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In our previous studies of the antiferromagnetic Potts and Q =6 clock models in three dimensions, we
have argued the existence of an incompletely ordered phase (IOP) which is characterized by soft rigidity
with a nonintegral stiffness exponent and an incomplete order (though long ranged) such that some of
the spin states are exclusively dominant. To investigate the IOP s further, we study Q-state general clock
models with one varying energy parameter which can include the ferromagnetic Potts models, by means
of our Monte Carlo twist method and analytically in the pair approximation. The twist method gives the
following results for Q =6. There are two kinds of IOP's (IOP1 and IOP2) on the opposite side of the
ferromagnetic Potts model. Their stiffness exponents are about 1.2 less than 2 (for the highest rigidity) in

good agreement with those previously obtained. A pair of adjacent clock states are dominantly well

mixed in the IOP1, as are a set of three adjacent ones in the IOP2. Thermal fluctuations in the IOP s can
be characterized by the spin configurations of the soft structures with buffers that prevent spins in
different states by more than the least angle from getting with each other, which is consistent with the
nonintegral stiffness exponent. Large entropy contributions to the IOP s are revealed in both ap-
proaches. The phase boundary, which extends from the ferromagnetic Potts point, is clearly of first or-
der, while among those relevant to the IOP's one is discontinuous and the other is continuous but the
last two are not evident. It is strongly suggested that there is a transition without symmetry breaking be-
tween the IOP2 and the rigid phase. In the pair approximation applied for Q =4-12, various proper-
ties for Q =6 are consistent with those obtained by the simulation, except some other properties. Pecu-
liar Q dependence of the highest critical temperature of the IOP in the extreme case is also found.

I. INTRODUCTION

There has been considerable interest in three-
dimensional (3D) highly degenerate systems of classical
spins that have nonzero ground-state entropy per spin.
Problems on their phase transitions seem very profound,
but still little has been resolved. The pure Q-state antifer-
romagnetic (AF) Potts models' are the simplest of such
systems. Among the Q different relative spin states of a
pair of nearest-neighboring spins in these models, Q —1

are at the lowest-energy 1evel, while one is at the highest.
This is in contrast to the ferromagnet case in the inverse
situation. Thus, there are lots of possibilities to make
those states connect into a network, causing high degrees
of degeneracy in the ground state. Then it is natural to
expect a distinct kind of phases if there are phase transi-
tions and to get interested in the role that entropy should
play in the mechanism of ordering as Berker and Ka-
danoff initiated a study in this direction. The purpose of
the present paper is to pursue such interest in the general
clock (GCL) models, following the previous studies of the
AF Potts models and the ordinary six-state clock model
in D =3. In the previous work we have argued for the
existence of a novel type of ordered states, which we call
incompletely ordered phases (IOP). By means of our
Monte Carlo (MC) twist method and the pair approxima-
tion, we shall make an extensive study of the IOP's and
their related phase transitions in the GCL models.

Berker and Kadanoff conjectured, in such highly de-
generate systems, a distinct phase where correlations de-
cay algebraically with distance. However, later studies

on the 3D AF Potts models disagreed with this conjec-
ture. ' Recently Ueno, Sun, and Ono made a detailed
study of the 3D AF Potts models with Q =3 —6, using the
Monte Carlo twist method. ' They introduced the
stiffness exponent g to measure a degree of the stiffness of
an ordered phase. ' The stiffness exponents obtained for
the IOP's are all not integers with 0& / &D —1 except
for Q =6 (which shows no long-range order: P & 0),
which are compared with g=D —1 (discrete symmetry)
and D —2 (continuous symmetry) for the ordinary sys-
tems with only trivial ground-state degeneracy. These
are evidence against the theoretical prediction that the
phase transition is in the universality class of the
(=Q —1) vector model. The critical exponents estimat-
ed by Ueno, Sun, and Ono indicate that their phase tran-
sitions are in new universality classes, as naturally expect-
ed when one admits that the IOP's are of a different type.
However, Wang, Swendsen, and Kotecky studied the
Q =3 model using MC simulations and estimated critical
exponent v for the correlation length that is very close to
the value for the 3D XF universality class, in agreement
with the theoretical prediction. Okabe and Kikuchi also
obtained a similar result, using large scale MC simula-
tions.

The Q =3 AF Potts model is considered equivalent
with the Q =6 clock model as in D =2 when weak fer-
romagnetic next-nearest-neighbor couplings are added to
the former. Thus Ueno and Mitsubo studied the latter
using the MC twist method. In spite that this model has
no nontrivial degeneracy in the ground state, they ob-
tained the corresponding ordered phase at intermediate
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TABLE I. Stiffness exponents calculated so far for various models. D,~ is the dimension of the
space, which the order parameter spans, and "symmetry" is that which exists among the possible states
in each IOP.

D =3 models (D,~, symmetry)

Q =3 AF Potts (2,Z6)
Stacked triangular Ising (2,Z6)
Stacked square frustrated Ising (2,Z8)
Ordinary clock (2,Z6)
Q=4 AF Potts (3,0q)
Q =5 AF Potts (4,?)

1.20
1.25
1.2
1.25
1.85
07"

Kind of IOPS

1

2 (1)'
Not examined

1

Different
Different

Ref.

3
12
13
4
3
3

'The IOP1 is not examined but suggested to exist.
Precision is less than in the others where the errors are about +0.05.

temperatures with stiffness exponent /=1. 2. This value
is in good agreement with the results calculated not only
for the Q =3 AF Potts model but also for the stacked tri-
angular AF Ising model' and the stacked square frus-
trated Ising model, ' as shown in Table I.

In addition they obtained a distinct twist-angle depen-
dence of P of the IOP, which is also evident against the
XY character. Since this property had already been ob-
tained in the Q =3 AF Potts model (though it was not
written there), there exists obvious contradiction between
the result obtained by our group and others '" if one re-
gards their results as an indication of the XY universality
class.

