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We study the diluted site-bond-correlated (SBC) Ising model within the scheme of the mean-field re-
normalization group. The SBC Ising model has been proposed to describe the phase diagram for
KNi,Mg,_,F;. One treats the square (Z =4) and simple cubic (Z = 6) lattices by using two different ex-
change interactions (denoted by models A and B). In the present paper, the phase diagram for some
values of the correlation parameter @, which range from zero to unity, is studied. We obtain two critical
concentrations p.(a=0) and p.(a70) in agreement with results from Monte Carlo methods. In addi-
tion, an interesting universal relation between the initial slope A*(a=1) and A*/(a=0) is obtained (u
denotes model A4 or B). From this relation, we can estimate the possible exact values to the initial slope
on the completely correlated case. Our approach is valid for lattices with any coordination number Z.

I. INTRODUCTION

Randomly diluted magnetic systems have been exten-
sively investigated in both theoretical and experimental
aspects.! For various reasons, the effect of diluting a
magnetic system with nonmagnetic impurities has at-
tracted the attention of many researchers for at least the
past two decades. The uncorrelated diluted model! is
well suited to describe the critical properties of certain
magnets. In these models, some magnetic atoms on a lat-
tice are randomly replaced by nonmagnetic atoms, and a
bond connecting each pair of occupied magnetic first
neighbors is modified. In this context, the diluted mag-
netic systems are usually associated with an uncorrelated
percolation problem’3 at T'=0. Particular interest has
been given to the phase diagram for the critical tempera-
ture versus concentration. When T,—0, we obtain the
critical percolation concentration p,.>? This value is in-
dependent of the model, only providing a dependence
with the lattice structure. On the contrary, the initial
slope A=K_.3K, !/dp| » depends on the model in ques-
tion, since A(Ising)=o and A(Heisenberg or XY)>0
(Refs. 4-6) (finite), at p =p,.. On the other hand, the ex-
periments have shown that the introduction of nonmag-
netic species in some magnetic materials, displays effects
not predicted by the usual dilution model. Thus, other
models have been proposed to account for correlation
effects. Examples of the new approach of alternative
site-dilution models are the bootstrap percolation and di-
lution,”™® high-density percolation,”'® and the site-
bond-correlated (SBC) dilution models. !112

Experimental results from nuclear magnetic resonance
(NMR) present striking differences between the randomly
diluted magnetic KNi,Mg, ,F; (Ref. 11) and the iso-
structural system KMn,Mg;_,F; (Ref. 13). As an exam-
ple, for the compound (randomly diluted Heisenberg
magnet) KNi,Mg,_,F;, T, decreases faster than for iso-
structural KMn,Mg,_ ,F;, with decreasing concentra-
tion. This happens because the latter system is well de-
scribed by an uncorrelated site-dilution picture. Further-
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more, the phase diagram T.Xp for KNi,Mg, ,F;
displays an upward curvature in contrast to the com-
pound KMn,Mg, ,F; and the uncorrelated theoretical
model. In the pure materials mentioned above, the Ni*
ions can form only o bonds, while the Mn?" ions, on the
contrary, can form both o and 7 bonds. The symmetry
of the o bonds suggests that the substitution of a Ni?*
ion in KNi,Mg, ,F; by a nonmagnetic one has a
stronger effect on the exchange interaction of a nearest-
neighbor magnetic pair situated along the line joining the
three atoms than the same effect induced by substitution
of a Mn?" ion in KMn,Mg,_,F;. Attempting to de-
scribe these differences for the phase diagrams 7T, Xp, de
Aguiar et al.'"!? proposed the site-bond-correlated mod-
el for the material KNi,Mg,_,F;. In their model, the
coupling between two nearest-neighbor magnetic atoms is
assumed to be dependent upon the occupancy of the oth-
er nearest-neighbor sites. The Hamiltonian introduced
by de Aguiar et al.''? to the nearest-neighbor Ising
model is given by

H=—23Jii+s0i0i+5 > (1)
0,5
where J; ; ;5 is the exchange interaction between the ions
at site / and i +8, and is given by (denoted model 4)

T s=Je€ 15l(1—a)e;_s+al), J>0 ()

and 8 denotes an elementary lattice vector. €; is a ran-
dom variable that corresponds to the following probabili-
ty distribution:

P(e;)=pble;—1)+(1—p)dle;) , (3)

where p is the concentration of magnetic atoms. The pa-
rameter « is the strength of the correlation. The limiting
values a=1 and a=0 correspond to the case of uncorre-
lated site dilution and to the completely correlated site-
bond model, respectively.

