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The interaction between phonons and a two-dimensional (2D) electron gas is studied beyond
the Migdal approximation. The analysis of the vertex function leads to the relative correction of
~ImZ(ev, ur)

~

which is of the order of A(Qv" + aT)Ez ln(Ep/Qv"). Here, Op" is the average phonon

frequency, and a( 1) is the ratio between coupling constants for low-frequency and high-frequency
phonon modes. For ~~~ )) Qv", the correction is ~~~/E~. The physically relevant result is that
significant corrections are present only when (~) & O~z, (cu —

e~~ & Ov" and they increase with

temperature as T with b ( 1 in the entire frequency region. Also, our results strongly suggest that
the quasiparticle picture for a 2D electron gas in a 3D lattice has to be corrected by many-particle
egects even at small ceo/Ep.

I. INTRODUCTION

The photoemission studies of high-T, Cu-0
superconductors ' have reported the observation of the
effective Fermi energy E& 0.3 —0.5 eV, which is
much smaller than in the usual superconductors. At
the same time, the neutron scattering experiments have
found that the phonon energies in these materials ex-
tend up to 80 meV. Some of the superconductive tun-
neling experiments have been interpreted in terms of
the phonon-induced structure in the tunneling density
of states and the results have been analyzed within
the usual Eliashberg theory. The extracted Eliashberg
function n E(O) indicates that electrons couple to all
the phonons and the reported values of the parame-
ter A = 2 j "n E(O)/O were large. Moreover, re-
sults &om the far-in&ared measurements and Raman
spectroscopy give support to the fact that electron-
phonon interaction is not weak for optical phonons in
the copper-oxide superconductors. The second impor-
tant feature of Cu-0 superconductors is their layered
structure as indicated by transport measurement, band
structure calculations, etc. All these results suggest that
the usual Migdal approximation for electron-phonon in-
teraction has to be reanalyzed in view of the quasi-two
dimensionality and a larger than usual value for the ra-
tio O~"/E~ (O~" is the average phonon frequency). It
was pointed out recently by Eliashberg that in two di-
mensions (2D) Migdal's theorem applies to the accuracy
(O~"/E~) ln(E~/Ov"). In this work the frequency (~),
momentum (i.e. , ez) and temperature (T) dependence
arising from the vertex corrections in 2D are examined
in greater detail. We believe that our results should also
apply to any kind of electron-boson interaction in 2D.
Many of the theories for copper oxides calculate the elec-
tron self-energy due to boson (spin and/or charge Buctua-
tion) exchange without electron-boson three-point vertex
I (Fig. 1) in spite of the fact that the relevant spectral
densities extend over the energy region which is not much
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FIG. 1. The skeleton diagrams for the electron self-energy.

smaller than E~.
We have calculated the lowest-order correction

[Fig. 1(a)] and studied the higher-order corrections
[Fig. 1(b)] to Migdal's result, Z™(~),for irreducible
electron self-energy. It is found that corrections to
ImZ(")(~) are significant in the region ~"~ O" and

O~". It is necessary to stress that in the case
when O~"/E~ is larger than its usual value in metals,
the electron (and phonon) lines in the vertex correction
diagrams have to be dressed by the self-energy eKects,
since in that case the quasiparticle damping of electrons
in intermediate states cannot be ignored. It is shown
that the contribution from the (N+ 1)st-order diagram
in 2D is of the order A~Opg/E~ where A~ is a com-
binatorical factor. In the region of frequency u where
1m~™(~)is smaller than O ~/E~, the higher-order
corrections to the self-energy have the order of magni-
tude comparable to (or larger than) Migdal's result. In
the case of the optical and 2D acoustical phonons, we
were able to obtain the analytical form for this result.
Also, the electron-phonon problem in 2D is qualitatively
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difFerent &om the same problem in 3D. The immediate
difFerence is in the shape of the phonon density of states
F(O) and the Eliashberg function n E(O) at small O.
For example, the Debye model gives E(O) = 3O /vari
and n E(O) = A(O/uLi)2 in 3D, and E(O) = 2O/u&
and n2E(O) = (A/vr)O/gu&2 —O2 in 2D. However, the
more important effect of reduced dimensionality comes
&om skeleton diagrams with more than one phonon line.

In Sec. II the second-order correction to self-energy is
studied in the case of low-&equency and high-&equency
phonon modes. In Sec. III it is shown that a (N + l)st-
order diagram (1V ) 1) does not remove this correction.
In Sec. IV, the behavior of ImZ(e„, u) is analyzed for

I

u, e„, and T values on the order of several times Oph.
Some limiting cases for the three-point vertex are studied
in Sec. V. Special attention is paid to changes of ImI' in
2D. The polarization part at q = 0 is discussed in Sec.
VI. The final section contains a summary.

II. THE SECOND-ORDER
CORRECTION TO SELF-ENERGY

The electron-phonon interaction is defined by the
Frolich Hamiltonian which can be written for a layered
structure as

where instead of the z coordinate the index i is substituted. ep is the electron energy, O~~ is the frequency of phonon
of polarization p in the i layer. In the following all the momenta (p, q) are two dimensional and the momenta in the z
direction are defined separately. The hopping matrix element, t, connects only the neighboring layers. Furthermore, we
are interested in the limit when t tends to zero. For our purposes it is enough that t ( O h/E~. In our consideration,
the ratio between characteristic phonon and electron energies is in the range 0.05—0.2 and a given diagram is computed
with the accuracy of (O~h/E~) . Both 2D and 3D phonon dispersions are analyzed.