In order to study the IOP's further the GCL model is
very useful because it becomes a well-known model such
as the ferromagnetic Potts and ordinary clock models, by
taking an appropriate set of the energy parameters. Fur-
ther it can be expected to have the IOP's in a large tem-
perature region, which can include the noncritical re-
gions, whereas the ordinary one has a narrow IOP region,
which prevented a detail study.

As already verified, the twist method has many advan-
tages. ' ' By means of this method we study the Q =6
GCL model in detai1. Further we also study the GCL
models of Q =4—12 by the natural iteration method in
the pair approximation. ' We focus on the properties of
ordered phases, especially of the IOP's, though the phase
transitions associated with the IOP s are very interesting.
Since determining the nature of transitions needs much
more computational efforts than in the present study, we
only give preliminary results for it though some are
definite and leave a new method for analyzing first-order
transitions in a separate paper. '

The paper is organized as follows. In Sec. II we intro-
duce the genera1 clock models. In Sec. III we review the
MC twist method adding new developments. In Sec. IV
we present numerical results for the Q =6 model ob-
tained by the MC twist method, explaining the remark-
able properties of the IOP's from various aspect. In Sec.
V we give results for several Q's calculated in the pair ap-
proximation. In Sec. VI we make important remarks and
discussions on the IOP's and their related phase transi-
tions. Summary is given in the last section.

II. THE MVDEI.

The general Q-state clock model is a generalized ver-
sion of the Q-state ferromagnetic clock (or Potts) model.

Cardy already studied this model in D =2 and showed a
variety of phase transitions, ' but there is none in D =3
to our knowledge. Its Hamiltonian is given as

H = g V(8; —8~),
&Ij &

(2.1)

where the sum is made only over nearest-neighbor (NN)
pairs and

m, n =1
(2.2)

with the spin variable IP (i)[ representing the occupa-
tion of the mth state at the ith spin

P (i)=5(8;—2~m/Q) . (2.3)

There remain [Q/2] —1 energy parameters to vary. Fig-
ure 1 illustrates these parameters for Q =4, 5, and 6.
Since high degrees of degeneracy are necessary for the
IOP's to occur at least one parameter is required. Thus,
the Q =3 model has no IOP. Free energy is given as
Fl (T)= —TlnZI (T), where ZI =Trexp( Hl /T) in-
units of kz = 1.

For later convenience, we introduce the uniform, mac-
roscopic spin variable p„and its Fourier-transform pk in
angle:

1p„=—g p„(i),

2minkPk= g p exp
n=1

(2.5)

where k can take 0, +1, . . . , [Q/2]. While k =0 gives
only the normalization (po = 1), only p, and P, are used
as order parameters (in Sec. V), which are valid in the pa-
rameter range we treat in the present study. Varying the
energy parameters provides various different models as
shown in Table II for Q =6. For the energy parameters,
we fix sz (= 1) and vary s, from 0 to 1.0.

with m =1—Q. Here IE ] are the energy parameters
with c, =c. =E. +,& for arbitrary integer s, and we set
the units of energies as

Eo=0, s&&2=1 (Q even) or s~& &~&2=1 (Q odd) .

(2.4)
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(a) Q=4 (b) g=5

m/2

1.0

m+/3

]. , 0
FIG. 1. Energy levels of a neighboring spin

pair with relative angles 68 for the GCL mod-
els with Q =4, 5, and 6 in (a), (b), and (c), re-
spectively.

III. THE MONTE CARLO TWIST METHOD EFI ~( T)=f i) ( tL ' ~ ), (3.2)

EFI ~( T)=Fl ~( T ) Fl (T)— (3.1)

for a hypercubic lattice of size L except the fixed bound-
aries. Note FL ( T)-L

The stiffness free energy defined with the above BC's is
assumed to consist of only the singular part, which has
been justified in all the calculations made so far for vari-
ous models (see Refs. 3, 4, 12—14, and 18). Then one can
apply finite-size scaling theory ' to it at and around the
critical temperature T, :

TABLE II. Energy parameters of the Q =6 GCL model that
give various known models.

Models

1

0.25

A. /( 1+9k)

1

0.75
0.5+ A,

(1+6k)/(1+9k, )

Ferromagnetic Q =6 Potts
Ferromagnetic Q =6 Ising

AF Q =3 Potts'
Stacked triangular AF Ising'

'They are obtained through calculating the interface energy at
T =0 of the systems where ferromagnetic next-nearest-neighbor
interactions A, are added.

Let us review our twist method adding its new proper-
ties restricting to regular systems of classical spins. See
Refs. 18 and 19 for the application to random and quan-
tum spin systems, respectively.

One of the ways of giving a twist to the system is to fix
rigidly the spins at the opposite boundaries in one direc-
tion (a and P) and impose periodic boundary conditions
in the other direction(s). These are the boundary condi-
tions (BC's) we use throughout this study. Some work
should be done to twist the system, which amounts to the
increase in free energy measured from the untwisted
state. It depends on how stiff the system is. The method
can treat not only the ordered phases that have definite
interfaces, but also the ones where the interface cannot
be defined in spite of nonvanishing stiffness. Therefore, it
may be suitable to begin calling this method the twist
method instead of the interfacial method and similar
ones. Then it may be natural to rename the free-energy
difFerence the stiQness free energy for general use instead
of the interfacial free energy. The stiffness free energy b,F
is then defined as the difference in the free energy be-
tween two systems with and without a twist:

where r =(T —T, )/T, and f (x) is a scaling function
that is analytic with respect to x for L ( ~; v is the ex-
ponent of the correlation length g'. This one-parameter
scaling form has been confirmed in the MC studies re-
ferred to immediately above, and further it can be
justified by the following considerations. ' Thermal fIuc-
tuations are 0 ( T) -L in energy. This is to be compared
with when one determines whether a long-range order
(LRO) exists or not against thermal fluctuations. Ac-
cordingly it is certain that a LRO exists if AFI —+ ~ for
L —+ (x) but it is completely broken if AFI ~0 for L ~ ao,
assuming that AFL is only the singular part. Since the
critical state is neither in a LRO nor disordered, it is
unique that AFI at T, is positive and finite at T, for
L —+ao. Further EFI at T, should be proportional to T,
because the opposite forces for ordering and destroying
are balanced at T, . This suggests hF(T, )/T, is univer-
sal. Since the above considerations do not rely on any
special models, this form is valid for any classical system
that undergoes a second-order phase transition to a disor-
dered phase, under thermal fluctuations. There is anoth-
er type of phase transitions between an ordered phase
with strong rigidity and one with soft rigidity in the sys-
tems we are concerned of. One has to apply another scal-
ing form for them as will be given later.

