—2—5 + 2) ( z ) e m + 3 ( T T+ ) ) ( 8)

where gq = (2wo/ Vo)l/ 2 has the sense of the characteristic dipolar momentum and we remind that rq is the effective

range of the exchange interaction.

However, Eq. (18) seems to be rather complicated, and we shall analyze its

asymptotic behavior as a function of w at low and high temperatures, respectively (see also Fig. 2).

The real part of the integral in Eq. (15) cannot be calculated in the general form. Therefore, in the subsequent
sections it will be analyzed in the limiting cases. Here we just would like to mention that, similar to v (w), the function
Ag(w) can also conveniently be decomposed in even and odd functions of w:

Ae(w) ~ [ g1 (lw/wd]) + sgnw gz (Jw/wal) |- (19)

A. Transverse susceptibility at zero temperature

As is evident from Eq. (15), the Larmor precession damping exists at zero temperature only due to the zero-point
oscillations which are induced by the dipolar forces. In this case it follows from Eq. (18) that

V(W) = @ (2'1)3

To

1/64 sgnw (w/wq )?,
(V3/30m) (w/wa)/2,
—(v2/3157) |w/wa |32,

|w| < wa,
Jw] > w4, w>0, (20)
|w| > wq, w<O0.

The analysis of the asymptotic behavior of Ae(w) at T = 0 gives

8 7o

Ae(w) = 3v3wo (q_d)3

—1/16 w/wgq,
~3/32,
V2/15 |w/wa |2,

|w| < wq,
lw| > wgq, w>0, (21)
|w| > wy, w<O0.
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FIG. 2. Frequency dependence of the Larmor precession
damping at a low (a) and high (b) temperatures, respectively.

We see that y(w) and Ae(w) alter their signs at w = 0;
in the limit w — 0 v(w) and Ae(w) decrease linearly and
quadratically, respectively. In the high-frequency region
two obstacles must be mentioned. First, we should note
the difference in the behavior of both the damping v(w)
and the shift Ae(w) at positive and negative values of w:
for example, y(w) ~ w'/? at w > 0 and y(w) ~ —|w|~3/2
at w < 0. This is connected with the fact that the damp-
ing y(w) is a sum of two terms, the first of which is an
odd function of w and the second is an even one. In
the case w < 0 the mutual cancellation of several terms
of asymptotic expansions for functions f; and f2 occurs
while at w > 0 they have the same sign. A similar situa-
tion takes place for the shift Ae(w), but in this case the

]

8me To

L(w) = 3v3wo (q_d)3

We see if w — 0, then L(w) tends to zero proportionally
to w? and changes its sign at w = 0 while the Lorentz
function is always positive and finite at w = 0. In the
high-frequency region the Lorentz function decreases as
w2, but L(w) ~w™ 3% at w > 0 and L(w) ~ —|w|~7/?
at w < 0.

Thus the dipolar forces yield the finite width of the
FMR line at zero temperature. Near its maximum the
resonance curve may be approximated by the Lorentz
function. However, due to the frequency dispersion of
fluctuational corrections, there are significant deviations
from the Lorentzian shape in the wings. We note that
the results obtained at zero temperature are valid in the
region T € w,wq, as well.

B. Transverse susceptibility in the
intermediate-temperature region

If the condition T >> w,wy is satisfied, we can approx-
imately set (nq + 1/2) = (8eq)~! in Eq. (15); hence in

1/64 sgnw (w/waq)?,
(v2/307) (¢/w)? (w/wa)"/?,
— (V2/3157) (e/w)? |w/wa | ~*/2,
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terms of the asymptotic expansions for g; and g2 cancel
each other at w > 0.

Secondly, it follows from Egs. (20) and (21) that
the fluctuational corrections increase infinitely with in-
creased frequency: y(w) ~ w'/? at w > 0 and Ae(w) ~
|w|Y? at w < 0. However it is pertinent to remind
one, that we have used the hydrodynamic approach here.
Thus, Eq. (16) is valid only if |w| « bVp. Within this
range the corrections at T = 0 are always small compared
to the resonance frequency &9 in the MFA.