The Migdal-Eliashberg approach is mainly based on three important assumptions which are in fact interrelated: (1)
the dependence of self-energy on e~ is small; (2) the higher-order vertex corrections are negligible; (3) all the momenta

p, p' connected to phonon momentum q = ~p
—p'~ are on the Fermi surface. The result of Migdal's theorem states,

for example, ImE(e„, u) = ImZ™(u)+ O(O i, /Ey) where

O 1 ( O+~ O —url
ImZ (u) = —vr dOcr E(O) coth ——

~

tanh + tanh
2T 2 ( 2T 2T j (2)

is the imaginary part of the retarded self-energy in the Migdal approximation.
Let us consider the second-order self-energy diagram shown in Fig. 1(a). This diagram is the first f'rom the series

of diagrams in the Cooperon channel, and the momentum conservation law Q = p + p = pi + pi is a characteristic
of the series. Here p is the incoming momentum, p is the momentum for the electron line crossing the phonon lines,
pi (pi) is the lower (upper) parallel electron line momentum. The contribution from Kth-order diagram will be
denoted by Z~~l(c„, ~). According to Migdal's theorem the vertex I' [Fig. 1(a)] is equal to the bare vertex g times
[1+O(O~i, /E~)]. Therefore, all the higher-order diagrams give the correction to the self-energy that is of the order
of O~h/E~. This implies that if one is to calculate Z~zl(e„, u) to the accuracy (O~h/E~), one can substitute in the
expression for K~21(ez, u) the dressed functions by the functions calculated within the Migdal-Eliashberg approach
[e.g. , electron Green's function G(ez, , u) by G™(ez,, u)]. To study the effects of finite E&, we will consider the
spectrum —~~ = p /2m —p, where p is the chemical potential, and E~ = p(T = 0) is near the top of the band.

The expression for self-energy &om the diagram under consideration takes the form

Z (ep, 2ld~) =T) T) ) ) g ID I (gr, XLd~ ~~) ) g itD gI (g2, Z(d~ ~«)

XG(E&z & 2Ld~i)G(epi &
Z(d~i+~ri ~)G(E&i & ZLd~n).

The different thermal factors with the combinations of
the real and imaginary parts of the electron and phonon
propagators appear after analytical continuations from
the Matsubara frequencies to the real axes iu —+ u +
20+, i~„~u', iu„~ u", and after taking the imagi-
nary part of Z1 1(e„,u). To eliminate a large number of
the integrations which appear after analytical continua-
tion, we convert (when possible) the imaginary parts to

I

the real parts through the dispersion relations. In the
final result for ImE~21(e„, w), there are two integrations
over u', ~" and two summations over momenta. The ex-
pression for ImKt21(e~, ur) can be written as

ImZ (e„)ld) = ) S;(~„,~).
i=0
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Here So(ez, u) is the term where only the product of the
imaginary parts of the phonon and electron Green's func-
tions is included. The sum of the terms involving the
product of the imaginary parts of both phonon propa-
gators, two real and one imaginary part of the electron
Green's function is denoted as Sq(e„,w). The sum of the
terms containing products of one real and one imaginary
part of the phonon propagators and two imaginary parts

[

with a real part of electron propagators is S2(ez, u). The
product of two real parts of phonon Green's functions
and three imaginary parts of electron Green's functions
is Ss(e„,u). All terms S;(e„,u) (i = 0, 1,2, 3) contain
various thermal factors which are combinations of the
Bose and Fermi functions. For example, the expression
for So takes the form

3 oo

So(e„,ur) = — dQip) dn, )
CX1 qCX2 =+1

O1 O2 4) + o.'1Oy
coth coth —o.1 tanh

2T 2T 2T

x o.2 tanh
(u + o.2O2 (2)

2T
B (E»cd'; Ld + o!yAy, et) + ctyOy

+~2~l2 ld + ~2~2 ~l1fl2) ~

Here

B (e„,~; ~', (u", (u"'; A, Bg) = N(0) ) B(qg, Og)B(q2, 02)A(e„, , ~')A(e„~, cu")A(e„~, ~"'),
P Py

(6)

A(e„, cu) = ——ImG (e„,~)

and B(q, 0) is the spectral weight of the phonon propagator

where N(0) = m/2m is the density of states at the Fermi
level in 2D. The other three functions S1,S2, S3 are also
directly related to B~ l (see the Appendix). The depen-
dence of ImE( ) on e„ is only through B( ), but the de-
pendence on u comes &om B( ), the thermal factors and,
in the case of S1,S2, S3, Rom the denominators in the
spectral representations of propagators.

In 2D the integration over any two of momenta from
the set pq, p', p~ in Eq. (3) [or Eq. (6)] can be replaced
by integration over the energy variables E'p& E'p cp andP1) P ) P1
Q = ~p + pq~ = ~p' + pz~. This set of variables is the
most natural for the analysis of contribution from the di-
agrams with more than one phonon line. The Jacobian

I

for transition &om the integration over the electron mo-
menta to the integration over the energy variables and Q
is defined by the inverse square root from the product of
polynomials X (Qpp')X (Qpqpz) where

X'(Qpp') = [Q' —(p —p')'][(p+ p')' —Q'1 (9)

This polynomial is biquadratic in each variable and sym-
metric under the exchange of any pair of variables. This
type of polynomial plays a key role not only in Z( ) but
also in the higher-order diagrams.

After the change of variables the expression for B( )

takes the form

—oo

x d6pIA cp~&M dip~ A cpi &M 0

1 ~~ (pp) 2QdQ 1

x(Q ')x(Q (10)

Here Q = max(~p& —p', ~, [p —p'~), QNI = im( nq p+p„p+
p'), and 8(x) is the usual step function. The electron
momenta are functions of the corresponding energy vari-
ables, e.g. , p = p(e„), etc. The phonon momenta depend
on E'p cp cp through the electron momenta

—,C(p', - p", )(p'- p")

+X(Qp, p' )X(Qpp')]]
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FIG. 2. The correction to the imaginary part of the elec-
tron self-energy in 2D for the Einstein model with 0 h
0.1E~ and at T = 0. The correction is normalized by the
electron-phonon coupling constant, A, and by ImZl (0 h +
0+). The correction is present in the region where Migdal's
result is equal to zero.

and q~ can be obtained from (ll) by the exchange of pq
and p~. If the electron momenta are near the Fermi sur-
face the derivatives dO~/de„are of the order of O~h/E~
except when q 0, or Q 0, or Q 2py . In order to
have one-to-one correspondence between the old and the
new variables the integrations over momenta are sepa-
rated into four sectors. Different signs in (ll) correspond
to different sectors.