The stiffness exponent is defined by assuming the fol-
lowing asymptotic behavior of AF in L ~~.

b,FI~(T)—A (3L (3.3)

As seen from the above discussions, P & is negative in the
disordered phase. Positive g &(T) represents a measure
of stiffness of the ordered phase with which the boundary
states a and P are compatible. It is an effective value for
finite systems because it depends on T in the critical re-
gion owing to the finite-size effects. For L —+ ac, f &(T) is
expected to become a constant go ( & 0) at all the temper-
atures where the LRO exists. It is independent of a and
P so far as the two boundary conditions aP and aa yield
an effective difference in the twist.

hatt &(T) vanishes at
T, (and also in the region of a quasi-LRO with g= ~ if
possible). Since f &(T) drops sharp in the critical region
except for the quasi-LRO, T, is determined easily and ac-
curately. Since the BC's are fixed one can expect that the
estimate of T, is always an upper limit when the accuracy
is sufBcient, as confirmed in a D =2 Ising model. ' One
can also estimate universal finite-size critical amplitude
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b,F(T, )/T, and critical exponent v using finite-size scal-
ing (3.2). '

Since stiffness is a reAection of thermal fluctuations,
the stiffness exponent should depend on the type of them.
One is familiar to the two types of domain wall and spin
wave. Most of those systems with such thermal Auctua-
tions have the ground state that is trivially degenerate.
Then the LRO is dominated by only one spin-state or
generally a commensurable Fourier component at one of
the total energy minima. Thus it may be appropriate to
ca11 the ordered phases subject to these types of Auctua-
tions the complete ordered phases (COP), compared with
the IOP's. In addition to these types, we argue that there
is a novel type of Auctuations proper to the IOP's, as ex-
plained in Sec. IV. The stiffness exponent classifies them
according to its value as

D —1 for domain-wall type
D —2 for spin-wave type (3.4)

noninteger for a new type .

There is a very weak L dependence of g &(T). To
take it into account, we introduce a differential definition
of the stiffness exponent ittL ( T), from which we get finite-
size scaling for it:

8 In', FL(T)
q, (T)=

8 1nl.

Then it follows

(3.5)

BT vI (3.6)

This proves to have little inhuence on the estimation of
T„v, and hF( T, ) /T, as long as the sizes extend in a
moderate range. ' For L )g below T„gl (T) is equal to

Thus one can know the region of L (g, where
g~(T) & f„that is, the region where finite-size effects are
large. Further the T dependence of stiffness amplitude A
in (3.3) enables one to know the critical region where
g» l.

Now it is appropriate to give a finite-size scaling form
for a phase transition from a COP with stiffness exponent
D —1 to an IOP with $0( &D —1). Then we have

that satisfies gl ( T, ) =$0. However, the estimate of
(IOP) is usually less accurate, thus yielding large

errors in estimating T, . Let us express aP dependence of
g ti(T) in (3.3) as g(T;P) in terms of twist angle P.
Different P's generally cause different finite-size effects:

QI. (T;Pi) Wgl (T;P 2) for P,WP2 except at T, T.hus we
determine T, by finding a cross point:

(3.10)

This is valid also for the usual case of (3.2) and will give a
better T, than the previous one as far as the accuracy is
enough, though the difference is considered very small.

In the above we have tacitly assumed the case of
second-order transitions. In the case of first-order transi-
tions we have found that analyzing hE is much more
effective than doing hF. '

Let us explain how to calculate the stiffness free energy
by Monte Carlo simulation. We first calculate the ener-
gies of two systems with and without a twist by the stan-
dard method of the MC simulation. By making use of
bFt ( T0) =0 at T0 a little above T, which satisfies g ((L,
one gets

AE{Tp)
b,S(T)=b,S(TD)—f d(b, E(T)) . —

AE( T) T (3.1 1)

+0 ~ 1
)5aE/

n (T)
(3.12)

where
~
56E

~

= ( 1/n ) g,",
~
5b,E ( T; ) ~. The reduction

was
& p 4p for the 20 Ising model for L =50 with

n =20—40 (see Ref. 14). This reduction is unchanged
when one calculates 4F from the direct integration of
AE.

This short interval of integration not only reduces the
time and errors of calculation, but also enables us to treat
highly degenerate systems whose residua1 entropy is
dificult to calculate.

Further there is a great advantage that the errors 6AI
of hF are much reduced from 55E of AE. When one
prepares a series of b.EL ( T; ) with i =0, 1, . . . , n ( T) and
interval b, T =(TD T)/n (T), w—here T„=T( ( TD),

n

~5aF(T)l & y ME(T;)
i=1

DFI (T)=L 'g(tL'~ ), (3.7) IV. RESULTS QF THE Q =6 GCL MODEL
BY THE MC TWIST METHOD

where T, and v are the quantities relevant to this transi-
tion. Here scaling function g(x) behaves asymptotically
as x, ixi » l(T & T, )

g (x) —' const[0 (x )], ~x~ ))1( T )T, )

go+gix
(3.8)

QL ( T)=$0+ fi( tL '~
) . (3.9)

From (3.9) T, is deternuned by the lowest temperature

which is different from f (x) in (3.2). Then we get finite
size scaling for the stiffness exponent at this transition,

To obtain a phase diagram of the model for c, &=0-1
with hz=1, calculations are done for the systems of
I. =8, 10, and 12 with about 4X10 MC steps per spin,
while T0= 1.75 ( ) 1.2T, ) is set for the starting tempera-
ture of the MC simulations. I =20 is used for the
profiles of some twisted states.