In accordance with Egs. (16), (20), and (21) the re-
sponse function in the considered range of parameters
reveals a rather sharp maximum at w ~ 9. Therefore, in
the vicinity of the resonance |go—w | S v(w), Ae(w) with
the relative error of the order of max [y(eo), Ae(eo)]€gts
one can neglect in Eq. (16) the dispersion of y(w) and
¢(w) and approximately set

\/qu)s

~~ =~ 0.16
¥(w) = v(co) wo (27”_0

(22)

Ae(w) =~ Ae(eg) = —0.32wp (@> .

27 rg

This leads to a replacement of the actual resonance curve
by the Lorentz function, which is usually applied in the
treatment of experimental data on the FMR. At low
temperatures the Lorentzian approximation seems to be
quite reasonable, at least not very far away from the reso-
nance position. Nevertheless, the actual FMR line shape
deviates from the Lorentzian both close to and far from
the resonance. In the latter case for L(w) one has

wd>>|w],
wg L |wl|, w>0, (23)
weg L |wl|, w<0.

f
this temperature region the damping y(w) is written as

y(w) = Tb* (ga/r0)® F(w/wa), (24)

where F(z) = 4|z|™! [sgnw fi(|z]) + f2(J=[)], and
f1,2 are defined by the same equation (18) as above.
Therefore, in this case the asymptotic behavior of vy(w)
can easily be obtained from Eq. (20) accounting for the
additional factor 47T /|w| in Eq. (24). It allows us to
draw the qualitative behavior of the damping for both
cases T <« wq and T > wy as shown in Fig. 2.

In contrast to the case T = 0, at T > wq the shift
Ae(w) can also be calculated in the whole range of w <
T, this gives us the analytic expression for the transverse
susceptibility. Thus, in addition to Eq. (19) for Ae(w),
one has the following equation:
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— T (qa 8 w
Ae(w) = 2 (TO) [gl< -
( )_ 3\/§ m__z V2.’E
91\ = Bian 3
14+
+8$31n.__+__w. ,
V1+ x2
92(“’) = %i/"fx_l [(1 —_— 3;2) (arctanl—_sz + %)

In the limiting cases of low and high frequencies it
follows from Eq. (25), that

3VIT (ga\’ [ 1/4, |w|< wa,
64 b To 1, wd<<|wl<<“’m7

(26)

Ag(w) =

which shows only weak dependence on w; here w,, =
min [T, bV, ]. It should be noted, however, that in ac-
cordance with Egs. (21) and (25) the dynamical shift
Ag(w) is usually small compared to the renormalization
of the resonance frequéncy due to the fluctuations of the
magnetization.

Similar to the case T = 0, in the frequency range
|eo—w| S v(w), Ae(w) the transverse susceptibility can
be approximated by the Lorentz function with the pa-
rameters y(w) = v(go) and Ae(w) = Ae(eo):

~ -1
’y(Eo) =~ 1.3Tb ( 2nrg

(27)

. 3
Ae(eg)~ 1.2T b1 (—\/—_3——(1—‘1) .
27Ty

In contrast to the zero-temperature case, the relative
error of the approximation max [y(eo), Ae(eo)]eg’ de-
pends now on temperature: it is proportional to T' if
7 = |T. — T|T;' ~ 1 and proportional to 7~ 1 if 7 <« 1.
In other words, the differences between transverse sus-
ceptibility and its Lorentz approximation increases with
increasing temperature and they may amount to 30-40 %
at a sufficiently high temperatures.

This is illustrated in Fig. 3. In this figure the typical
resonant curve L(w) with Eqgs. (24) and (25) taken into
account is denoted by the solid line; the dashed line de-
notes the Lorentz function with the same value of the
reduced resonant damping v(go)e;'. We see that the
dispersion of the fluctuational corrections leads to (i) the
asymmetry of the resonance line near its maximum, (ii)
an additional broadening of the FMR line, and (iii) a
lowering of its maximum value.