The important feature of Eq. (10) is the presence of
E+ as a prefactor. We want to estimate ImZ (e„,w)
for u and ~'p Oph The order of the magnitude of
ImZ( ) is determined by the function B( ) integrated
over the phonon frequencies 0~, 02. One finds ImZ( )

A 0 h/E~ if different factors in the integrand were reg-
ular. However, in 2D that is not the case. One can
see this by taking the quasiparticle form for the electron
spectral weights, Al l(e„,u) = b(u —ez). After trans-
f'orming the integrations over p', p~, Eq. (6), into in-
tegrations over e„,, e„i, e„~ and Q the integrations over

in Eq. (10) are trivial and only the integral
l

over momentum Q remains. Note that now the momenta
are function ~'s: pq

—p(~'), p' = p(~"), p', = p(~"').
If the square-root singularities from the polynomials (9)
coincide, the integral over Q has the logarithmic singu-
larities at the limits of integration Q and Q~. The
improper integrals over u' and w", which are present in
the expressions for Sq, S2, and S3, do not change the
type of singularity. Integration over the phonon frequen-
cies 0~, 02 does not remove the singularity on the line
u = e„within our accuracy (O~h/E~) . A similar kind
of singularity has been discussed for Coulomb interac-
tion in 2D. We note, however, that in the higher-order
diagrams, the integration over Q produces singularities
which are stronger than logarithmic in 2D (see Sec. III).
In the following, we will call such type of singularities
of the diagrams in 2D geometrical singularities. These
geometrical singularities are present in 2D for each dia-
gram if more than one phonon (boson) line appears. This
singular behavior could be removed due to the following
physical reasons. First, hopping in the z direction leads
to a dispersion —e„= p /2m —p, + tcos(p, c) and ad-
ditional integration over the z components of momenta
gives Impel l A 0 zE& ln(Ep/t). ~ Second, when the
diagrams are calculated with the dressed propagators,
the damping associated with the imaginary part of self-

energy insertions will remove the singular behavior. In
the present paper we assume t &( O~h and therefore con-
sider only the second case.

A. Einstein model for the phonon spectral weight

The result for ImZl l(e„,ur)/max ~lmZ™~calculated
with bare electron lines for the Einstein model with a
phonon frequency 0 h

——0.1E~ and at T = 0 is given in(o)
ph

Fig. 2. The singularities in Z( ), which were discussed
above, have been cut oK by taking the difference between
arguments near the singularities not smaller than the ac-

curacy of the calculation, i.e., (0 & /E~)2. We note that

at the cutofF near the lines iur (
= 0 h and ~w

—ez~ = 0 the

correction due to Z( ) is given by Eliashberg's estimate.
An interesting feature of the result shown in Fig. 2 is that
corrections are mostly located near the lines ~w~ = 0 &,

(0)
ph ~

~w
—

ez~ = 0, and ~u —
ez~ = 20 h. More importantly,

ImZ( ) is Gnite in the region where ImZ( ) is zero. For
the Einstein model ImE( l = —(vr/2)AO h0(~u~ —0 h)
and thus it vanishes for ~u~ ( 0 h. However, at T = 0(o)

ph '

for ~ur~ ( 0 „, Immi l is equal to Ss, Eq. (4), which is
given by

7r
S3 = — dc'

4
20' (DO

(QJ —M —02

B. Coupling to high-frequency modes

In the case of several optical phonon branches the
singularities of a simple Einstein model at ~w~ = 0 hph

I

and iw —e~~ = 20 h are smeared out, but singular-
ity at w = e~ remains, and the corresponding term
in ImE( ) is increased due to the presence of several
branches. To remove this singularity one has to in-
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n2S(q, n) = W(0) P g&*i'S(n —ni'1)
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I
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+ ld72
2 —262+72

+oo —1d73 =1
oo 3 3
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2 i T2 + T~ ]. (i4)

Here e = e„—~ and 1/7 = ~1m'™~. For the terms S;
(i = 1, 2, 3) one can use the formula

1 1 iasgn(lmz)
&2+ —z (i5)

t p per integrations analytically, andto perform the im ro er
t en to use a formula analogous to (14). The branch of
the square root on the right side of E . ~15 is
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u~/E~ one can take into account only the terms of the
order of 1, coming from the integration over Q. Further-
more, the imaginary parts of the bare electron Green's
functions fix the electron momenta near the Fermi sur-
face with the accuracy u~/E~ K.eeping this in mind it
is clear that at T ) 0 Sp is proportional to T when
qi ——q2 ——0 and Q = 2pp [Fig. 4(a), case 1], and
that it is proportional to T when qq ——0, q2 ——q, and
Q = (2p~) —q [Fig. 4(a), case 2] or when qi ——0,
q2 ——2pp, and Q = 0 [Fig. 4(a), case 3]. All phonons
are involved in the scattering process at Q = 0, but their
momenta are correlated by qi + q2 = (2p~) [Fig. 4(b)].
The processes in Fig. 4(a) (cases 1 and 3) give the loga-
rithmic singularities at T ) 0:

S = —A
I
1+ oth Iln

4

8EF+ coth ln
2T 2T QI4~D2 —(i' —ez) 2

I

(16)

Here, qD
——2pF is taken for simplicity and the terms

without singularities are omited. The logarithmic singu-
larities caused by the geometrical singularities in the case
of the acoustic phonons appear only at Gnite temperature
in contrast to the case of high-&equency phonon modes.
At T = 0 and at ~ )) ~~/E~, the processes shown in Fig.
4(b) give the main contribution to So for the bare lines.
These processes can be described in the terms of one
phonon variable. In this case Sp can be written in a form
completely analogous to ImZ™,but with n2P(O) re-
placed by an effective spectrum a2E,~(B). To obtain this

PPi P P, (case I)
LI II b)

«io2—
E„

PP,
ase 2)

PP,

PP,
{case3)

PPj PP,

c)

e)

~QP P, (ease 2)

PP,

FIG. 4. The special points connected with geometrical
singularities in 2D for different shapes of the Fermi surface:
(a) and (d) at finite temperatures (T g 0); (b) and (e) at
zero temperature. The difference between electron momenta
in each group of parallel lines is p~(uo/E~) The scale of.
2pJ;(uro/E~) at cuD/EJ; = 0.1 is shown for convenience (c).
at T cu 0 the processes in the vicinity of the Fermi surface
(case 1) give the largest contribution to ImZ 1 (see the text).

form the integration measure dQ /[A (Qpipi)X'(Qpp')] is
replaced by +2sgn[(pi —pi) (p —p')]d 0(+)/ sin 8(+) in the
integral over Q. The signs + correspond to the signs in
the definition of phonon momenta [see Eq. (11)]. The
result is a2I', fr(O) = (~/4)(A ~~/4EJ:)(u~/Q(uD —02.
At small ~ and T Sp is given by

So ———A' l(ul ~ ~T+ Tln
4 2EF le~(4~D —e,') I

(17)

In Eq. (17) we have assumed that ez uD )) cu, T.
There are no reasons why this concrete term would be
changed by dressing the lines at T 0 in the vicinity of
u = 0. Indeed, the calculations with dressed lines (Fig.
3) clearly demonstrate an increase of the correction to
K&M~ at small ~ and T.