A. Phase diagram

The phase diagram of T versus 8& is shown in Fig. 2.
There are two kinds of IOP's on the smaller side of c,
They have four phase boundaries including the one with
the disordered phase (DP) and the COP: DP-IOP2 with
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2
I

1.5— DP

p. 5 —IOP
COP

I

0.5

FICJ. 2. Phase diagram (temperature vs s, ) of the Q =6 GCL
model for c2=1.0, obtained by the MC twist method. Solid and
broken curves indicate the second and first-order transitions, re-
spectively. Critical points are estimated from the data with
twist angles, ~/3 (0) and m (o) and those with both angles
(X). See the text for the detail and the abbreviations in the
figure.

B. Two kinds of IGP's

The two kinds of IOP's can be distinguished by the P
dependence of hFz ( T;P). Let us limit the discussions to

critical temperature TDI2, IOP 1-IOP2 with Tyi COP-
IOP1 with T«& and COP-IOP2 with Tc&2. Small c& and
moderate temperature are favorable to the IOP's. This
property suggests a large contribution of entropy to the
existence of these phases, as already pointed out in the
previous studies. '

According to the analysis of the size dependence of
b.EL(T), ' a coexisting curve of the DP and COP with

TcD extends from the ferromagnetic Potts point (E, = 1)
and reaches to c,=0.5. There also exists a first-order
transition at c& =0. 1 along the COP-IOP1 boundary.
The IOP2-DP transition is continuous though it is less
evident. Both the IOP1-IOP2 and IOP2-COP transitions
look continuous but there exists the other possibility,
since less accuracy and the transitions from a LRO to
another one make the analysis difficult. Further discus-
sions will be given in Sec. VI C.

The IOPl is considered to arise when thermal Auctua-
tions are strong enough to get over the lowest-energy bar-
rier of c.„but much less than the highest. This should
hold true also for the IOP2. Then this indicates that Tc&&
and TC,2 are proportional to E, and independent of Q,
which is in good agreement with Fig. 2 and the results by
the pair approximation in Sec. V (see Fig. 12).

As one will see later there are large entropy contribu-
tions to the IOP's. Then it is of considerable interest to
observe that the phase diagram qualitatively indicates the
following. The entropy is consumed largely and continu-
ously in the large temperature range of the IOP's on the
small c, side, then it gets more concentrated as e& be-
comes large and finally it bursts out as latent heat at the
first-order transition at EI ~ 0.5.

30 t

20—

10—

'I

1

I
I
1
\
I
1

l

1

1

I

1
I

1

I
I

I I t

(a)—

0—
0 0.5

I

1.5

80—
I
I
1
I
I
1

60 —-..

I I
I

I I I I I I I I I
I

I I I-

(b)

40—

20—

0—
I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5

FICx. 3. Tdependence of EI'L(T) with L =8, 10, 12 at 81=0.1

and s2=1 of the g =6 CxCL model, calculated by the MC twist
method with twist angles m. /3 in (a) and m. in (b). The splined
curves (for guides to the eye) with solid, dotted, and broken
lines correspond to L =8, 10, 12, respectively. Errors are shown
by bars.

sI =0. 1 for the time being. Figures 3(a) and 3(b) show the
T dependence of AFL, respectively, for weak and strong
twists (P=~/3, n. ). In the IOP region b,F exhibits a no-
ticeable mound which indicates AS & 0 in an appreciable
part. There is obviously a qualitative di6'erence in the
size dependence between AFL's for both twists. These
features are clearly seen in the stiffness exponent f(T) in
Fig. 4. For P=m. /3, P(T) crosses with the T axis at three
temperatures, 1.42, 0.62, 0.34, which correspond to
TD,2, T„TC,I, respectively, while lt(T) for p=m does
only at 1.41 corresponding to TDI2. Both g(T)s cross at
1.37 and 0.30. In view of the errors we take
TDI2 1.41+0.01, Tir 0.62+0.05, and Tci& 0.30
+0.01 as the best estimates.

For Tc» & T & T», /&0 for P=m/3 and /=1. 13 for
These are characteristics of the IOP1 and clear

evidence against the XY-like characters, in agreement
with the previous results. On the other hand at
T» & T & TD,2 g are positive but much less than two for
both twists, which corresponds to the IOP2. There is
some difference between both values of P( T) because the
accuracy in b,F is much worse in P=m/3 than in P=m. .
In the thermodynamic limit we believe both agree and be-
come constant. Then only the P =@ case is reliable for
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I I I I j I I other is averaged over 1000 MC steps per spin. Since the
center-of-mass of the profiles change in time, the former
is useful to see patterns of distributions, and, in spite of
being instant, it has an average property done over a
large number of the spins on a cross section.

Let us start with the IOP1. Figures 7(a) and 7(b) show
the snapped profiles at T=0.55 for /=0 and m. /3, re-
spectively. They have the common features: there exist
mixed states consisting of two adjacent states in the inner
part. Although the spin states are different on the bound-
ary sides due to different boundary conditions, this
difference makes almost no difference in energy, thus in
free energy (see Fig. 16 given later). This is consistent
with the result obtained above that there is no stiffness

FIG. 4. T dependence of the sti6'ness exponent of the Q =6
GCL model at r. , =0. 1 and ate= 1.0 for two twist angles, P= sr/3
( X ) and m ( o ), calculated by the MC twist method. Errors are
shown by bars though those smaller than the symbols are not
given.

(a)

both IOP's, where P varies from 1.1 to 1.3 outside the
critical region. Since there is no finite-size effect there as
explained in Sec. III, Po must be a constant around 1.2.
This value is in good agreement with those of the models
previously studied (see Table I).

From the P dependence of g(T) in the IOPl one sees
that the system is disordered between the two dominating
states, though being critical might be right rather than
being disordered as will be discussed in Sec. VI B. Then
the one-spin distribution function of the IOP1 becomes as
in Fig. 5(b), in contrast with that of the COP in Fig. 5(d).