The exchange of Eq. (2) was initially proposed by the
authors of Ref. 12 to treat the SBC Ising model within
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the scheme of effective-field theory on a square lattice. aM aM

. . 12 N’ N
At first, de Aguiar, Brady Moreira, and Engelsberg'“ in- : = R (5)
correctly obtained three values for the critical concentra- L PORNY L P

tion: p.(a=0)=0.765 for the completely correlated case,
p(a=1)=0.428 for the wuncorrelated case, and
p.(0<a<1)=0.381. However, da Silva and Brady
Moreira'* found p.(@=0)=0.765 and p,(0<a<1)
=0.428, by considering a periodic condition among the
active sites i —& and i +28 that participate in the corre-
lation. We will return to this question later on in this pa-
per.

The authors of Ref. 15 proposed a generalization to the
D-vector model on the Bethe lattice by the introduction
of the exchange (denoted model B),

B s=Je€ sl(1—ale; g€ 405+al, J>0. (4)

They found p,(a>0)=(Z —1)"! for the exchange in-
teractions given by Egs. (2) and (4). In addition, they ob-
tained only two different values for critical concentration:
p.(a=0) and p,(0<a=1) providing again evidence of
the spurious results of de Aguiar, Brady Moreira, and
Engelsberg. 12

II. FORMALISM AND RESULTS

In the present paper, we treat the SBC Ising model
within a scheme of the mean-field renormalization-group
(MFRG) method, introduced in the literature by In-
dekeu, Maritan, and Stella.!® This approach is based
upon a comparison of the behavior of clusters of different
sizes (N and N',N <N') in the presence of symmetry-
breaking boundary conditions. The magnetizations per
spin My.(K’',b’) and My(K,b) for each case are obtained.
From a mean-field point of view, b’ and b simulate the
effect of surrounding spins in the infinite system. There-
fore, b’ and b are the symmetry-breaking fields. Follow-
ing the ideas of Indekeu, Maritan, and Stella,!® we im-
pose the same scaling relation between the magnetiza-
tions and symmetry-breaking fields. Hence, one obtains

which is independent of the scale factor. Equation (5)
gives a recursion relation involving the coupling con-
stants; i.e., K'=K'(K), where in the fixed point K* we
have K =K'=K™*. In the case a nontrivial fixed point we
obtain the critical coupling K, system by solving the
fixed-point equation K*=K (K*) when the symmetry-
breaking occurs. The Hamiltonian of the clusters with
N =1 and N'=2 spins are given by

Hy=—b2Ji1+591 > (6)
1.8

j— ’ ’
H 1,7 —J1,2000,— 0" | 3 T1 1450112 224502
1,5 25

7

The magnetizations per spin associated with the clusters
N and N’ are defined by My=({o,),), and
My.=1((o,+0,),),, with ¢t and c indicating thermal
and spin-configurational averages. Using My and M. in
Eq. (5) and noticing that in the vicinity of the critical
temperature b'(b)— 0, we find the transition critical line,

(1—p2)+2p2G(“)(p,Kc,a)=Z—Z_—l— , (8)

where u(=A4 or B) denotes the models given by ex-
changes (2) and (4), respectively. Now, G*(p,K,,a) is
given by

G"(p,K,.,a)=p"F(K,)+(1—p™")F(aK,), )

where F(aK, y=e % /[2 cosh(aK_)] and, n =1 for mod-
el A and n =2 for model B. The critical concentrations
for each model are obtained from Eq. (8). Therefore, one
obtains

pM(a)=(Z—1)"*. (10)

For a=0 we find $=1 and ¢ = for models 4 and B, re-

TABLE I. Values of the p/*(a) and K. ! on the square and simple cubic lattices obtained by means

of various methods for the models 4 and B.

Method piNa=0)  p{Ma#0)  pPa=0)  p!Pla#0) K! z
Monte Carlo? 0.593 0.741 0.593 2.269 4
0.312 0.312 6

Effective field® 0.765 0.428 0.765 0.428 3.090 4
0.639 0.293 0.639 0.293 5.039 6

Renormalization group® 0.542 0.743 0.542 4
0.580 0.496 0.496 6

Present work 0.693 0.577 0.760 0.577 2.885 4
0.585 0.447 0.669 0.447 4.993 6

Exact value? 0.590 0.590 2.269 4
0.307 0.307 4.511 6

2References 17 and 21.
"References 12 and 14.
°References 18 and 19.
dReference 1.
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FIG. 1. Phase diagrams in the plane T —p for the SBC Ising model with some typical values of the parameter a on the square
(a,b) and simple cubic (c,d) in models 4 and B, respectively.

TABLE II. Values of the initial slope A*Y(a) for =0 and a=1 on the square and simple cubic lat-
tices found by employing various methods for models 4 and B. The superscript a indicates our esti-
mate in the present work by means of relations A‘’(0)=2A'4X(1) and A'®(0)=2A'%(1).