As it was discussed above, at finite temperatures the
cutoff of the logarithmic singularity is provided by the
6nite value of damping. It is well known that ImE~M~
—vrAT at temperatures comparable to uD. Therefore,
the temperature dependence of ImZ~ ~ calculated with
dressed lines does not come only &om the thermal fac-
tors. Upon including the damping, the logarithmic sin-
gularity in Eq. (16), which is obtained for bare lines,
is replaced by a factor ln(Ep/AT) and this introduces
an additional temperature dependence. At high tempera-
tures, the asymptotic behavior of Sp for dressed lines can
be estimated as A T E+ ln(Ey/AT). One can conclude
that ImE&2)/ImZ(M) is nearly linear in temperature. To
And a more precise estimate of the correction to the T
dependence of ImZ™one should analyze the contribu-
tion &om other skeleton diagrams. This analysis is given
in Sec. III.

In the conclusion of this subsection we prove that Sp
is indeed the leading term in ImZ~ ~ for ~, T &( ~D in
the case of the acoustic phonon. The term S3 is propor-
tional to tu /E~ at low frequencies and can be omitted
in the comparison to So (uD/E~)It@I. The main dif-
ference between Sp and Si 2 is that in the latter two
additional improper integrations over ~', u" are present
(see the Appendix). In these integrals, the f'requencies
~', ~" are not of the order of ~D and corresponding
momenta are far &om the Fermi surface. The thermal
factors in Sq 2 introduce the restriction that at least one
of the phonon frequencies has to be smaller than lul at
T = 0. Therefore, in the case of the acoustic phonon, one
of the momenta pq, pz is near p. Let us take pq to be
near p. Due to the momentum conservation momenta
p' and pz are approximately equal. The phonon mo-
mentum qg can be substituted by the momentum on the
Fermi surface, Fig. 4(c). [Case 1 in Fig. 4(c) corresponds
to the processes contributing to Sp and case 2 describes
the processes contributing to Si q. ] This implies that the
same function appears in the integrands of the expres-
sions which give Sp, Si, and S2, except that in the case
of Sp it is multiplied by two b functions, while in the case
of Si 2 it is multiplied by 1/(~' + 02)(~" + 02). If 02
differs &om zero, the smallness of Si 2 compared to Sp at
low u and T is obvious. If 02 0, the additional integra-
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tion over phonon kequency makes S» 2 small compared
to Sp.

It should be noted that in 2D the correction to the
imaginary part of the self-energy from ImZ~ ~ has a sign
opposite to ImZ~ ~ and the two do not compensate
each other near w = 0. In the case when self-energy
is computed with the dressed lines the correct sign of
ImZ(e„, ~ + iO+) is presumably restored by contribution
from other skeleton diagrams.

III. CONTRIBUTION FROM
(K + 1)-ORDER DIAGRAMS TO SELF-ENERGY

Let us discuss corrections &om the higher-order dia-
grams. Vertex I' can be written as an infinite sum of the
skeleton diagrams with dressed lines and vertices r."We
start &om the skeleton diagrams for self-energy with bare
vertices g instead of I' for (N+ 1)-order diagram (N ) 1).
Each diagram with N+1 phonon lines has 2N+1 electron
lines and N + 1 integrations over the electron momenta
in 2D. After analytical continuation and after taking the
imaginary part, the minimum number of the imaginary
parts of the phonon and electron propagators is N + 2

I

and the maximum number of the real parts is 2N. The
number of real parts of various propagators is important
because it is equal to the number of improper integra-
tions in ImZ( +i) (compared to ImZ( )). We select two
classes of skeleton diagrams. In one class we have di-
agrams, like the first diagram in Fig. 1(b), which are
characterized by momentum conservation q = p' —p =
pz —pq ——. . ——pN —pN. In the second class we have

diagrams, like the remaining two in Fig. 1(b), which are
characterized by momentum conservation Q = p + p' =
pz + pz

—— - - ——p~ + pN. One can estimate the order
of magnitude of a skeleton diagram kom either one of
these two classes in 2D. As before, the integration over
momenta p', pz, . . . , p~ is replaced by the integration
over the energy variables 6p& cp~ cp 6p cp
and over Q = lQl (or q = lql). At fixed Q (or q) a
point (Ep, . . . Ep~ Ep& Ep& . . . Ep' ) corresponds to 2

points in the momentum spaces. The one-to-one corre-
spondence could be preserved by partitioning the mo-
mentum space in suitably chosen regions. Next we in-
troduce the generalization of B( ) given by Eq. (6). In
the Cooperon channel (Q conservation), for example, the
function B~ + ~ is defined by

B(N+i)
(

.~i ~(2N+i). fI

P P 0 QM

de„, A(ep, ) ~') de„~ A(e„~, cu
+'

)—oo —CK) 7r Q

(p )'"2qdq
X(qpp')X(qpip', ) . . X(qpivpz)

x ) B(q~~, Oi) . B(q~~, ON. ) .
p

A(e„, cu) = 1 (2v)
~ (u) —~„) + (2r)— (2O)

Here the summation over P corresponds to the summa-
tion over the above-mentioned regions in the momen-
tum space. The limits of the integration over Q are
now q- = max(lp' —pl lpi —pil " lpN pNI) and

min(p+ p pi +pi . . p~ +pN) The frequencies
in the electron spectral weights are taken according to the
energy conservation in the Cooperon channel. B~ + ~ for
a diagram with momentum conservation connected to q
can be obtained from (18) by replacing Q with q and by
using the appropriate dependencies of q, on energies e„.,
To estimate B~ + ~ one can subst;itute the phonon spec-
tral weights B(q;, 0;) by the average value B „(0;).The
integration over the phonon &equencies 0», . . . , O~ gives
the order of magnitude of the diagram under considera-
tion. Taking the electron spectral weights for bare lines
one can find the geometrical singularities of the type

(2y» )'
( )