An even more dramatic deviation of the actual FMR
line shape from the Lorentzian occurs beyond the res-
onant region of w. Indeed, the asymptotic behavior of

1
~=2 (272® — 1522 — 5z — 15) + 7 (822 + 5) — (92* + 62% + 5) (arcta.n

-7+ T(6x2+x+3) —2231n

BORIS P. TOPERVERG AND ANDREY G. YASHENKIN 48

) +roen ([ 5])]

d

-z + 7r>
V2zx 2

V2z

1+\/ﬂ+$]' (25)

V14 x2

[

L(w) can readily be obtained from Eq. (23) by account-
ing an extra factor 4T/|w|. This, apparently, changes
the decay of L(w) at high frequencies. In particular, at
wqg € w K w,y, one has L(w) ~ w™5/2 .., the decay of
the true function is steeper than the Lorentz one, while
at T = 0 L(w) is proportional to w™3/2,

Therefore, the experimental data should be evaluated
using Eqgs. (24), (25), and (17). As a result a set of pa-
rameters, for example, €¢, €, and y(¢p), can be extracted.
On the other hand, if the Lorentz approximation is nev-
ertheless used, one can extract from the data also three
parameters, i.e., the resonance frequency w,, the width
of the resonance line +,, and the normalizing factor xo.
In general, for a well-defined resonance € ~ w, and the
temperature dependence of the position of the maximum
of the resonance is mostly determined by the tempera-
ture dependence of the magnetization. At T' > wy both
parameters y(¢o) and v, show a linear dependence upon
T. At T < wq the parameter y(go) is temperature in-
dependent, whereas the width of the effective Lorentzian
contains a term proportional to T? appearing only be-
cause of the nonlorentzian behavior of L(w).

In summary we conclude that the dispersion of fluctu-
ational corrections leads to the fact that the transverse
susceptibility significantly deviates from the Lorentz
function both apart and (at sufficiently high tempera-
tures) near the resonance.

C. Transverse susceptibility close to the Curie point

It is well known'?'!! that the mean-field theory (MFT)
in the exchange approximation is applicable when 7 >
r5®. However, our results could not be valid in the
whole MFT range 7 > rg 6. if the condition g¢q 3 2

~—=

FIG. 3. Resonant curve L(w) (solid line) and its Lorentz
approximation (dashed line). The difference in behavior is
connected with the dispersion of fluctuational corrections.
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1 takes place. Indeed, inserting b = (S%)o ~ 71/2
into Eq. (24), we can estimate the reduced resonant
damping as (o) eyt ~ (r37V/2)~1(ga7"Y/2), where
we take into account that T' ~ T, ~ Vp, g4 ~
(wo/Vo)Y/?, F(eo/wa) ~ 1, and € ~ wg ~ wob. On the
other hand,? the contribution to the reduced damping
from the process of spin-wave scattering by the longitudi-
nal fluctuations is proportional to (r371/2)~1 (gg 7~ 1/2)3.
At low temperatures 7 2 g2 this contribution is small
whereas at 7 < ¢3 it becomes the most important. At
the same time, at low enough 7 ~ 74 = (ga/70)%/? the rel-
ative damping appears to be of the order of unity. This
means that in the temperature range 7 < 74 the spin-
wave approach is not valid anymore.

By definition 7o = (V2/Vp)'/?,
vs /3 3. 72V (r) is the second moment of the exchange
integral. Therefore, similar to the case T > T (see, e.g.,
Ref. 12) the characteristic dipolar temperature is defined
as follows:

where V, =

Ta = (wo/Va)3/%. (28)

It is necessary to point out that the fluctuational contri-
bution to the damping is the leading term in the quite
narrow range 74 < 7 < g2 and only if 74 2 (Vo/V2)3.
It is interesting to note that the latter restriction can be
rewritten in the form 74 2 Gi, where Gi is the Ginzburg
parameter'® of the phenomenological theory of phase
transitions. Thus, within the range 74 > 7 2 G4, where
the MFT is still formally valid, we are not able to de-
scribe the uniform transverse susceptibility in the frame
of perturbation theory.