In the IOP2 stiffness exists for any twist and the order
is as soft as the IOP1. The order is a little more stiff than
that in the XF-like ordered phase. From examining
profiles of the twist states and a spin configuration as
shown later, we obtain the one-spin distribution function
for this phase as Fig. 5(c). In Fig. 6 we show the T
dependence of P at s, =0.3 and 0.5. For E, =0.3, we ob-
tain T»2 ——1.30 and Tc&2 ——0.90 in the similar way to the
case of E, =O. 1. Between these critical points, i/r is posi-
tive but much smaller than two for both twists. Since
critical fiuctuations are large and dominant for P =n/3 in
this narrow region, g cannot reach to go. For P = rr there
is a narrow terrace with g = 1.1, which is close to Po ——1.2
for c,=0.1. For c&=0.5, since any terracelike behavior
is not seen, we consider there is only one transition at
TCD =1.26 to the COP. For c, & 0.5, the obtained results
(which are omitted) obviously show only one transition to
the COP.

(c)

C. Pro6les and spin con6gurations of the IOP's

In order to understand the IOP's it is very useful to
look at their profiles and spin configurations in the twist-
ed states. We have calculated profiles of systems with
c& =0. 1 of size L =20 for a few twists. They represent a
distribution of each clock state averaged within each
cross section perpendicular to the twist axis, thus as a
function of the coordinate of cross section. We show two
kinds of profiles below: one is taken at one time and the

FIG. 5. Schematic one-spin distribution functions (probabili-
ty vs clock-state) of the Q =6 GCL model for the DP in (a), the
IOP1 in (b), the IOP2 in (c) and the COP in (d).
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for (()=m./3. However, in the profiles for stronger twist
$=2ir/3 as shown in Fig. 7(c), there are two regions of
different IOP1's [( /X ) and ( X/0 )] and a large inter-
mediate zone separating them. These IOP's are adjacent
with each other having a common state ( X ). It is noted
that the profiles of the other states (CI and 0 ) cross sharp
in the intermediate zone. Therefore, it is reasonable to
consider that this zone works as a buffer so as to prevent
spins in states with large angles (Ib,Il)I) ~/3) from get-
ting close to each other because otherwise it costs large
energy. It is the common state that plays the role of a
buffer. This suggests that the number of NN pairs in
different states by P) m. /3 depends on the size much
more weakly than in L (see Ref. 4). This size depen-
dence is nothing but the stiffness exponent (/II —-1.2) be-
cause NN pairs with P =~/3 do not contribute in the
IOP1.

The averaged profiles for the IOP1 are shown in Fig. 8.
They are qualitatively the same as the snapped ones. Al-
though the profiles for (() =2m. /3 look very smooth in Fig.
8(c), there still remain some characteristics of the IOP1
that are very consistent with the profiles for /=0 and
m. f3. Probably much larger sizes are needed to present
the IOP1 clearly.

Next is the IOP2. Figures 9(a) and 9(b) show, respec-
tively, snapped and averaged profiles for /=0 at T = 1.2.
Both reveal that such a distribution as in Fig. 5(c) is al-
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most realized, even locally, though their fluctuations are
very large as seen in Fig. 9(a). On the other hand, the
profiles for P =@ /3 in Figs. 10(a) and 10(b) exhibit one in-
termediate zone between two regions in different but
adjacent states, which are considered IOP2's ([X IIO/0)
and [CI It

X /e )). In these IOP2's there are two common
states ( 0 and X ). Thus these play as buffers, as is seen in
the figures. It is interesting to observe that these buffer
states are the same as the IOP1. Then this suggests that
a certain IOP1 exists at the pass in the phase space,
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FIG. 6. Stiffness exponents vs temperature of the Q =6 GCL
model at eI=0.3 in (a) and 0.5 in (b) for twist angles p=vr/3
( X ) and m ( o ), calculated by the MC twist method.

FIG. 7. Snapped profiles of the IOP1 for each spin-state o. at
T =0.55 for eI =0. 1 of the Q =6 GCL model twisted by /=0 in

(a), m/3 in (b), and 2m/3 in (c), obtained by MC simulations.
Each state is represented as 1 (o ), 2 ( X ), 3 ( ), 4 (+), 5 (A),
or 6 ( + ). State 1 is always fixed at the right boundary (z =21),
whereas at the left boundary (z =0) states 1, 2, and 3 are fixed,
respectively, in (a), (b), and (c).



16 478 YOHTARO UENO AND KATSUMI KASONO

(o)

0.5—
0 0o o Q

OOO 0oog~aygoo
X

X X
X X

X
X

X
X

0 —+ + ~ x. % 5 4 4 4 4 4 4 4 4 4 4 x. m
1 20

which connects two adjacent IOP2's and thus the IOP1 is
higher in free energy than the IOP2. Similarly, in the
IOP1 regime, we can say that a COP is at the pass be-
tween two adjacent IOP1's (see Figs. 7 and 8).

In the IOP1 these buffers work well and enclose excited
nondominant states in a small space, so that only two ad-
jacent states are dominant. In the IOP2 their work be-
comes less effective because of strong thermal Quctua-
tions, so that three adjacent states are dominant and the
IOP2 appears at higher temperatures above the IOP1.
From the above results we can describe thermal fluctua-

tions in the IOP1. Each dominant excitation is a (kind
of) domain of an IOP1-state adjacent to the IOPl-state
(that bears the LRO) and such a domain is surrounded by
a buffer. This type of thermal fluctuations is character-
ized in a large scale by the nonintegral stiffness exponent.
In the IOP2 thermal fluctuations become complicated but
we consider they are similar to those in the IOP1.

It is of considerable interest to see spin configurations
in the IOP's. Figures 11(a) and 11(b) are cross sections of
the IOP1 and IOP2, respectively, from the data for
P=m/3 at e& =0.1. In order to have spin configurations
clearly but roughly seen, we have employed the following
process, which approximately smears thermal Auctua-
tions of the shortest wavelength without decimation. For
each spin we average its phase angle together with those
of its NN spins only on the cross section. Note that we
use only the original configuration without replacing the
averaged values until this process is done for all the spins.