2N'dq2

(V'q'K2»)' —q'lk +'

in the expression (18), if all momenta are on the Fermi
surface. These singularities are eliminated by taking the
dressed electron lines, in which case the spectral weights
have the Lorentzian form

I

where (2r) is the damping. Then, formulas analogous
to Eq. (14) produce a result with geometrical singulari-
ties removed. Assuming a constant damping I/7 « E~
one finds I( + ) (E~7) Taking r. mAOi, h

(or r 2mAT at high teinperatures T ~ O~h) the or-
der of Jo dpi fo dB~B( + ) can be estimated as

A~A~h/Ep when variables e„,w, cu', . . . , ur( + )

are Oph, and to be smaller otherwise. Above we have
found that ImZ( )/ImZ( ) increases linearly with tem-
perature. Now, it is easy to check that when O~h
T « E~ the ratio ImZ( + )/ImZ™,where Z( + ) is
the contribution of a skeleton diagram from one of the
above-mentioned classes, increases with temperature as
T~ with b & 1. The Bose thermal factors for (N + 1)-
phonon lines could give the power of T which is at most
N + 1. Since I( + ) (E~r)+ i with 7 i T,
ImZ("+')/ImZ( ) - T/E .

We have substituted the vertices I by g in the (N+ 1)-
order skeleton diagram. The difference between I' and g
is of the order of A~h/E~ in the Migdal approximation.
Due to the prefactor E& which appears after trans-
forming the summation over momenta p', pz, . . . , p~ to
integration over the energy variables, the resulting error
in Z( + ) is o(O~h/E~) if I' does not have a singular-
ity. Singularit;y in I would lead to violation of Migdal's
theorem. In Sec. VI we will show that when I' is calcu-
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lated with bare lines, the singularities appear in 2D, but
dressing the bare lines with self-energy restores Migdal's
theorem except in the vicinity of special points.

The interesting feature of integral (18) is that the
strongest singularity is present, as in the case of E~ ~,

near the line w = ep. This is a direct consequence of the
2D-nature of the problem where all electron momenta
are in the same plane. This brings a qualitative difFer-
ence between the electron-phonon problem in 2D and 3D,
especially with increasing O~~/EF. It was conjectured by
Holstein that in 3D (N + l)st-order diagram is of the
order (Azh/E&) . In 2D we get for any (N+ 1)st-order
diagram &om the two classes described above the esti-
mate AivB&i, /E~, where Aiv is a combinatorical factor.

Prom the previous discussion it is clear that geometri-
cal singularities play an extremely important role in the
electron-phonon problem in 2D. The question is whether
the shape of the Fermi surface influences these geomet-
rical singularities in 2D. We would like to discuss our
result for E~ ~ in the case of the electron spectrum for
a nested Fermi surface, ek = —

2t~~ [cos(k a) + cos(k&a)],
where k is in the first Brillouin zone. The ImZf l(ek, cd)

has the singularities too. For example, if k = (O, m/a)
we can take the variable Q = [cos(Q a) + cos(Q„a)]/2
as independent from the energy variables. Here, Q =
(Q, Q„) is the total momentum. The Jacobian for tran-
sition &om integrations over momenta dk' dk„'dkz dkz„ to
the integrations over the energy variables and over Q
!J(e~, ei, e~ Q„)! deq, dej, dek dQ„, cannot be written in
the analytical form for the general case. It is possible to

I

And the Jacobian at eI„——~k ——0 and ~k ——e. It is

sin A f+l sin% f l(sin2Cf+l —sin A'f l)
I~I =4t I~l + 4t (sin% ~+& —sin% f l)

II

(21)

where sin Af+l = gl —(Q + e/4t~~) . For e 0, which
corresponds to the case when all momenta are located
near the Fermi surface, the singularity in the Jacobian
is stronger than logarithmic if Q„= 0 or +1. These
cases are shown in Figs. 4(d) and 4(e). The analogy
with an isotropical cases is quite clear. One can conclude
that 2D singularities will appear for any shape of the
Fermi surface. Additional analysis of Migdal's theorem
must be carried out in the case of a nested Fermi surface
because the geometrical singularities in higher-order di-
agrams around several special points are stronger than
those obtained for the isotropic case.

IV. THE BEHAVIOR OF
SELF-ENEB,CV AT HICH ~ AND T

To estimate the imaginary part of the self-energy at
large ~ and ~p the following should be mentioned. The
(N + 1)-order diagram for the self-energy has an over-
all prefactor of the order of (O~h/E~) [Eq. (18)].
This prefactor does not depend on the frequency range.
Therefore, one has to study the correction to the Migdal
approximation even in the first-order diagram. The imag-
inary part of Z~ ~ can be written in the general case as

x dfplA @pl, (d + o.'yO

1 f 0 Cd + Clice l
ImZf l(e„,cd) = —— ) dO! coth —ni tanh2, ( 2T !2T)

min(p+p', qp )

, B(q, 0). (22)

qo is the cutoff for phonon momenta. Expression (2)
for lmZ™has been obtained from Eq. (22) by tak-
ing p, p' p~ and by performing the integration over '

apt in the infinite limits. Our estimation is based on the
assumption that at large 0 the phonon spectral weight
does not depend critically on q. First, we restrict our-
selves to the case T = 0 and u )0, where 0 is
the maximum phonon &equency. ImZ~ ~ does not de-
pend on ep. In the first step we take the spectral weights
calculated within the Migdal approximation. To perform
the integration over ep, one can exchange the order of
integration in Eq. (22). After using formula (15) one
gets

where e = cd —Zf l(cd) = Z(cd)cd, with Z(cd) the renor-
malization parameter. Formula (23) is not obtained by
the residue theorem because of the finite limits of integra-
tion, but it is a direct consequence of (15). All the square
roots are with positive real parts. The phonon spectral

I

weight of a I orentzian form and qo
——2p~ are used in the

calculations shown in Fig. 5. The main feature of the
model is a decrease of the imaginary part of self-energy
at high &equencies and for large electron energies. Fig-
ure 6 illustrates that with increasing A~i, /E~ one cannot
neglect the ep dependence on the scale of u about sev-
eral times of Oph When (d or cp are near the top of the
band the decrease of ImZ~ ~ is fast due to a decrease in
the number of the electron states near the band edge. If
the sum of the electron momenta becomes larger than qo,
ImE(e„, cd) decreases because of the reduced phase space.
The ep dependence of the self-energy is mainly coming
&om these two mechanisms. The imaginary part of the
self-energy is not symmetric with respect to u due to de-
pendence on ep. The presence of damping in e as the ar-
gument of X[qpp(e)] in Eq. (23) causes the additional de-
crease of the imaginary part of self-energy. The interest-
ing feature of Z~ ~ is the behavior at high texnperatures.
To study this behavior we have plotted ImZf l (e~, cd) at
ep