In the opposite case, Gi > 74, two temperature re-
gions can be distinguished. In the first one the MFT is
correct throughout the region 1 > 7 > G4, and the de-
cay of the uniform precession mode into two spin waves
is the major relaxation process. When the temperature
increases, the range of the spin-wave approach validity is
shrunken. However, the main contribution to the reso-
nance shift and to the uniform precession damping comes
from low-wavelength excitations, i.e., spin waves even in
the temperature region Gi > 7. Thus, the results of pre-

vious subsections can readily be generalized by means of -

the replacement of the mean-field exponents by the crit-
ical ones for the relevant quantities. In particular, the
expression for y(w) can be written in the form [see Egs.
(24) and (18)]

Y(w) = AT.(5%)! (wa/D)** F(w/wa), (29)

where A ~ 1, and we assume that (S?) ~ 783, D =
Do, wg = wo (8%), B ~ B’ ~ 1/3. This expres-
sion is convenient to represent via the inverse correla-
tion length k (7) = r7}(7) ~a"17¥, a ~ 02/3, v~2/3,
and renormalized characteristic dipolar momentum go ~
(wo/T.)*/?:

Y(w) = A1 Tew*"(q0/K)°F(w/wa), (30)

where A; ~ 1 and z ~ 5/3 is the dynamic critical expo-
nent. Expression for Ae(w) may also be rewritten in the
same way.
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We see that v(w) written in form (30) has a critical di-
mension in accordance with the dynamic scaling theory,4
and the factor Q(k) = T.x%/? has the sense of the char-
acteristic energy of critical fluctuations. In general, the
scaling function F' is the function of two dimensionless
parameters, w/wq and w/Q (k). However, the latter one
is considered to be small in Eq. (30).

The resonance frequency ¢ in Eq. (16) is represented
in the scaling notations as follows:

e = BT.s""/"(g/k)* = BQ(r)(0/x)?  (31)

where B ~ 1. From Egs. (30) and (31) it is clearly seen
that e ~ v ~ Ae at Kk ~ go or at 7 ~ 74, and the ap-
proximation used above is valid as Kk > go. The range
T > T4 in complete analogy to the case of T > T, can
be characterized as a range of the exchange critical dy-
namics, whereas the region 7 < 74 corresponds to the
dipolar one. The dipolar dynamics in the range 7 > 74
above the Curie temperature has been considered in Ref.
15 and generalized for the EPR in Ref. 16. It was shown
that the main relaxation process in this case is the decay
of the uniform precession mode into the spin diffusion
modes. This results in a precession mode damping pro-
portional to € (k) (go/x)*, which is by factor (go/x) less
then in our case, when the spin diffusion in the interme-
diate state at T' > T, is replaced by the spin waves at
T<T..

As the boundary of the exchange region 74 is ap-
proached, other relaxation processes (for example, spin-
wave scattering by the longitudinal fluctuations, de-
cays for three and more spin waves, etc.) become of
the same importance as the considered one. Moreover,
at this boundary wg ~ Q(x) and the scaling function
Flw/wq4, w/Q(k)] should be strongly renormalized.

Within the dipolar region 7 < 74 the dipole-dipole in-
teraction cannot be accounted for as a perturbation nei-
ther at T > T, nor at T < T,.. Above T, the problem
is reviewed in Ref. 12 in detail. Obviously, below T, the
situation should be similar in many respects, but the rel-
evant problems are beyond the scope of this study. Here
we just mention that at 7 < 74 the resonance frequency
of FMR is expected to be of the same order as its width.