In Fig. 11(a) for the IOP1, two adjacent states (0 and
X ) are almost completely dominant with equal weight, so
that they are percolated even on a cross section, which is
reminiscent of microemulsion. Figure 11(b) for the
IOP2 shows that one state ( X ) is most dominant. Its ad-
jacent states (0 and Cl) form unpercolated domains on a
cross section, but is is not certain whether they remain
unpercolated even in the D =3 space or not. Though
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FIG. 8. Averaged profiles of the IOP1 at T=0.55 for c., =0.1

of the Q =6 GCL model twisted by / =0 in (a), m /3 in (b), and
2~/3 in (c), obtained by MC simulations. Average time is 1000
MC steps per spin. See the caption of Fig. 7 for the notations
and boundary conditions.

FIG. 9. Snapped (a) and averaged (b) profiles of the IOP2 at
T= 1.2 for s, =0.1, sz=1 of the Q =6 GCL model with
untwisted boundary conditions (/=0), obtained by MC simula-
tions. See the caption of Fig. 7 for the notations.
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useful. ' Let x „be the probability that a pair of spins
are in the mth and nth clock states and p be the one of
finding a spin in the mth state. There are the following
restrictions among them:

g xmn 1& pm g xmn~ xmn xnm (5.1)
0.5—

p (z)

x" "x O
X 0

X x x
ooo

x@y@x
00GPOO x xa p gpa 0 pop
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1 20

E=—,'zgge „x „—gh p
m n

(5.2)

S=(z —l)QK(p )——g QK(x „)+——1,
m m n

(5.3)

where z is the coordination number, h the applied field
and K(x)=x(lnx —1). We treat only the case with no
applied field. In order to treat every x „ independently
we define the free energy (multiplied by P= T ') that in-
cludes the constraint term with an unknown parameter A, :

m n

The energy and entropy per spin in L, ~ ~ are given in
terms of them.
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FIG. 10. Snapped (a) and averaged (b) profiles of the IOP2 at
T =1.2 for s, =0. 1 and c~= 1 of the Q =6 CxCL model twisted

by P=m/3, obtained by MC simulations. See the caption of
Fig. 7 for the notations.
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they are not "physical clusters" but "geometrical clus-
ters, " we conjecture that they are percolated through
the system, which is probably only the peculiar property
that makes the EOP2 differ from the COP. Very recently
this has been confirmed. Further discussions will be
given in Sec. VI B.

V. RESULTS OF Q-STATES GCL MODELS
IN THE PAIR APPROXIMATION

As mentioned in Sec. II we cannot define the order pa-
rameters, which distinguish between the COP and IOP2.
Nevertheless it may be helpful to understand the present
problems from such a theoretical point of view as what
properties will be obtained by an elementary approxima-
tion.

A. Pair approximation by means of
the natural iteration method

Since the spin component in the clock models is large
in number, there are two many variables in the self-
consistent equations to easily solve them even by comput-
ers. In such a case the natural iteration method is very

xo OQLxxxooox
QXXQQXQXQ+X
xQ QxQx XQgOg
x x 0 x Q~x Q x 0 g g 0
x x x',Q Q. x x x x x g x
x x Q g D','0 0'~x 0 x x Q
XQXQgxOX x x x x0/XXQ'xxxx0xx0x x xx xOxxQxxxxxxx
xQ xx0xQxxQx
XXQXXQQOXXQX
xQXQQQO OQxx
Qx xx(000xxxxx
X 0 X Q X X X X X X X X
o ~xtx x x x x x x x x
xlQD'x x x xOxQxXQg000xxxxxx

X QQQQQIX X X X X
x'0 0 0 0 0 0'xlo 0 01x

xxxxxOQX
Qxxx
xQx x
Qxxx
x x
x x
x x
x x x x

Pea

xerox

x x x 0
xQQ x
X X X X
x xQx
x x
X X
x x
x x x x

x x x x
xQx 0
x x x x

Qo
x
0

x xJ cl 00000
xQx0
Q X X X
xQx0
x x x x

X X 0 0
Q X(Q Cl

~O x gDx
Jx x x x

x x x x

FIG. 11. Spin configurations on a cross section at T=0.55
for the IOP1 (a) and at T =1.2 for the IOP2 (b) in the Q =6
GCL model with c,&=0. 1 and F2=1, obtained by MC simula-
tions. The symbols represent the states as 1 (0 ), 2 ( X ), 3 (0), 4
(+), 5 (K ), and 6 {+ ). They have been obtained after smearing
out the shortest-wavelength fluctuations, for the detail of which
see the text. The contours are the walls between the regions of
the dominating states with barrier energy c,

&
~ These

configurations are part of the data used in Figs. 7(b) and 9(a).
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@=PE—X+PA, 1 —g g x (5.4) 2

Minimizing @with respect to every x „ leads to

x „=exp(2PA, /z —PE „)(p p„)'

exp( —2@A,/z)=g g exp( —Pc, „)(p p„)'

(5.5)

(5.6)

0 —X

2&n
P, = g p„cos

n=1

27Tn
p, = g p„sin

n=1

(5.7a)

(5.7b)

From the comparison with Fig. 5, p, has the same sym-
metry as the one-spin distribution function of the IOP1.
On the other hand, p, has the same symmetry as both the
ones of the COP and IOP2. We have no other order pa-
rameters to distinguish them in the pair approximation
because pk with ~k~ ) 1 is theoretically unacceptable in
the parameter range of concerned and also inconsistent
with the present MC results in Sec. IV. We do not con-
sider this difhculty solved, even if the cluster approxima-
tion is raised to any degree as long as these distributions
have the same symmetry. The conjecture on the charac-
teristics of the IOP2 given in Sec. IV suggests a different
type of order parameter. To be sure, we note that there is
no spatially regularly modulated order in the IOP's
within the limit of sizes we took because otherwise one
got AIL &0.

and A, =N. Then using (5.5), (5.6), and (5.1) one can solve
these equations in an iterative way by starting an arbi-
trary state Ip I, which has the symmetry of a phase of
interest.