——u = 0 for finite temperatures. In the Migdal ap-
proximation this value reaches the limit mAT (Fig. 7).
At high T, increasing the ratio O~h/E~ can cause the ef-
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FIG. 5. The imaginary part of the self-energy at high
frequencies (T = 0). The curves are plotted for ~&u~ )
0 „, Q „= 1.60ph The electron spectral weights are
calculated within the Migdal approximation. The solid line
is for A = 1, the dashed line is for A = 3. Curve 1 is for
Oph = 0.05E~, curve 2 is for Oph = 0.1E~, curve 3 is for
Oph ——0.2E+, curve 4 is for Oph: 0 1E~.

FIG. 7. The imaginary part of the self-energy at high
temperatures. The dotted lines are given by vrAT with A=1
and 3 . The dot-dashed lines (MA) are calculated within the
Migdal approximation with A=1 and 3 . The solid lines are
for A~h = 0.05Ep, A = 1 (curve 1); A~i, = 0.1E~, A = 1
(curve 2); B~h = 0 2EJ;, A .= 1 (curve 3); and Qpi, = 0.1E~,
A = 3 (curve 4).

fective decreasing of A and deviation &om the usual for-
mula for inverse relaxation time. The higher-order cor-
rections can only increase this deviation &om the asymp-
totic value of vrAT. For example, one can find that the
sign of the term which produces the maximum increase
in ImZ( )(e„= w = 0) at high temperatures [the term
which consists of the product coth(Ai/2T) coth(Az/2T)]
is opposite to ImZ( )(e„=u = 0). This should cause a
larger decrease ( T /E~) from the one shown in Fig.
7.

V. SOME LIMITING CASES FOR VERTEX

To complete our analysis of the electron-phonon inter-
action in 2D we would like to study the skeleton diagrams
for vertex I' at T = 0. The first diagram, I. ~ ~, shown in
Fig. 8(a) has been studied in 3D. o The analysis of this
diagram is the initial point for the Migdal approxima-
tion. It was pointed out that when we take the limits

q ~ 0, i~ -+ 0, in that order, the magnitude of this di-

1.0 P+q P+q P+q P+q P+q

3

3

2

0.9—

0.7—

50.6 ——-—

b)

c)

P,

P P

P P PI

+
~ ~

—2

FIG. 6. The e„dependence of the imaginary part of the
self-energy (T = 0, 0 „=1.60~h). Curve 1 is for A = 1,(d: 0 Oph: 0 1Ep' ' cul ve 2 is fol A: 1 ct): 0
Oph: 0 1E&& curve 3 is for A = 3, u = —0 „,Oph ——0.1E~,'
curve 4 is for A = 1, u = —20 „,Oph ——0.1E~, curve 5 is for
A = 3, u = —20 „, Oph ——0.1Ep", and curve 6 is for A = 1,

FIG. 8. Diagrams for the three-point vertex I'(p, u;q, v)
(a) and the polarization part II(q, v) (b) and (c). The con-
tribution of the first diagram in the right side of (a) is on
the order of A~h/E~. The second diagram in the right side
of (a) has the geometrical singularities in 2D [Eqs. (32) and
(33)]. The diagrams with crossed phonon lines in (b) have the
geometrical singularities in 2D which increase their impor-
tance near v 0.
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agram is A~i, /Ez. Here iw„ is the Matsubara frequency
for the incoming phonon and q is its momentum. The
order of the limits is important because in the reversed
order iu„-+ 0, q ~ 0 the vertex is O(1).2o 2i In 2D it

I

is not enough to study only I'~ l even when A~i„/E~ is
small. To illustrate our point we would like to compare
two diagrams shown in Fig. S(a). The calculations with
bare lines for vertex corrections I'( ) and I'( ~ give

»m lim r('l =N(O) i)
q —+0 i+„~0 0p/

(24)

lim»m I' ' = N(0) ' ) dO, B(p —pi, Q, ) d02B(p —p„B,)
q —+Oi~„—+0 0P Py

) n, n2 8 K, (Oi) —K, (02)
X

0!

gory

—0,'202 OKAPI
'ECd~ + E'Pl —

CP1
—EP'

CX1 iCkg =+1 1 P1

where p and iu„are, respectively, the momentum and
the frequency for the incoming electron line, b' i is the
Kronecker symbol. Ii, I2 are the factors containing var-
ious combinations of the Fermi and Bose functions. For
T = 0 they consist of the sum of the products of 0 func-
tions because of f (e) = —N(e) = 0(—e):

Ii —— b~ i —f(e„,) f(e„)+ b~ i —f(ep ) f(e„+nQ)

+ 1 —f(c„,) —f(e„) N(e~, +e„), (26)

I2 —— 8 i —f(e„,) f(e„)—f(ep, + nA) . (27)

After analytical continuation iu —+ w + i0, the lim-
its in Eqs. (24) and (25) will be denoted as I'~ l(e„,u)
and I'~ )(ez, tu), respectively. We are interested in the
case when the characteristic phonon frequency is much
smaller than the Fermi energy and cu O~h. Therefore,
only the first order of Q~h/E~ will be kept. The denom-
inator under the integral in Eq. (24) is peaked near the
Fermi surface. Thus, the integration over energy variable
can be separated from integration over phonon momen-

turn, assuming that the q dependence of B(q, 0) is not
significant. Taking —e„=p /2m —p, as we have done in
the calculations of E( ), one obtains

dAB(q, 0),

Imr ~'l(e„, ~) = O. (2S)

The order of magnitude of I'( l(e„,w) is the same in
both 2D and 3D. For example, the result of the cal-
culation of I'~il(e„, ur) with B(q, 0) given by the Ein-

stein model is —AO h/2E~, while for the 3D Debye
model it is Au~/3Ez a—nd for the 2D Debye model it is
—Aw~/vrE~. The imaginary part of the first-order ver
tex correction, I', is o(O~h/E~). However, the imag-
inary part of I' (e„,~) is O(O~h/E~). Indeed, after
substituting the phonon spectral weight by the average
B „(0) and after transforming the integration variables
to e&i, e&i, e&,q we get