IV. LONGITUDINAL SUSCEPTIBILITY

In this section the longitudinal retarded Green func-
tion G,,(w) is examined in the same way as it has been
done in the previous sections. This function is related
to the longitudinal susceptibility x..(w) by the expres-
sion X,.(w) = wo/4m G,,(w). It is well known that the
longitudinal Green function in the MFA is purely static,
whereas its frequency dependence is related to the fluc-
tuational corrections. The contribution of the first order
in ry 3 to the temperature Green function G, (w,) has
the form

Giz(“’n) = TZ Z {G(l+ (q, wm) Gg-{- (a, Wn, + wn)

q n

+ GS—-{» (qv w’nl) G(l— (q1 wnl + wn)} ) (32)
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where functions G?w(q, wy) are defined by Eq. (9). As above, we neglect the terms which are proportional to plml,
Expression (32) describes the process of the decay of the longitudinal fluctuation into two spin waves in the intermediate
state. After the summation over the intermediate frequencies and the analytic continuation i w,, — w + 76 we obtain

6L =X () et (na+ 3)

e - (‘”;i‘s)z]_l. (33)

The integral over q in Eq. (33) can readily be evaluated in the absence of the internal magnetic field and for temper-

atures high enough, i.e., at T > w,wq. Hence, substitution of (nq + 1/2) by (Beq)

w . w
al) e ()]
wd wd

—37r+3(1+$)[(1—m)(arctan%+g)+\/ﬁ]}, (34)

e (2 o

_ f gpm Lt V2Tt
pi(z)= Ban * zln it
p2(z)= 6i {2m (arctan % + g) +3(1—x) [(1 +z)ln

in (33) gives

14+vV2x+=x
V14 z?

)}

The corresponding analytical expression for the imaginary part of Gl,(w) which is valid in both high- and low-
temperature ranges T' > wy and T < wy follows from Eq. (34) if one multiplies this expression by the factor

w/AT coth w/4T.

In the limiting cases of low (high) frequencies from (34) we find

)= 501 () { o

-3 + 2t wa/w,
—3 +isgnw (V264/157) |wa/w |V/?],

|w|<<wd7

35
wg KL |w]. (35)

At T = 0 GL,(w) does not vanish because of zero-point oscillations and at low and high frequencies it can be

written as follows:

zz( )_’3_"\/—_~

To

Thus, G,(w) decreases fast enough at high frequen-
cies |w| > wq both at T > wq and at T = 0. At the
same time there are essential differences between these
two cases at low frequencies. For instance, in the case
T > wgq, w = 0 the real part of G1,(w) is finite and
increases as temperature goes up, while the imaginary
part of G1,(w) connected with the absorption of the al-
ternating external magnetic field increases as w—! when
w — 0. On the other hand, in the case T =0, w =0
the imaginary part is finite, while the real part logarith-
mically diverges when w — 0. It is well known, however,
that the susceptibility should not show singularities in
the limit w — 0, therefore the formulas of this section
are inapplicable in the region of low enough frequencies.
The condition that 47 |x..| < 1 is in fact the criterion
of their applicability. This condition may be rewritten
for the case of finite temperatures and low frequencies in
the form [w | Z v (g0)- In other words, if the damping of
spin waves in the intermediate state is not accounted for
the results are valid just for frequencies which are higher
than the characteristic damping. It seems to be quite rea-
sonable that taking the damping into consideration can
remove the divergence in the limit of w — 0 for the bipar-
ticle process. At the same time this procedure forces us
to go beyond the frame of perturbation theory in param-
eter ry 3 because it presupposes the selective resuming of

1 (qd>3 { 1/16[In |wg/w |+ isgnwm/2 ],
VE/15 |wafw */? [ 1 +isgnw ],

|w|<<“')d7

|w] > wa. (36)

Eche infinite series of terms of different orders in r, 3. To
prove the validity of this procedure, it is necessary to an-
alyze the general structure of the diagram expansion, i.e,
to estimate the contribution to G,, from the processes
containing multispin-wave intermediate states. This is a
problem which we do not address in the present paper.