Taking z =6, we look for the three kinds of solutions
corresponding to the DP, IOP1 and COP with precision
10 for the free energy. With can=1. 0 fixed, c, is varied
from 0 to 1.0 for the Q =4, 5, 6 models, and E, is taken
only at EI=0. 1 and 1.0 for Q =8, 10, 12.

Using p, and p, in (2.5) we define the order parame-
ters:

I

0.5

FIG. 12. Phase diagrams (T vs c.~) of the GCL models for
Q =4 (6), 5 ( X ), and 6 (0) with E2=1.0, calculated in the pair
approximation. The boundary (H) between the IOP1 and COP
is unchanged among g =4, 5, 6 so far long as the IOP continues
along the boundary. Splines are the guide to the eye.

err on the first-order side, these discontinuities will de-
crease and, in particular, the former will disappear as the
degree of approximation is raised. We had half speculat-
ed that the phase boundary between the IOP2 and the
COP might disappear in this approximation because both
have the same symmetry. As a matter of fact the IOP1
has replaced the IOP2.

Then one might naturally doubt the validity of the re-
sults of TDr and thus of comparing them with the MC re-
sults. However, we have also obtained that at
Tcr & T & TDr the di6'erence in free energy between two
solutions for p, and p, is not so large; especially it is quite
small as T approaches TDr and vanishes at Tor. There-
fore near T» the solution for p, is almost equal to the
IOP2 and TDr is also the critical point for the IOP2.

Figure 13 shows the T dependence of the order param-
eters p, and p, at E, =0. 1 for Q =6. This consists of p,
below Tcr 0.30 and p at Tcr & T & TDr =1.54. It

B. The results

Figure 12 shows the phase diagrams for the GCL mod-
els with Q =4, 5, 6. The agreement with the MC results
for Q =6 (Fig. 2) is qualitatively very good if we neglect
the deficiency of this method. In particular the upper
phase boundary has the same tendency of the cI depen-
dence, including the result that the critical point is larger
at c&=0 than at c& 1.0. At c,=1, TcD-—1.350 agrees
well with 1.35 obtained in Sec. IV, which is attributed to
the strong discontinuity. In addition, the lower critical
point Tc, on the small E, side is proportional to E;, . How-
ever there is a large difference in the nature of the phase
transitions provided that our conclusion given in Sec. IV
is correct. That is, all the phase boundaries in Fig. 12 are
of first order. However the jump in energy is consider-
ably smaller at the boundaries of the IOP; for example,
EE-0.006 at TDr -—1.54 and ~F =0.05 at Tcr -—0.30
when c&=0.1. Since the cluster approximations tend to
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FIG. 13. Temperature dependence of the order parameters of
the Q =6 GCL model with e, =0.1 and ez=1.0, calculated in
the pair approximation. The curve consists of p, below
&et=0.30 and p, for Tcr & T& TDI=1.54.
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FIG. 14. Critical temperature vs clock-state number at
s, =0.0 (A, Toi) and e, = 1.0 (0, Tco) of the Q-state CsCL
model with c2= 1, calculated in the pair approximation.

VI. REMARKS AND DISCUSSIONS

shows a small discontinuity about 0.037 at Tc, . This
behavior is quite consistent with the specific heat
behavior (which has been omitted).

Concerning the Q dependence of the phase diagrams in
Fig. 12, the following are remarkable: (i) For the upper
critical temperature, TDi increases with Q on the small Ei
side, whereas TzD decreases against Q on the opposite
side. In contrast to it, (ii) the lower critical temperature
Tc, does not depend on Q. The first (i) is very good ma-
terial for instruction to explain the difFerence between the
I.RO's formed owing to entropy gain and energy gain,
details of which is given in Sec. VI. From the second
property (ii), it follows that there are only two relevant
spin states adjacent to the dominating state that destroy
the COP and form the IOP1. This is quite consistent
with the one-spin distribution of the IOP1 obtained in
Sec. IV.

To investigate further the Q dependence of the upper
critical temperature we have calculated the T, 's only at
s, =0 and 1 for Q =8, 10, 12, which are given in Fig. 14.
At c& = 1 the decreasing tendency is kept, whereas TD& at
E, =0 makes a maximum at Q =6 and decreases with Q
increasing. These results are discussed in VI A.
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and work to destroy the order as the temperature in-
creases. However, the following idea may be reasonable.
Roughly speaking, there are two difFerent kinds of
configurations in the twisted states: One costs little ener-
gy and contributes to keeping the order (ieducing hS),
whereas the other costs much energy and contributes to
destroying it (increasing b,S). At higher temperatures the
latter becomes predominant. Thus it results in AS & 0 in
total, but AS is still much lower in the IOP's than in the
COP as seen in the figure in spite of temperature being
much larger. It is noted that the IOP2 is protected from
becoming disordered by the second barrier cz.

Next we discuss the Q dependence of the critical points
obtained in the pair approximation (see Fig. 14). At
c& =1.0TCD decreases monotonously against increasing
Q. In the ferromagnetic Potts models with large Q the
energy almost dominates below TCD, whereas the entropy
does above TcD, as is also understood from the mean-
field results. Thus as Q increases only the entropy con-
tribution becomes large, reducing T, . On the other hand,
at E, =O. O there is a maximum TD, for Q =6. The first
increase is clear evidence that the entropy contributes to
the IOP because the increase of the degrees of freedom
leads to large entropy. However, its most frequent effect
for the IOP is limited to some extent. Further increase of
them may merely contribute to the complete disorder.
This tendency is very similar to the T dependence of AS
explained above. This similarity is reasonable because

A. Ordering due to entropy gain

We first look at the properties of AS and AE obtained
by the MC twist method at E, =0.1, F2=1.0 (see Figs. 15
and 16). b,S is negative at low temperatures that are al-
most in the IOPl region and the lower half of the IOP2
region. In these regions, AS & 0 is attained with little en-
ergy cost; b,E is even negative for P =a /3, and it is posi-
tive and comparable to TIASI for P=n. . Since negative
AS contributes largely to positive AI', this is direct evi-
dence of ordering due to entropy gain. At higher temper-
atures both bS and AE become positive, but AS is still
much smaller than that of the COP.