&F E~ QM dQ
(3 ) N» (0) ) ' = «p' «i ' «r, 0(QM —Q~)—oo —m Q IP )Pg

(29)

(2D): N(0) )
P iPy

] ~ ~ F g(q q )
&M 2 2qdq

d&pEz "' "' vr2 g X(qpp')X(Qppi)
(3o)

Here NsD(0) = mph/2m is the three-dimensional elec-
tron density of states at the Fermi level. The momenta
Q and Q~ are the same as in Eq. (10): Q
max(lp - p'I I» -

pal QM ™~(p+p' p. + p'1) The
imaginary part of I'& (e„,~) has a b function which re-
moves one integration, say, over ep, . If the incoming mo-
mentum p is near the Fermi surface p ~ p~(e„O~h),
the function 8(QM —Q ) and the thermal factors Ii, I2

provide a cutoff, Eo( Ep), for integrations over e~i, e„i.
In 3D one can estimate the imaginary part of the second-
order vertex correction for the Einstein model to be

&(0)
Iml'( l(e, (u) - ——A

~ ln 0(l l

—O(„~) .
4 Ey E~

(31)
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This shows that in 3D Iml'l l O(Oph/E~) for ~u~ )
0 h, while Iml'~ l o(A~h/Ey). Let us estimate the
imaginary part of the second-order vertex correction in
the case of the Einstein model for 2D electron gas in the
region ~w~ ( 0 h. By extracting the geometrical singu-
larities from the integral over Q in (30) and by combining
them with thermal factors which keep the energies near
the Fermi level, one can find the singularity in ImI'( )

Iml'~'l(~p, ~) - ——
2' 4EF

0 h+(d(o)

(u ln
0

(d 0(o)

(o)20 —u ~ pph

(32)

This asymptotic formula reBects the fast increase of the
vertex correction ImI'( ) in the vicinity of M cp The
term (u —e„) in Eq. (32) does not depend on the
Einstein model, but it appears in the general case be-
cause it is connected with the two-dimensionality of the
free electron gas. Indeed, one can substitute the aver-
age spectral weight B „(0) by the Eliashberg function
n E(B) and estimate the behavior of the imaginary part
of the second-order vertex correction at low frequencies

&ph ~ The result is

3A co
Iml'~ l(e„,ur) (33)8' Ep' QJ —6p

When e„= ur +O(u /E~), the terms with higher powers
of E+ should be taken into account. Including such
terms does not change the tendency of the vertex with
bare lines to increase in the vicinity of w = ep and to be
larger than the bare vertex. It is clear that the diagram

I

for the vertex correction with more than two phonon lines
gives stronger geometrical singularities in 2D near ~ =
Ep. If the damping is finite ( O~h), the singular term

(ur —e„) in the vertex correction Iml'l l in Eq. (32)
is replaced by a term of the order of 0 h, and Migdal'sP}1 )

result for vertex is retrieved. At low &equencies, the
prefactor of the singular term decreases rapidly. One can
conclude that the order of the vertex corrections in 2D
calculated with dressed lines does not exceed the order of
the main accuracy A~i, /E~ but in the vicinity of some
special points the contribution &om the vertex correction
in 2D is much larger than in 3D.

VI. POLARIZATION PART AT q = 0

Due to the importance of the polarization part II(q, v)
in the limit of ~q~ ~ 0 for transport and optical properties
of the electron-phonon system, let us discuss brieQy the
higher-order diagrams shown in Fig. 8(b) for ImP(v) =
lim&~0ImII(q, v) in 2D. The vicinity of q = 0 does not
play a significant role for phonon polarization, and we
omit the external vertices which are denoted as open
circles in Fig. 8. The diagram without phonon lines
(the simple polarization bubble) and the bubble with one
phonon line have the same value in 2D and 3D because
of the absence of geometrical singularities in the integra-
tion over momenta. The di6'erence appears in diagrams
with two or more phonon lines. The diagrams in Fig.
8(b) involve integrations over the frequencies w, w', u"
and summations over momenta p, p', pz. In the case of
the polarization part II(q, v), the function analogous to
B~ l, Eq. (6), that appeared in the results for Zl2l, is
~(2)

X A(C&& (d)A(E&& (d + V)A(E&I &
4) )A('E'&s

&
(d + V)A(E&& &

CtJ )A(6&& &
Cg )

-'&-a( ~ n )a( ~ n ) (34)
vr2 ~ X(Qpipi)X(Qpp') 2

The summation over P is the summation over +, as in
Eq. (10), and over two diagrams in Fig. 8(b). In the
case of q « 2@~, the calculation of the simple bubble
with bare lines gives nonzero result for Imll(q, v) only
on the scale of v v~q. ' At q = 0 the simple bub-
ble [Fig. 8(c)] calculated with dressed lines Gl l(e„,w)
gives ImP(v) N(0) v~ (v)/[v + ~ (v)], with ~ (v)
related to damping. The strong temperature depen-
dence of the polarization part, especially in the region
of the low &equencies, was found. Including the dia-
grams in the ladder approximation [Fig. 8(c)] does not
change this result. 24 We argue that increasing Q~h/E~
can afFect temperature dependence of the polarization
part in 2D. In the region of small v, one can estimate

I

the contribution to the polarization part from the dia-
grams in Fig. 8(b) to be larger than the contribution
from the series of ladder diagrams in Fig. 8(c). Indeed,
the products A(e, u) A(e, w + v) in expression (34) can be
substituted at small v by the derivatives s A(e, w). In
2D, the derivatives with respect to the energy increase
the order of geometrical singularities near v = 0 in dia-
grams shown in Fig. 8(b) [compare to the case of limits
for vertex function I' in Eqs. (25) and (32)]. At large v
the contribution to ImP(v) from these diagrams is small

[ N(0) Q~&/Ez ln(Ez/A~h)]. However, at high frequen-
cies v and/or at high temperatures T the changes are
already present in the simple bubble due to the correc-
tion of the &equency and temperature dependences of
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ImZ(e„, cd) (see Sec IV). In future work we will study in
a more quantitative way the effect of two-dimensionality
and increasing B~h/EF on ImII(q, v; T).