A¥(a) Monte Carlo® Effective Renormalization Present Exact
field® group* work value (Ref. 1)

A2(0) 2.830 2.483 2.550 3.246 1.994°
ALN(1) 1.886° 1.345 2.820 2.164 1.329
A@’(O) 3.773° 2.690° 4.328 2.659°
A‘SZ”( 1) 1.886° 1.345 2.164 1.329
ALA(0) 3.081 1.56*
AlA(1) 2.054 1.04

AZ(0) 4.107 2.08?
A1) 2.054 1.04

YReferences 17 and 21.
°References 12 and 14.
dReference 18.
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FIG. 2. Behavior of the initial slope A(a) in the models A4
and B. Dashed lines correspond to the square lattice and solid
lines to the simple cubic lattice, respectively.

spectively. However, for 0<a =<1, ¢=% in both models.
On the other hand, Eq. (8) gives K, !=—2/1In(1—2/2),
which is independent of the parameter a at p =1. Table
I shows the various values of the p{*(a) and K, ! on the
square (Z =4) and simple cubic (Z =6) lattices. Also in
Table I, one observes that there are only two critical con-
centrations to the values of the parameter a, p.(a=0)
and p.(0<a=1). Figure 1 shows the phase diagrams in
the plane T —p for Z =4 and Z =6 on models 4 and B.
For the case 0 <a < 1 (intermediate correlation) the phase
diagrams present an upward curvature while a decreases.
This effect is more accentuated for model 4. However,
when a=1 and a=0, the upward curvature does not
occur.

At this point, we will consider an analytical treatment
which can be done without great difficulty. Thus, instead
of carrying on numerical calculations, we preserve the
simplicity of the MFRG method to show results which
represent a remarkable improvement of this scheme.

The initial slope A(a)=KCE)KC_1/8plp=1 is, as well,
directly obtained from Eq. (8), i.e.,

AW () 2 F(aK,)—F(K,)
AM(Q)  2+n 1—2F(K,) ’

(11)

where n =1 corresponds to the model 4 (u=A4) and
n =2 to model B(u=B). By inspection, it is easy to veri-
fy according to Eq. (11) that A¥(1)=2/(2+n)A"(0),
which is universal, and inde%)endent of the lattice struc-
ture. On the other hand, A*)(1) and A*)(0) (u= 4 or B)
depend strongly on the lattice structure.

Since one knows the initial slope A*)(1) for the case of
the dilution site, which is independent of the model, one
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can estimate A(0)=2A(1)==2.690 for model B in Ref. 14.
Following this same reasoning, it is reasonable to esti-
mate the exact result! for the initial slope A(a) for the
strongly correlated limit (a=0) for models A4 and B.
Therefore, one obtains for Z =4, A'4(0)~1.994 and
A®Y(0)~2.659; and A'4(0)~=1.56 and A'®)(0)~2.08 for
Z =6. Table II contains the various values of A*)(1) and
A®)(0) obtained by employing different techniques. The
behavior of the initial slope versus the parameter a for
Z =4 and Z =6 on models 4 and B is displayed in Fig.
2. We perceive that the initial slope decreases gradually
when the parameter a increases. This is verified implicit-
ly in Refs. 12, 14, 17-19.

III. CONCLUSIONS

The mean-field renormalization-group method is
shown to be appropriate enough to approach the diluted
SBC Ising model when employing its simplest version.
The phase diagrams and the results obtained depend on
the coordination number Z, and the MFRG method is
used. The qualitative behavior of the phase diagrams are
well in accordance with the characteristic features of the
considered Hamiltonian. In addition, we find an interest-
ing relation between the initial slope A*)(1) and A*)(0)
for each model: A“(1)=2A“0) and A®(1)
=1A®(0), with A(1)=A®(1) and A'*(0) <A®Y0).
Employing these relations, one can estimate the possible
exact values for A(0) in both models. The computing of
p. was explicitly obtained from Eq. (10) for each model.
In particular, there are only two critical concentrations
p.(@=0) and p,(a¥0), with p!(a=0)>pP(a=0) and
pia#0)=pP(a#0). We perceive that the condition
employed by the authors of Ref. 14 is only a device,
maybe an ansatz, to simplify their calculus. This happens
because, eventually, the €; random variable may or may
not satisfy the periodic condition. Therefore, it is reason-
able to think of such a question as a purely statistical
problem. The device used by the authors of Ref. 12 and
14 does not permit one to distinguish between either
model. However, the results of the above-mentioned au-
thors are in better accord with model B, as is indicated by
our arguments. Our aim, later on, is to extend the ap-
proach of the MFRG method to treat antiferromagnetic
correlations (a <0).!41517:2022 Apother case of interest
to be studied is the Heisenberg!®?® model which is more
adequate to describe the experimental results of
KNi, Mg, _,F; (Ref. 11).
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