Similar to the transverse Green function (see Sec.
ITITIC), the expression for the longitudinal one can be gen-
eralized for the temperature region of critical dynamics
7 & Gi. Using the scaling notations, we can rewrite
Eq. (34) in the form

G (w) = C(Ter*) ™ (k/q0) [ P1 (|w/wal)

+ isgnw ps (|w/wal)], 37)
where C' ~ 1 and the quantities qo, Kk, wq are defined in
Sec. III C. We see that the critical dimension of G1, is in
accordance with the dynamic scaling theory.'* Consid-
ering only the high-frequency (w 2 wq) behavior of the
longitudinal susceptibility we find that within the whole
exchange critical range, T > 74, the inequality x_4 = X.-
is valid. At the boundary of the dipolar critical range
T ~ T4 the processes with multispin-wave intermediate
states become of the same importance as the considered
decay into a couple of spin waves. At the same time it
is necessary to take into account the spin-wave damping.
Hence, our results are valid only as 7 > 74.
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In conclusion of this section we would like to note that
in Ref. 17 where, in particular, the staggered susceptibil-
ity of antiferromagnets has been examined theoretically,
an anomalous behavior of the corresponding quantities
at @ = 0, w — 0 has been found. It allows us to suppose
that a similar situation is quite general and takes place
for all cases in which the total spin of the system is not
conserved.

16 513
ACKNOWLEDGMENTS

The authors are indebted to J. Kotzler, who attracted
their attention to this problem, S. V. Maleyev, S. L.
Ginzburg, P. Boni, S. Shapiro, J. Lynn, M. Hennion, J.
Rossat-Mignod, R. Papoular, and B. Winkler for the in-
terest to the present study and stimulating discussions,
and G. Stepanova for her kind assistance.

* Permanent address: Petersburg Nuclear Physics Institute,
Gatchina, St. Petersburg 188350, Russia.

! A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii,
Spin Waves (North-Holland, Amsterdam, 1968).

2S. A. Pikin, Fiz. Tverd. Tela (Leningrad) 10, 2587 (1968)
[Sov. Phys. Solid State 10, 2039 (1969)].

31. A. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii,
Zh. Eksp. Teor. Fiz. 40, 365 (1961) [Sov. Phys. JETP 13,
249 (1961)].

*Yu. N. Burdin, Fiz. Tverd. Tela (Leningrad) 20, 2732
(1978) [Sov. Phys. Solid State 20, 1576 (1978)].

5 T. Hashimoto and I. Ichitsubo, J. Phys. Soc. Jpn. 33, 523
(1972).

6 J. Kétzler, G. Kamleiter, and G. Weber, J. Phys. C 9, 361
(1976).

"1. D. Luzyanin and V. P. Khavronin, Zh. Eksp. Teor. Fiz.
85, 1029 (1983) [Sov. Phys. JETP 58, 599 (1983)].

8 H. S. Toh and G. A. Gehring, J. Phys. B 2, 7511 (1990).

°8. W. Lovesey and K. N. Trohidou, J. Phys. B 3, 1827
(1990). )
9V, G. Vaks, A. L. Larkin, and S. A. Pikin, Zh. Eksp. Teor.

Fiz. 53, 281 (1967) [Sov. Phys. JETP 26, 188 (1968)].
11V, G. Vaks, A. L. Larkin, and S. A. Pikin, Zh. Eksp. Teor.
Fiz. 53, 1089 (1967) [Sov. Phys. JETP 26, 647 (1968)].

125, V. Maleev, in Physics Reviews, edited by I. M. Khalat-
nikov (Harwood Academic, Chur, 1987), Vol. 8, Sec. A.

13 A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory
of Phase Transitions (Nauka, Moscow, 1982).

14 B, I. Halperin and P. C. Hohenberg, Phys. Rev. 177, 952
(1969).

!5 D. L. Huber, J. Phys. Chem. Solids 32, 2145 (1971).

16 A. V. Lazuta, S. V. Maleev, and B. P. Toperverg, Solid
State Commun. 39, 17 (1981); Zh. Eksp. Teor. Fiz. 81,
2095 (1981) [Sov. Phys. JETP 54, 1113 (1981)].

7S, Braune and S. V. Maleew, Z. Phys. B 81, 69 (1990).