VII. CONCLUSIONS

The main difference between 2D and 3D electron gas
is that in 2D all electron momenta are in the same plane.
This leads to geometrical singularities in the expressions
for skeleton diagrams with more than one phonon line.
This result is not restricted to the case of isotropic Fermi
surface. In fact, we found that in the case of a nested
Fermi surface in 2D the singularities are even stronger
(see Sec. III). Due to geometrical singularities the many-
particle effects in 2D become important even at small
ratios Aph/EF. For example, it is not possible to describe
the electron self-energy near cu = T = 0 in terms of
a single phonon spectral weight, B(q, O). Indeed, we
found that on the energy scale 0 I,/EF near cd = T = 0
the contribution to ImE(e„, cd) from the skeleton diagram
with two phonon lines in 2D is larger than Migdal's result

p(M)( )
25

With increasing A~h/EF the electron states with mo-
menta which are farther from the Fermi surface become
involved in the scattering processes and one has to use
the complete spectral weight A(e„, cd) for those states,
instead of b functions. The damping is connected with
ImZ(e„, cd) and it determines the scale of energies where
the electron spectral weight A(e„, cd) is peaked. This scale
is w mAO~h. Furthermore, the damping smears the
geometrical singularities in 2D in the higher-order dia-
grams. Thus, the damping, which is related to the nature
of the boson exchange between electrons, plays a key role
in 2D.

Our results do not depend critically on the concrete
form of the boson spectral weight B(q, 0) as long as it
extends over the frequency range restricted by O~ and
over the momentum range restricted by qo 2@~. In
the case when electrons interact via exchange of phonons
and some additional bosonic excitations (e.g. , spin fluc-
tuations) the relevant parameter is f~ dA [a F(O) +

B(q, 0) /EF For a more .precise estimate of the ac-
curacy of calculations which use only the first-order skele-

ton diagram it is necessary to study in more detail the
concrete connection between the three-point vertex and
the four-point vertex (the Bethe-Salpeter equation for
vertex). Nevertheless, it is clear that increasing 013/EF
enhances the relative correction of the result obtained
within the Migdal approximation and it expands the re-
gion near u = T = 0, where the corrections to the imag-
inary part of the self-energy are larger than 1mB~M&(cd).

At small u the hopping in the direction perpendicular to
the plane cannot be ignored. The magnitude of t/EF,
where t is the hopping matrix element, is critical, but
when t & 0&/EF the geometrical singularities still play
the dominant role. Therefore, if O~&/EF 10 IneV,
the results obtained by means of the usual treatment
through the erst-order diagram cannot be applied in the
frequency region 10 meV at low temperatures in the
case of two-dimensional electron spectrum.

The asymptotic formula A(O&h + uT)EF ln(EF/A&I, )
which gives the accuracy of the Migdal-Eliashberg ap-
proach can be applied for small values of the ratio
Api, /EF When .O~h/EF is larger than 0.1—0.2 and A & 1,
2D electron self-energy has to be analyzed beyond the
Migdal approximation in the region of frequencies and
temperatures 0.2 —0.30&h. To obtain the true behav-
ior of the imaginary part of the self-energy in this region
it is necessary to take into account the higher-order cor-
rections because in 2D the (K + l)st-order diagram is

A~B~h/EF, and not AIv (O~h/EF) . The conse-
quence of our analysis is that restrictions on the range
of values cd, e„,T, and AO~I, /EF exist for the Migdal-
Eliashberg approach. If the ratio A~I, /EF is not negligi-
bly small the extrapolation of the usual formulas based
on the first-order diagram beyond a restricted region (see
Secs. II and IV) can lead to an underestimation of the
importance of the electron-phonon interaction in quasi-
two-dimensional systems.
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APPENDIX

The analytical continuation of Eq. (3) is unique if ImZ(e„, z) is bounded at all Imz ) 0. s According to the
classification of terms S;, i = 1, 2 in Eq. (4) one can get

s, (.„)=——f dn, f dn, f ,

' f""
CX1 ICX2 =+1

OI ~+ aI~I Ix 2! coth —ai tanh ! coth
2T 2T 2T

(ep) Cd j Cd + al~ly Cd + al~l + a2~2) Cd + a2~2j ~1~2)
Og 02 1 & Og ~+ o,202 cd + a101 ~2 )+ coth coth ——

! coth n2 tanh
2T 2T 2 ( 2T 2T + o.i tanh

2T 2T)
coth

1 ( AI GJ + 0!yOy 02 Cd + n202)——ai a2! Q!Icoth —tailll
2 ) 2T 2T + o,2coth —tanh !2T 2T )

x tanh
(d + Agni + &202 (2) / //

2T
H (Ey M & + Alnl & + &Inl + A2n2 M + O2n2 nln2))
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and

x 2 tanh coth —o.'2 tanh B 6'p) 4) j 4)
7

(AJ + A&O2y (Ar + o,'202' O&O2
~d' t' Oz ld + cr2+z l (z)

2T
~d'+ o.z02 ( Oz id + nzOz& + AgOg+ tanh cot —nz tan + o.2 tan

( (d —id (d O2 (d —(d (d + AgOg
x

[
coth —tanh

~

+ tanh coth —coth n2 tanh
2T 2T) 2T 2T 2T 2T

Xs (E| &'& + K M K + A2a2 K + O202' 0102))

where the function B( ) is defined in Eq. (6). The symmetry of the diagram Z( ) in respect to the exchange between
the electron line with momentum pq and the phonon line with momentum qq from one side and the electron line with
momentum pz and the phonon line with momentum q2 &om another side is used to compact the expression for S~
and S2. The term S3 is

ss(e~, ~) = —f dB&j d02/, , 2 f
1 ( (d —(d (d (d —(d Cd l Cd + (d —Ld

x —
~

coth —tanh + coth —tanh
~

tanh
2 ( 2T 2T 2T 2Tp 2T

1 I Cd (d —Cd id —id id ) id id——
~

tanh coth + coth tanh
[
+ tanh tanh

XB (E'» (d; Ld, & + td —(d, Cd; QiQ2) .

The connection of thermal factors in the expressions for S;, i = 1, 2, 3, with Bose and Fermi functions is due to

0
coth = 2N(Q) + 1

2T

tanh = 1 —2f(tu) .
2T
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