In the IOP2 region the entropy seems to change its role

100—
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1.5

FIG. 15. Excess entropy vs temperature at c& =0. 1 and c2=1
of the Q =6 CxCL model twisted by vr/3 in (a) and n in (b), cal-
culated by the MC twist method.
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that the number of NN pairs with relative angle 2m/3 in-
creases in power of L with a fractional number, when the
twisted state is compared with the untwisted state.
Twisted states are considered to be condensed states of
the largest-wavelength excitation in the finite untwisted
system. Therefore, this fractal feature is inherent in the
IOP's irrespect of the BC's. Then it follows that the ma-
jority states of the IOP's are not disordered with each
other, but they are critically coexisting. This description
is consistent with the results obtained from the geometri-
cal description formulated recently. '

The IOP1 has already been obtained both in the 3D or-
dinary Q =6 clock model, and the 3D Q =3 AF Potts
model, while an IOP2 was found for the first time in the
3D stacked triangular AF Ising model, ' though their
differences were not clearly noticed before. Further it
should be noted that the estimates of the stiffness ex-
ponents in various models in Table I suggest the existence
of the following universality. They are classified accord-
ing to the dimensions of the space in which the order pa-
rameter spans, Dop: go=1.2, 1.8,0.7 for Dop =2, 3, 4, re-
spectively.

C. Nature of the phase transitions of the IOP's

0—
I I I I

0 0.5 1.5

FIG. 16. Excess energy vs temperature at c,&=0. 1 and E2=1
of the Q =6 GCL model twisted by vr/3 in (a) and ~ in (b), cal-
culated by the MC twist method.

both larger Q and T have the efFect of increasing the de-
grees of available freedom to get over the energy barrier
of E2.

It is worth stressing that the following is remarkable:
T, is higher at small c.

&
than at large c& in a fairly large

region of Q in spite of noncompeting interactions being
reduced. This kind of property has never been found to
our knowledge in the highly degenerate systems brought
about by competing interactions. Thus one may say
that the highly degenerate models without competing in-
teractions can make best use of entropy for ordering.

B. Nature of the IOP's

In the profiles of the IOP1 for /=2~/3 [see Figs. 7(c)
and 8(c)], the two dominant states that are not common
to the two adjacent IOP's cross sharply. This reveals the
following important property of the IOP1. The two dom-
inant states in an IOP are well mixed because otherwise
two uncommon states in the twisted state can get in the
neighborhood with a low probability, thus resulting in a
du11 crossing or large probability of coexistence in a cross
section. Further mixing well yields extremely large en-
tropy, which is quite consistent with the above con-
clusion.

We have defined the IOP's as the soft phases with a
nonintegral stiffness exponent. Being noninteger suggests
a manifestation of the fractal feature of the IOP's such

%e have argued that the IOP's are a different type of
ordered phase. Then it is natural to expect the same
thing also for the phase transitions related to the IOP's.
The MC results suggest second-order transitions along
some phase boundaries of the IOP's. It is of interest to
consider this problem from the symmetric point of view.
As one immediately sees from the comparison of the
one-spin distributions in Fig. 5, there is no symmetry
change at the COP-IOP2 transition, so far as the uniform
macroscopic symmetry is concerned. Since there is little
possibility of being a modulated order, this is a transition
without symmetry breaking. Though the nature of the
transition is not evident, being second order is favorable
because, since the first-order transition has no restriction
of symmetry, no symmetry change is least probable. If
this conclusion is true, then this transition is well ex-
plained as being topological in terms of the percolation of
wa11 bonds, which represent physical connection between
clusters in adjacent states, according to the geometrical
formulation. '

On the other hand, at the IOP1-COP and IOP1-IOP2
transitions the symmetries of both phases concerned are
not in the relation of group and subgroup. Since this
heterogeneous symmetry change is against the Landau
theory for the second-order transition but reasonable at
the first order, both transitions are considered discon-
tinuous.

VII. SUMMARY

The present study has investigated an energy-
parameter line of the Q =6 GCL model that does not in-
clude the ordinary clock model. However, we do have
the interesting results and insight into the IOP's and the
LRO due to entropy gain, which are quite consistent with
the results previously obtained for various models. The
following are the results of the Q =6 CzCL model with
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E2=1.0 obtained by the MC twist method. (i) The phase
diagram with 0 (c&( 1 has a variety of c.

&
dependence, in-

cluding two kinds of the IOP's on the small c, side and
the coexisting line extending to the Potts point e, = 1. (ii)
Both IOP's have /=1. 2 except that the IOP1 exhibits
g(0 only for a weakest twist (f=m /3). Two adjacent
spin states dominate the IOP1, whereas three adjacent
states do the IOP2, which exists above the IOP1 or the
COP. (iii) Thermal fiuctuations in the IOP s are charac-
terized by their patterns, which are of soft structures with
buffers that prevent spins in different states by P)m/3
from getting direct contact. (iv) The DP-COP and
IOP1-COP transitions are discontinuous. The IOP2-
COP is suggested to be continuous, whereas the IOP1-
COP and IOP1-IOP2 transitions are not evident. (v) The
IOP2-COP transition breaks no uniform macroscopic
symmetry, and is strongly suggested to be of a diferent
type.

The following are the results obtained in the pair ap-
proximation. (i) The phase diagram obtained for Q =6 is
qualitatively in good agreement with the one obtained by
the MC study, though the IOP2 could not be obtained
and all the transitions are of first order. (ii) For
Q =4, 5, 6, the lower transition points Tc, is independent
of Q and proportional to E, . TD, at E, =O exhibits unex-

pected Q dependence, in contrast to the monotonous de-
creasing of TOD at E&

= 1 with increasing Q.
We hope these many interesting results and suggestions

to be examined and investigated further.
Note added in proof. In the 2D GCL model with next-

nearest-neighbor interactions the IOP2 has been found by
H. Shioda and Y. Ueno [J. Phys. Soc. Jpn. (to be pub-
lished)].
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